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Abstract
In (Rahman and Schmeisser in Trans. Amer. Math. Soc. 320: 91–103, 1990), the authors
prove that the classical Bernstein inequality also holds for 0 < p ≤ 1. We extend their
result for a differential operator induced by polynomials and find the several
equivalent conditions to the Paley–Wiener theorem. As applications of the results, we
also derive the Paley–Wiener type theorems for some special compact sets generated
by number sequences, generated by polynomial, convex compact sets, in which we
show that the Bernstein type inequalities have concrete upper bounds.
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1 Introduction and main theorems
Bernstein’s inequality began with the problem of an estimate of an upper bound for deriva-
tives of functions on the real line in 1912 ([7]). A generalization for the classical Bernstein
inequality can be found in [8]: For any polynomial g of degree k,

∥
∥g(m)∥∥

p ≤ km‖g‖p, (1)

where 1 ≤ p ≤ ∞. The inequality is very useful in the field of approximation theory and
differential equations. Even though there are innumerably many splendid studies related
to Bernstein’s inequality after [7] appeared, we only introduce directly related research
results with this paper.

For example, the author in [1, p. 144, Theorem 3], derives that

∥
∥(sinα)f ′ – σ (cosα)f

∥
∥

p ≤ σ‖f ‖p (p ≥ 1),

for all real α, where f is an entire function of exponential type σ belonging to Lp(R). As
another result of the same kind, for real valued functions the authors show that

∥
∥
((

f ′)2 + σ 2(f )2)1/2∥
∥

p ≤ 2σCp‖f ‖p,
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where C–p
p = 1

2π

∫ 2π

0 |1 + eiθ |p dθ < 1 ([12]). As a consequence of (1), we see that
lim supm→∞ ‖f (m)‖1/m

p ≤ sup{|ξ | : ξ ∈ supp f̂ }, where f̂ is the Fourier transform of f . In
[2], the author proves that this inequality becomes the equality and also he derives a radial
spectral formula in the following: If 1 ≤ p ≤ ∞ and f (m) ∈ Lp(R) (m = 0, 1, 2, . . .), then there
always exists the limit of ‖f (m)‖1/m

p and

lim
m→∞

∥
∥f (m)∥∥1/m

p = sup
{|ξ | : ξ ∈ supp f̂

}

.

In particular, supp f̂ ⊂ [–σ ,σ ] if and only if lim supm→∞ ‖f (m)‖1/m
p ≤ σ .

The classical Paley–Wiener theorem gives a characterization of L2-functions with their
Fourier transforms compactly supported (the L2 band-limited functions): Let σ > 0 and
let f be an entire function of exponential type σ . Then f ∈ L2(Rn) if and only if there exists
g ∈ L2(Rn) vanishing a.e. outside [–σ ,σ ] such that f = ĝ ([11]). As the generalized results
for the Paley–Wiener theorem, we mention [13] and [9], in which the authors make an
extension to the distribution supported in the closed ball and in convex compact, respec-
tively.

In this paper, we focus on an extension of the inequality (1) to a differential operator for
0 < p < 1 as a generalization of [12]. First, we establish necessary and sufficient conditions
on the sequences of norm of derivatives of functions in Lp(Rn) such that their spectrum are
contained in a fixed compact set in R

n, refer to the main results of Theorems A, B, and C.
In Theorem B and C, we provide the behavior of sequence of higher order derivatives,
direction derivatives for the class of entire function of exponential type belong to Lp(Rn)
spaces (0 < p < 1) and about three applications of Theorem A. This paper is organized as
follows: Sects. 2, 3, and 4 have the proof of each of the main theorems. In the last section,
we provide the Paley–Wiener theorem for some special compact sets.

For simplicity, we introduce some notations: We denote the support of f by supp f , the
set of nonnegative integers by Z∗ (also, R∗ means the collection of all nonnegative real
numbers) and a differential operator by P(D) induced from a polynomial P(x) in R

n, where
D = –i∂/∂x. For a multi-index α ∈ Z

n∗ , put |α| =
∑n

j=1 |αj| (α = (α1, . . . ,αn)).
Let K ⊂ R

n be compact and let δ > 0. We write Kδ , K(δ) as the real δ-neighborhood
of K , the complex δ-neighborhood of K , respectively, i.e., Kδ = {x ∈ R

n : dist(x, K) ≤ δ}
and K(δ) = {z ∈ C

n : dist(z, K) ≤ δ}. In addition, throughout this paper, we assume that the
function f ∈ Lp(Rn) has the bounded spectral if there is no any comment, e.g., since this
condition implies differentiability properties of a function f .

Theorem A Let 0 < p < 1 and let K ⊂ R
n be compact. Then supp f̂ ⊂ K if and only if for

any δ > 0 there exists a constant Cp,K ,δ independent of f , P such that

∥
∥P(D)f

∥
∥

p ≤ Cp,K ,δ

(

sup
z∈K(δ)

∣
∣P(z)

∣
∣

)

‖f ‖p (2)

for any polynomial P.

