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1 Introduction and main results

Let n,m € N, 0 < « < n. For any locally integrable bounded function f, define

T () = /R K0y, W

where
Ko, 9) = ki(x — Ary)ka(x — Agy) - - - k(X — Apy),

o =aj+---+a,,and foreach 1 < i < m, k; satisfies (n — a;)-order fractional size condition,
A; is a matrix such that

(H) A;isinvertible and A; — A; is invertible for i #j, 1 <i,j < m.
Clearly, T,,1 = I, the Riesz potential, for m = 1, A; is the n-order identity matrix, and
ki(x — A1y) = 1/|x — y|*. For general m and certain k;, Ty, behaves like a singular integral
operator and T, ,, has been studied in [1-10]. In particular, Riveros and Urciuolo [5, 6, 11]
considered each k; as a rough fractional kernel, and each k; satisfies an L*"i-Hérmander
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regular condition, or more general k; € H,,,,, that is, for all x € R” and |x| < R,

(ZR)" | (Ka(- = %) = KaO)) Xm0 3w | sy < 00

~.
1
—_

r

They showed that these operators are bounded from L? into L7, for 1 < p < g <00, 1/q =
1/p — a/n. In [12], Ibafez-Firnkorn and Riveros analyzed operators of the form (1) with
conditions of regularity more general than the L*? -Hormander condition and a fractional
size condition. Before giving the definitions of the fractional size condition S,,_4, ¢, and the
generalized fractional Hérmander condition H,_q, v, x, we first recall the definitions and
properties for Young function.

A function ¥ : [0,00) — [0, 00) is said to be a Young function if ¥ is continuous, con-
vex, nondecreasing and satisfies ¥ (0) = 0 and lim;_, o ¥ (¢) = 00. For f € Llloc(R”) and each

Young function ¥, we can induce an average of the Luxemburg norm of a function f in
the ball B defined by

ufnw,B::inf{bo:é BlI/(lf(;N)dxfl},

and a fractional maximal operator My y (0 <« < 1) defined by
Mauf () := sup [BI"*|[f |lw,s,
Bsx

and we denote My by My, the Orlicz maximal operator.

In particular, for ¥ (¢) = ¢, ||fllw,5 := |B|™" [, |f (x)| dx and Mg,y = My, the fractional max-
imal operator; for ¥ (¢) = " with 1 <7 <00, ||fllw = IIf I8 := (IBI™ [5 [f ()" dx)"" and
Myp = My, and Mo, f := supg., If |5 := M(f")Y".

Next, we recall the definitions of the fractional size condition and the generalized frac-
tional Hérmander condition. Normally, we use |x| ~ s to represent s < |x| < 2s. For the
Young function ¥, we write

W 1w xi~s = IUF X1t ~s 1w, B0,25)-

For 0 < « < n, the function K, is said to satisfy the fractional size condition if there exists
a constant C > 0 such that

1Ko Ml s < Cs*7"

And we denote K, € S,y in this case. When W (¢) = ¢, we write S, ¢ = S,. Observe that if
K, € S,, then there exists a constant C > 0 such that

/ |Ka (x)| dx < Cs”*.
|| ~s

We say that the function K|, satisfies the L*¥*_Hormander condition denoted by K, €
H, y x if there exist constants ¢y > 1 and Cy > 0 such that, for all x and R > cy ||,

(2R)"* || Ka(- = %) = Ko (- Cy.

or

)” v, |y|~2R =

~
I
—
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When ¥ (t) =¢t", 1 <r < oo, we simply write H, ,x instead of H, y k. See [13] or [14] for
more details.

In this paper, we consider the k-order commutators T% omp generated by Lipschitz func-
tions and the operator Tj,,,, where k; € S,,_o,w, N Hy_o, v, %, and for k e NU {0},

78l = [ (60 -00)) Kulos) 0)

Clearly, T' Tom-

Also, we consider the following condition for the weights: there exists C > 0 such that

mb_

w(4;x) < Co(x), ae xecR” (2)

x| <e”

o 1
foralll <i<m.Letw= { 11% I’ ". Itis easy to check that w € A; and satisfies (2) (see

(15]).