Theorem B Let 0 < p < 1, 0 < λ < 1, σ = (σ1,σ2, . . . ,σn) ∈R
n∗ . Then the following statements

are equivalent:
(i) supp f̂ ⊂ [–σ1,σ1] × [–σ2,σ2] × · · · × [–σn,σn].

(ii) For any α ∈ Z
n∗ , ‖Dαf ‖p ≤ σα‖f ‖p.
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Let η ∈ R
n be on the unit sphere. Let us recall that the directional derivative of f at x

along η is defined by

Dηf (x) =
n

∑

j=1

ηj
∂f
∂xj

(x)

and the higher order directional derivative is defined by

Dm
η f (x) = DηDm–1

η f ,

where m ∈ Z∗.

Theorem C Let 0 < p < 1, 0 < λ < 1, and r > 0. Put Kη,r = {ξ ∈ R
n : |ηξ | ≤ r}. Then two

statements are equivalent:
(i) supp f̂ ⊂ Kη,r .

(ii) For any m ∈ Z∗,

∥
∥Dm

η f
∥
∥

p ≤ rm‖f ‖p. (3)

If we consider the tempered distributions S ′(Rn), where S(Rn) consists of Schwartz
functions on R

n, then, for the space

Ep(K) =
{

f ∈ Lp(
R

n) ∩ S ′(
R

n) : supp f̂ ⊂ K
}

(0 < p ≤ 1),

the operator norms of P(D) on Ep(K)

∥
∥P(D)

∥
∥

Ep(K )→Ep(K ) = sup
f ∈Ep(K ),‖f ‖p≤1

∥
∥P(D)f

∥
∥

p

are also deduced from Theorems A, B, and C.

2 Proof of Theorem A
We start with the Nikolskii inequality. This is useful to prove the necessity of Theorem A.

Proposition 2.1 (Nikolskii inequality [10]) Let 0 < p < q ≤ ∞ and let K be compact. Then

‖f ‖q ≤ Cp,q,K‖f ‖p,

for all f ∈ Ep(K).

Proof of necessity of Theorem A Fix 0 < δ < 1 and consider the bump function φ in the class
of the test-functions, with compact support, defined by φ(ξ ) = 1 if ξ ∈ Kδ/4; and φ(ξ ) = 0 if
ξ /∈ Kδ/2. Let f ∈ Ep(K). Since P̂(D)f = P(ξ )f̂ (ξ ), we have P̂(D)f = P(ξ )f̂ (ξ ) = φ(ξ )P(ξ )f̂ (ξ ).
By the inversion formula for a convolution,

P(D)f = F–1(φP) ∗ f , (4)
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where F–1(φP) means the inverse Fourier transform of φP. (In this proof, we write the
Fourier transform of f by F (f ) instead of f̂ .) Define f̌ (x) = f (–x) and fy(x) = f (x + y) is the
translation of f by y, e.g., f̌y(x) = f (y – x).

It follows that

suppF
(

F–1(φP)f̌x
) ⊂ supp(φP) + suppF (f̌x)

= supp(φP) – suppF (f )

⊂ suppφ – suppF (f )

⊂ Kδ/2 – K ⊂ K1 – K

for any x. By Proposition 2.1 with 0 < p < 1,

∥
∥F–1(φP)f̌x

∥
∥

1 ≤ Cp,K
∥
∥F–1(φP)f̌x

∥
∥

p (5)

for any x. By (4) and by (5),

∣
∣P(D)f (x)

∣
∣
p ≤ Cp

p,K

∫

Rn

∣
∣F–1(φP)(y)

∣
∣
p∣
∣f (x – y)

∣
∣
p dy

for any x ∈R
n. Consequently,

∫

Rn

∣
∣P(D)f (x)

∣
∣
p dx ≤ Cp

p,K

∫

Rn

(∫

Rn

∣
∣F–1(φ(ξ )P(ξ )

)

(y)
∣
∣
p∣
∣f (x – y)

∣
∣
p dy

)

dx.

By Fubini’s theorem, hence

∥
∥P(D)f

∥
∥

p ≤ Cp,K
∥
∥F–1(φP)

∥
∥

p‖f ‖p

= (2π )–nCp,K
∥
∥F (φP)

∥
∥

p‖f ‖p

= (2π )–nCp,K‖Φ‖p‖f ‖p, (6)

where Φ(x) = F (φP)(x).
Now by estimating Φ properly, we will complete the proof. Put p′ = � 1

p
 + 1, where � · 

denotes the floor function. Let β ∈ Z

n∗ such that β ≤ (p′, . . . , p′) = p′, say, here the inequality
means that every component of β is less than or equal to p′ and β ! means a multi-index
factorial. Since

sup
x

∣
∣xβΦ(x)

∣
∣ = sup

x

∣
∣
∣
∣

∫

Rn
Dβ

[

φ(ξ )P(ξ )
]

eixξ dξ

∣
∣
∣
∣

≤
∫

Kδ/2

∣
∣Dβ

[

φ(ξ )P(ξ )
]∣
∣dξ = I, say, (7)
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the Leibniz rule yields

I ≤
∫

Kδ/2

∣
∣
∣
∣

∑

γ≤β

β !
γ !(β – γ )!

Dγ φ(ξ )Dβ–γ P(ξ )
∣
∣
∣
∣
dξ

≤ 22n
∑

γ≤β

sup
x∈Kδ/2

∣
∣Dβ–γ P(x)

∣
∣

∫

Kδ/2

∣
∣Dγ φ(ξ )

∣
∣dξ

≤ 22nCp,K ,δ max
α≤p′ sup

x∈Kδ/2

∣
∣DαP(x)

∣
∣, (8)

where Cp,K ,δ =
∑

γ≤p′
∫

Kδ/2
|Dγ φ(ξ )|dξ .

By regarding DαP(x) as a complex holomorphic polynomial and using Cauchy’s integral
formula, we can estimate its maximum modulus in Kδ/2 as the maximum modulus of P(z)
in K(δ). Thus there exists a constant CK ,δ which depends only on K , δ such that

sup
Kδ/2

∣
∣DαP(x)

∣
∣ ≤ CK ,δ sup

K(δ)

∣
∣P(z)

∣
∣ (9)

for any α ∈ Z
n∗ (α ≤ p′).

Combining (7), (8) with (9), we have

sup
x

∣
∣xβΦ(x)

∣
∣ ≤ C′

p,K ,δ sup
K(δ)

∣
∣P(z)

∣
∣, (10)

where C′
p,K ,δ = 22nCp,K ,δCK ,δ . From (10),

∫

Rn

∣
∣Φ(x)

∣
∣
p dx

≤ sup
x

((

1 + |x1|
)p′ · · · (1 + |xn|

)p′ ∣
∣Φ(x)

∣
∣
)p

∫

Rn

dx
(1 + |x1|)p′p · · · (1 + |xn|)p′p

= Cp
p sup

x

((

1 + |x1|
)p′ · · · (1 + |xn|

)p′ ∣
∣Φ(x)

∣
∣
)p, (11)

where Cp
p =

∫

Rn
dx

(1+|x1|)p′p···(1+|xn|)p′p < ∞.

Hence, by (11) and according to (10),

‖Φ‖p ≤ 2p′–1+nCpC′
p,K ,δ sup

z∈K(δ)

∣
∣P(z)

∣
∣. (12)

By (6) with (12), the proof is complete. �

The following lemma is useful for the sufficiency of Theorem A.

Lemma 2.2 ([3]) If supp f̂ is compact, then

lim
m→∞

∥
∥Pm(D)f

∥
∥

1/m
1 = sup

x∈supp f̂

∣
∣P(x)

∣
∣.

We prove the sufficiency of Theorem A by contradiction.
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Proof of sufficiency of Theorem A Assume that there exists x0 ∈ H with x0 /∈ K , where
H = supp f̂ . We consider a polynomial P(x) = t0 – |x – x0|2, where t0 = supx∈K |x – x0|2 > 0
and apply (2) with Pm for a positive integer m. In addition, by Proposition 2.1,

∥
∥Pm(D)f

∥
∥

1/m
1 ≤ (

Cp,HCp,K ,δ‖f ‖p
)1/m

sup
z∈K(δ)

∣
∣P(z)

∣
∣.

By applying the limsup on both sides, we have

lim sup
m→∞

∥
∥Pm(D)f

∥
∥

1/m
1 ≤ sup

z∈K(δ)

∣
∣P(z)

∣
∣.

Now letting δ ↘ 0, we obtain

lim sup
m→∞

∥
∥Pm(D)f

∥
∥

1/m
1 ≤ sup

x∈K

∣
∣P(x)

∣
∣. (13)

By Lemma 2.2 and by (13), we have the following contradiction:

t0 =
∣
∣P(x0)

∣
∣ ≤ sup

x∈K

∣
∣P(x)

∣
∣ = sup

x∈K

(

t0 – |x – x0|2
)

� t0,

where the last inequality comes from the fact that x0 /∈ K . Therefore, the proof is com-
plete. �

3 Proof of Theorem B
We recall the following lemma.

Lemma 3.1 ([6, Theorem 6]) Let 0 < p ≤ 1 and let f ∈ Lp(Rn). Then limλ↗1 ‖f – λf ‖p = 0,
where λf (x) = f (λx) denotes the dilation of f by λ.

Proof of Theorem B Suppose (ii). According to (ii) with Proposition 2.1,

lim sup
|α|→∞

(∥
∥Dαf

∥
∥

1/σα
)1/|α| ≤ 1. (14)

By Lemma 2.2,

sup
ξ∈supp f̂

∣
∣ξβ

∣
∣ ≤ lim sup

m→∞

∥
∥Dmβ f

∥
∥

1/m
1 (15)

for all β ∈ Z
n∗ .

Combining (14) and (15), we have

sup
ξ∈supp f̂

∣
∣ξβ

∣
∣ ≤ lim sup

m→∞

∥
∥Dmβ f

∥
∥

1/m
1 ≤ σβ

and this gives supp f̂ ⊂ [–σ1,σ1] × [–σ2,σ2] × · · · × [–σn,σn].
Next, (i) implies (ii), which follows from the Bernstein inequality for 0 < p ≤ 1 ([12]).

Therefore, the proof is complete. �
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Remark 1 (1) Theorem B shows an Lp-boundedness of derivatives. In fact, we prove that
the Lp-boundedness is equivalent to the following vanishing property:

lim|α|→∞
∥
∥Dαf

∥
∥

p/σα = 0. (16)

First, we prove that (i) of Theorem B implies (16). Indeed, from the definition of the
function λf , we have supp ̂

λf = λ supp f̂ . Then

supp ̂
λf ⊂ [–λσ1,λσ1] × [–λσ2,λσ2] × · · · × [–λσn,λσn]. (17)

Since Dα
λf (x) = λ|α|Dαf (λx), by a change of variables,

∥
∥Dα

λf
∥
∥

p = λ|α|–n/p∥∥Dαf
∥
∥

p (18)

for all α ∈ Z
n∗ . By (17), supp f̂ – λf ⊂ [–σ1,σ1] × [–σ2,σ2] × · · · × [–σn,σn]. Thus by the

Bernstein inequality for 0 < p < 1 ([12]),

∥
∥Dα(f – λf )

∥
∥

p ≤ σα‖f – λf ‖p. (19)

Also, by the triangle inequality,

∥
∥Dαf

∥
∥

p/σα ≤ 21/p(∥∥Dα(f – λf )
∥
∥

p +
∥
∥Dα

λf
∥
∥

p

)

/σα

≤ 21/p(σα‖f – λf ‖p + λ|α|–n/p∥∥Dαf
∥
∥

p

)

/σα (20)

for all α ∈ Z
n∗ , where the second inequality comes from (18). Hence,

∥
∥Dαf

∥
∥

p/σα ≤ 21/p‖f – λf ‖p/
(

1 – 21/pλ|α|–n/p)

for all α ∈ Z
n∗ . In addition, from the inequalities

21/pλ|α|–n/p ≤
(

2
(

1 –
1

|α|
)|α|–n/p)1/p

≤
(

2
e

(

1 –
1

|α|
)–n/p)1/p

≤
(

5
2e

)1/p

for all |α| ≥ max{n/(p(1 – (4/5)p/n)), (1 – λp)–1}, we have

∥
∥Dαf

∥
∥

p/σα ≤ 21/p‖f – λf ‖p

/(

1 –
(

5
2e

)1/p)

(21)

for all α ∈ Z
n∗ with |α| ≥ max{n/(p(1 – (4/5)p/n)), 1/(1 – λp)}.

Next, take lim sup|α|→∞ on both sides of (21) and then the right hand side of (21) is
independent of α. Thus taking limλ↗1 in (21), by Lemma 3.1 we have (16).

Reversely, since (16) implies (14), we can derive that (16) implies (i) of Theorem B.
(2) With the hypothesis of supp f̂ ⊂ [–σ1,σ1] × [–σ2,σ2] × · · · × [–σn,σn], the Bernstein

inequality for 0 < p ≤ 1 ([12]) says that (‖Dαf ‖p/(σα‖f ‖p))α∈Zn∗ is bounded by 1. On the
other hand, (1) of Remark 1 gives a stronger result: lim|α|→∞ ‖Dαf ‖p/(σα‖f ‖p) = 0.
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(3) Let 0 < p < 1, σ = (σ1,σ2, . . . ,σn) ∈ R
n∗ . If we define

Mσ ,p =

{

f ∈ S ′(
R

n) : f̂ ∈ C�
(

R
n), supp f̂ ⊂

n
∏

j=1

[–σj,σj]

}

,

where � = n(�1/p
 + 2), then the convergent ratio of {‖Dαf ‖p/σα}α∈Zn∗ is as follows:

lim|α|→∞ |α|a∥∥Dαf
∥
∥

p/σα = 0 (22)

for all 0 < a < 1 and for all f ∈ Mσ ,p. Indeed, we justify (22): Consider a function Gλ(x) as
follows:

Gλ(x) = f (x) – f (λx), x ∈R
n,

1
2

< λ < 1.

Then, due to supp f̂ ⊂ K :=
∏n

j=1[–σj,σj], we have

Gλ(x) = (2π )–n
∫

K
e–ixξ

(

f̂ (ξ ) –
1
λ

f̂
(

ξ

λ

))

dξ .

So,

∣
∣xαGλ(x)

∣
∣ = (2π )–n

∣
∣
∣
∣

∫

K
e–ixξ

(

Dα f̂ (ξ ) –
1

λ1+|α|
(

Dα f̂
)
(

ξ

λ

))

dξ

∣
∣
∣
∣
,

where |α| = α1 + · · · + αn. Hence,

sup
x∈R

∣
∣xαGλ(x)

∣
∣

≤ (2π )–n
∫

K

∣
∣
∣
∣
Dα f̂ (ξ ) –

1
λ1+|α|

(

Dα f̂
)
(

ξ

λ

)∣
∣
∣
∣
dξ

≤ (2π )–n
∫

K

((
1

λ1+|α| – 1
)

∣
∣Dα f̂ (ξ )

∣
∣ +

1
λ1+|α|

∣
∣
∣
∣
Dα f̂ (ξ ) –

(

Dα f̂
)
(

ξ

λ

)∣
∣
∣
∣

)

dξ

≤ (2π )–n
((

1
λ1+|α| – 1

)
∥
∥Dα f̂

∥
∥∞ +

1
λ1+|α|

∥
∥
∥
∥

Dα f̂ (·) –
(

Dα f̂
)
( ·

λ

)∥
∥
∥
∥∞

)∫

K
1 dξ .

By the mean value theorem,

sup
x∈R

∣
∣xαGλ(x)

∣
∣ ≤ (2π )–n41+|α|(1 – λ)

(

∥
∥Dα f̂

∥
∥∞ +

n
∑

j=1

∥
∥Dα+ej f̂

∥
∥∞

)
∫

K
1 dξ

for all 1/2 < λ < 1, where ej ∈R
n is the unit vector whose jth coordinate is 1.

Now putting M = �1/p
 + 1, we have

‖Gλ‖p ≤ sup
x∈R

∣
∣
(

1 + |x1|
)M · · · (1 + |xn|

)MGλ(x)
∣
∣

(∫

Rn

1
(1 + |y1|)pM · · · (1 + |yn|)pM dy

)1/p

≤ ‖f – fλ‖p ≤ Cp(1 – λ)
∑

|α|≤(M+1,M+1,...,M+1)

∥
∥Dα f̂

∥
∥∞
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for all 1/2 < λ < 1. By Theorem B for λ = (1 – 1
|α| )

1/p, we obtain

∥
∥Dαf

∥
∥ ≤ Cp,f |α|–1σα

for all α ∈ Z
n∗ , |α| ≥ n/(p(1 – (4/5)p/n)), consequently,

lim|α|→∞ |α|a∥∥Dαf
∥
∥

p/σα = 0

for all 0 < a < 1. Thus (22) holds.

4 Proof of Theorem C

Proof of Theorem C Suppose (i). We consider a real orthogonal matrix A = (αk,s) that sat-
isfies

αk,1 = ηk , k = 1, . . . , n

and put

g(ξ ) = f (x) (x = Aξ ).

By differentiation,

∂

∂ξ1
g(ξ ) =

n
∑

k=1

∂f (x)
∂xk

∂xk

∂ξ1
.

It follows from ∂xk
∂ξ1

= ηk (k = 1, 2, . . . , n) that

∂

∂ξ1
g(ξ ) =

n
∑

k=1

ηk
∂f (x)
∂xk

= Dηf (x).

Similarly,

∂m

∂ξm
1

g(ξ ) = Dm
η f (x) (m = 0, 2, . . .).

Thus,

∥
∥Dm

η f (x)
∥
∥

p =
∥
∥
∥
∥

∂m

∂ξm
1

g
∥
∥
∥
∥

p
, ‖g‖p = rm‖f ‖p, (23)

here rm may be 1. Note that ĝ(ξ ) = f̂ (Atξ ) and so |ξ1| ≤ r for each ξ ∈ supp ĝ. By the Bern-
stein inequality for 0 < p < 1 ([12]) and by (23), we have

∥
∥Dm

η f
∥
∥

p =
∥
∥
∥
∥

∂m

∂ξm
1

g(ξ )
∥
∥
∥
∥

p
≤ rm‖g‖p = ‖f ‖p.
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Next, suppose (ii). By (ii), and by Proposition 2.1, we have

lim sup
m→∞

∥
∥Dm

η f
∥
∥

1/m
1 /r ≤ 1. (24)

By Lemma 2.2, we see that sup
ξ∈supp f̂ |ηξ | ≤ r, consequently, supp f̂ ⊂ Kη,r . Therefore, the

proof is complete. �

Remark 2 (1) Theorem C also shows an Lp-boundedness of derivatives. Similar to (1) of
Remark 1, we prove that the Lp-boundedness is equivalent to the following vanishing prop-
erty:

lim
m→∞

∥
∥Dm

η f
∥
∥

p/rm = 0. (25)

First, we show (ii) of Theorem C implies (25). Since supp ̂
λf ⊂ λKη,r and so supp f̂ – λf ⊂

Kη,r ∪ (λKη,r) = Kλ, say. From (ii),

∥
∥Dm

η (f – λf )
∥
∥

p ≤
(

sup
ξ∈Kλ

|ηξ |
)m‖f – λf ‖p.

Since supξ∈Kλ
|ηξ | ≤ max{supξ∈Kη,r |ηξ |, supξ∈λKη,r |ηξ |} ≤ r, we have

∥
∥Dm

η (f – λf )
∥
∥

p ≤ rm‖f – λf ‖p. (26)

Also, Dm
η λf (x) = λmDm

η f (λx) gives

∥
∥Dm

η λf
∥
∥

p = λm–n/p∥∥Dm
η f

∥
∥

p (27)

for all m ∈ Z∗. Thus, by the triangle inequality, by (26), and by (27),

∥
∥Dm

η f
∥
∥

p/rm ≤ 21/p(∥∥Dm
η (f – λf )

∥
∥

p +
∥
∥Dm

η λf
∥
∥

p

)

/rm

≤ 21/p(rm‖f – λf ‖p + λm–n/p∥∥Dm
η f

∥
∥

p

)

/rm

for all m ∈ Z∗. On the other hand, the constant has the upper bound

21/pλm–n/p ≤
(

2
(

1 –
1
m

)m–n/p)1/p

≤
(

2
e

(

1 –
1
m

)–n/p)1/p

≤
(

5
2e

)1/p

for all m ≥ max{n/(p(1 – (4/5)p/n)), (1 – λp)–1}. Hence, we get the desired inequality,

∥
∥Dm

η f
∥
∥

p/rm ≤ 21/p‖f – λf ‖p

/(

1 –
(

5
2e

)1/p)

, (28)

where m ≥ max{n/(p(1 – (4/5)p/n)), (1 – λp)–1}.
Now, take lim sup|α|→∞ on both sides of (28), and then the right hand side of (28) is

independent of α. Thus taking limλ↗1 in (28), by Lemma 3.1 we have (25).
Reversely, since (25) implies (24), we conclude the equivalence between Theorem C and

(25).
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(2) Let 0 < p < 1, r > 0. Put

Np =
{

f ∈ S ′(
R

n) : f̂ ∈ C�
(

R
n), supp f̂ ⊂ Kη,r

}

,

where � = n(�1/p
 + 2). Then from (1) of Remark 2, we have the following convergent ratio
of {‖Dm

η f ‖p/rm}m∈Z∗ :

lim
m→∞ ma∥∥Dm

η f
∥
∥

p/rm = 0

for all 0 < a < 1 and for all f ∈Np.

5 Applications
In this section, we derive three results as applications of Theorem A: If the compact set
K is specified in detail, we can reduce K(δ) into Kδ , as appears in Theorem A. Let α ∈ Z

n∗
and let 0 ≤ λα ≤ ∞. We define the set generated by the number sequence {λα} as G{λα}
consisting of all points ξ ∈R

n such that

∣
∣ξα

∣
∣ ≤ λα for all α ∈ Z

n
∗ .

Now for any set E ⊂R
n, put the g-hull of E by

g(E) = G
{

sup
E

∣
∣ξα

∣
∣

}

.

Then E ⊂ g(E) readily. We say that E satisfies the g-property if E = g(E). We note two facts
that every set generated by a number sequence G{λα} has the g-property and vice versa
and every symmetric compact convex set also has the g-property. For more information,
refer to [4, 5].

Theorem 5.1 Let 0 < p < 1 and let K ⊂ R
n be compact satisfying the g-property. Then

supp f̂ ⊂ K if and only if for any δ > 0 there exists a constant Cp,K ,δ independent of f , α such
that

∥
∥Dαf

∥
∥

p ≤ Cp,K ,δ

(

sup
x∈Kδ

∣
∣xα

∣
∣

)

‖f ‖p (29)

for any α ∈ Z
n∗ .

For any polynomial P and for r > 0, define an r-neighborhood with respect to P by

NP(r) =
{

x ∈R
n :

∣
∣P(x)

∣
∣ ≤ r

}

.

Theorem 5.2 Let 0 < p < 1 and let K = NP(r). Then supp f̂ ⊂ K if and only if for any δ > 0
there exists a constant Cp,K ,δ independent of f , m such that

∥
∥Pm(D)f

∥
∥

p ≤ Cp,K ,δ(r + δ)m‖f ‖p (30)

for any m ∈ Z∗.
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Theorem 5.3 Let 0 < p < 1 and let K ⊂R
n be convex and compact. Then supp f̂ ⊂ K if and

only if for any δ > 0 there exists a constant Cp,K ,δ independent of f , P, m such that

∥
∥Pm(D)f

∥
∥

p ≤ Cp,K ,δ

(

sup
x∈Kδ

∣
∣P(x)

∣
∣
m
)

‖f ‖p (31)

for any real polynomial P of degree 1 and for any m ∈ Z∗.

To prove Theorem 5.1, we need a lemma: The inclusion of Kδ ⊂ K(δ), implies

sup
K(δ)

∣
∣zα

∣
∣ ≥ sup

Kδ

∣
∣xα

∣
∣ for all α ∈ Z

n
∗ .

Moreover, for z ∈ K(δ) there exist ξ ∈ K and η ∈ C
n such that z = ξ + η, |η| ≤ δ and so

|zj| ≤ |ξj| + |ηj| (1 ≤ j ≤ n). Put x = (ξ1 + |η1| sign(ξ1), . . . , ξn + |ηn| sign(ξn)). Clearly, x ∈ Kδ

and |xj| = |ξj| + |ηj| ≥ |zj| for all 1 ≤ j ≤ n. Thus for each z ∈ K(δ), there exists x ∈ Kδ such
that

∣
∣zα

∣
∣ ≤ ∣

∣xα
∣
∣ for all α ∈ Z

n
∗ .

Therefore, we conclude the following.

Lemma 5.4 If K is compact on R
n, then, for any δ > 0,

sup
K(δ)

∣
∣zα

∣
∣ = sup

Kδ

∣
∣xα

∣
∣ for all α ∈ Z

n
∗.

Proof of Theorem 5.1 Fix δ > 0. By Theorem A, there exists a constant Cp,K ,δ < ∞ such that

∥
∥Dαf

∥
∥

p ≤ Cp,K ,δ sup
z∈K(δ)

∣
∣zα

∣
∣‖f ‖p

≤ Cp,K ,δ sup
x∈Kδ

∣
∣xα

∣
∣‖f ‖p (32)

for all α ∈ Z
n∗ , where the second inequality follows from Lemma 5.4. This proves the ne-

cessity.
To see the sufficiency, on the contrary, assume that there exists x0 ∈ supp f̂ with x0 /∈ K .

Since K has the g-property, we find α ∈ Z
n∗ such that

∣
∣xα

0
∣
∣ � sup

x∈K

∣
∣xα

∣
∣. (33)

By the hypothesis of (29) with mα (m = 1, 2, . . .),

∥
∥Dmαf

∥
∥

p ≤ Cp,K ,δ

(

sup
x∈Kδ

∣
∣xmα

∣
∣

)

‖f ‖p.

According to Proposition 2.1, applying limsup, we have

lim sup
m→∞

∥
∥Dmαf

∥
∥

1/m
1 ≤ sup

x∈Kδ

∣
∣xα

∣
∣,
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and taking δ ↘ 0, we get

lim sup
m→∞

∥
∥Dmαf

∥
∥

1/m
p ≤ sup

x∈K

∣
∣xα

∣
∣. (34)

Also, by Lemma 2.2 with P(x) = xα ,

lim inf
m→∞

∥
∥Dmαf

∥
∥

1/m
p ≥ ∣

∣xα
0
∣
∣. (35)

Thus, the equations of (34) and (35) yield

∣
∣xα

0
∣
∣ ≤ sup

x∈K

∣
∣xα

∣
∣.

This contradicts (33). Therefore, the proof is complete. �

Since any symmetric convex compact set satisfies the g-property ([4, 5]), Theorem 5.1
produces the corollary:

Corollary 5.5 Assume K is a symmetric convex compact set in R
n, 0 < p < 1. Then, for any

δ > 0, there exists a constant Cp,K ,δ < ∞ such that

∥
∥Dαf

∥
∥

p ≤ Cp,K ,δ

(

sup
x∈Kδ

∣
∣xα

∣
∣

)

‖f ‖p

for all α ∈ Z
n∗ .

Let us note that a symmetric convex compact set is a typical example for a compact set
that has the g-property. Since Dα is simpler than P(D), in Corollary 5.5 the supremum runs
over Kδ instead of K(δ).

Proof of Theorem 5.2 We first prove the necessity. For any δ > 0, by continuity, there is
δ′ > 0 so that

sup
K(δ′)

∣
∣P(z)

∣
∣ ≤ r + δ,

since supK |P(x)| = r. By Theorem A, there exists a constant Cp,K ,δ′ such that

∥
∥Pm(D)f

∥
∥

p ≤ Cp,K ,δ′
(

sup
K(δ′)

∣
∣Pm(z)

∣
∣

)

‖f ‖p

≤ Cp,K ,δ′ (r + δ)m‖f ‖p.

To prove the sufficiency, suppose that there exists x0 ∈ supp f̂ and x0 /∈ K = NP(r). Then
|P(x0)| > r. From hypothesis (30) and by Proposition 2.1,

lim sup
m→∞

∥
∥Pm(D)f

∥
∥

1/m
1 ≤ r + δ. (36)
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Also, by Lemma 2.2,

lim inf
m→∞

∥
∥Pm(D)f

∥
∥

1/m
p ≥ ∣

∣P(x0)
∣
∣. (37)

Hence, by (36), by (37), and by assumption,

r <
∣
∣P(x0)

∣
∣ ≤ r + δ

for any δ > 0. Letting δ ↘ 0, we reach a contradiction of the inequality. This gives the
proof. �

By Theorems 5.1 and 5.2, we have a corollary.

Corollary 5.6 Let r > 0 and let Pj be polynomial (1 ≤ j ≤ q). Put K = H
⋂q

j=1 NPj (r), where
H , NPj (r) are compact. Then supp f̂ ⊂ K if and only if for any δ > 0 there exists a constant
Cp,K ,δ such that

∥
∥
∥
∥
∥

Dα

q
∏

j=1

Pmj
j (D)f

∥
∥
∥
∥
∥

p

≤ Cp,K ,δ(r + δ)
∑q

j=1 mj
(

sup
z∈K(δ)

∣
∣zα

∣
∣

)

‖f ‖p

for all mj ∈ Z∗ (1 ≤ j ≤ q), for all α ∈ Z
n∗ .

We are ready to derive Theorem 5.3 with a lemma.

Lemma 5.7 Let P be a real polynomial of degree 1. If E ⊂R
n is any set, then

sup
z∈E(δ)

∣
∣P(z)

∣
∣ = sup

x∈Eδ

∣
∣P(x)

∣
∣.

Proof From Eδ ⊂ E(δ), we have supz∈E(δ)
|P(z)| ≥ supx∈Eδ

|P(x)|. To complete the proof, we
need prove that supz∈E(δ)

|P(z)| ≤ supx∈Eδ
|P(x)|. Indeed, let z ∈ E(δ). Then there are x ∈ E

and rη ∈ C
n (0 ≤ r ≤ δ, |η| = 1) such that z = x + rη. Since we can replace P with –P, we

may assume that P(x) ≥ 0. Taking y = x + r(sign(∂x1 P)|η1|, . . . , sign(∂xn P)|ηn|) ∈ Er ⊂ Eδ so
that

∣
∣P(y)

∣
∣ = P(x) + r

n
∑

j=1

|∂xj P||ηj|.

By the triangle inequality,

∣
∣P(z)

∣
∣ ≤ P(x) + r

n
∑

j=1

|∂xj P||ηj|.

The previous two inequalities show that for each z ∈ E(δ), there is y ∈ Eδ such that |P(z)| ≤
|P(y)|. Therefore, taking supremums successively, we justify the lemma. �
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Proof of Theorem 5.3 The necessity follows readily. Indeed, let δ > 0. By Theorem A, for
some Cp,K ,δ , we have

∥
∥Pm(D)f

∥
∥

p ≤ Cp,K ,δ

(

sup
z∈K(δ)

∣
∣P(z)

∣
∣
m
)

‖f ‖p

≤ Cp,K ,δ

(

sup
z∈Kδ

∣
∣P(z)

∣
∣
m
)

‖f ‖p

for a real polynomial P of degree 1 and for all m ∈ Z∗, where the second inequality comes
from Lemma 5.7.

It remains to prove the sufficiency. On the contrary, assume that there exists x0 ∈ H with
x0 /∈ K , where H = supp f̂ . Since K is convex and compact, we easily find a linear P such
that

∣
∣P(x0)

∣
∣ > sup

x∈K

∣
∣P(x)

∣
∣. (38)

By (31) and Proposition 2.1,

∥
∥Pm(D)f

∥
∥

1 ≤ Cp,HCp,K ,δ

(

sup
x∈Kδ

∣
∣Pm(x)

∣
∣

)

‖f ‖p

for all m ∈ Z∗. So,

lim sup
m→∞

∥
∥Pm(D)f

∥
∥

1/m
1 ≤ sup

x∈Kδ

∣
∣P(x)

∣
∣. (39)

By (39) and by Lemma 2.2,

∣
∣P(x0)

∣
∣ ≤ sup

x∈Kδ

∣
∣P(x)

∣
∣,

and, putting δ ↘ 0, we get

∣
∣P(x0)

∣
∣ ≤ sup

x∈K

∣
∣P(x)

∣
∣.

This contradicts (38), therefore, the proof is complete. �

From Theorems 5.1 and 5.3, we have the following.

Corollary 5.8 Let K be convex compact in R
n, 0 < p < 1. Then, for every δ > 0, there exists

a constant Cp,K ,δ independent of f , P, m such that

∥
∥Pm(D)f

∥
∥

p ≤ Cp,K ,δ

(

sup
x∈Kδ

∣
∣P(x)

∣
∣
m
)

‖f ‖p

for all P(x) having degree 1 and for all m ∈ Z∗.

Corollary 5.9 Let 0 < p < 1. Suppose that K1 is convex and compact and that K2 compact
satisfying the g-property. Then supp f̂ ⊂ K1 ∩ K2 = K , say, if and only if for any δ > 0 there
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exists a constant Cp,K ,δ such that

∥
∥Pm(D)Dαf

∥
∥

p ≤ Cp,K ,δ

(

sup
x∈Kδ

∣
∣Pm(x)

∣
∣

)

‖f ‖p

for any real polynomials P of degree 1 and for any m ∈ Z∗.

Remark 3 According to the Nikolskii inequality all Lp–Lp inequalities for differential op-
erators in this paper can be extended to the Lp–Lq inequalities for 0 < p < q < ∞.
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