In [14], Gallo, Ibafiez-Firnkorn, and Riveros obtained the weighted estimates for this

\x|>e

kind of operator and certain weights satisfying (2). Precisely as for the classical fractional
integral operator I, with O < « < n, or the singular integral operator with o = 0, they proved
the L?(R", w”) — L1(R",w?) boundedness of T, ,, for weights w € A(p,q), 1 < p < nl«,
1/q =1/p—a/n,and 0 < @ < n.In [15], for b € BMO, Ibanez-Firnkorn and Riveros obtained
the weighted Coifman type estimates, weighted L?(w”) — L1(w7) estimates, and weighted
BMO estimates as well as two- weighted inequalities. Inspired by these results, we consider

the weighted boundedness of 7%, for b € A and a weighted A4 estimate for weights in

o,mb
the class A(n/(o + kB)r, 00). Our results can be formulated as follows.

Theorem 1.1 For0<B<1,0<a<n, ke NU{0}, meN,and 1 <i<m, letbeAﬁ, v,
be Young functions and 0 < «; < n such that oy + - - + o, = n — a. Let T,,, be the integral
operator defined by (1) and T*

a,m,b

be the k-order commutator of T,,. Suppose that the
matrices A; satisfy hypothesis (H) and k; € S,_,w, "Hy_o, 0, k. Moreover, for a = 0, suppose
that Ty, is strong type (qs, q.) for some 1 < q, < 0o. Let ¢;(t) = tlog(e + t)¥, ¢ be a Young
Sfunction satisfying 7N (t) - - W L) ()@ () St for t > ty, some ty > 0. Then there ex-
ists0< C=C(n,a,As,...,Ap) such that, for 0< 8 <1 and f € L*(R"),

k-1 m
My(Tysf ) @) < C Y 10U Mo (T ) () + CIBIY | D Mecripof (A7'5)-
=0 i=0

Theorem 1.2 Under the assumptions of Theorem 1.1, for 1 <r<p<p; <q<oo, kleN,
1/g=1/p;—(k-1)B/n,1/q=1/p — (o + kB)/n, there exists 0 < C = C(n,, A1, ..., A,,) such
that, for f € L°(R") and " € A(p/r,qlr),

1/p
” mbf”Lq ) C”b” ZZ(/ |Ma+lﬁ¢f(x)|plwp’(A X dx> . (3)
i=1 [=0
Furthermore, if o" € A(p/r,qlr) and satisfying (2), then
k

| T oy < CBIS, D 1Maripf lipriom-
1=0
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Theorem 1.3 Let0<a<n, 1 <p <n/(la+kB),1/g=1/p - (oz + kﬂ)/n and ¢ be a Young
function such that nL(£)t 7 = “L(¢) forevery t > 0, where P T ) e B_on for every
s>r(n— (o +kB))/(n— (o + kﬁ)r). Then, under the hypotheses of Theorem 1 2 for " €
Aplr,qlr),

1Tk Dy = CNBIS, If pot

Theorem 1.4 Under the hypotheses of Theorem 1.3, if 0" € A(n/(« + kB)r, 00) and satisfies
(2), then there exists C > 0 such that, for f € L2°(R"),

7t ., < CHBIG Wl miaris,

where

T st = soptoain o [ @),

The rest of this paper is organized as follows. In Sect. 2 we recall some relevant def-

Tl ) - 2 [ 78,0801

initions and previous results that are needed to state the other results, which appear in
Sect. 1. The proofs of sharp maximal functions estimates and Coifman type inequalities
are given in Sect. 3. Finally, the weighted L”(w”) — L7(w?) estimates and the weighted

endpoint estimates are presented in Sect. 4.

2 Preliminaries
In this section we present some relevant concepts and previous results, which will be used

in our proofs.

2.1 The generalized Hélder inequality and the fractional B, condition
Now, we present some extra properties for Young functions. For more details of these
topics, see [16] or [17].

The function ¥ is called the complementary of the function ¥ if the generalized Holder

inequality holds:

Wfellzy,z < 20fllw.zllgllg 5.

If¥,...,%,, ¢ are Young functions satisfying ;! (¢) - - - W, (£)¢p =1 (¢) < ¢ for £ > £y, some
to >0, then

Wi fngllry,e < clfille,z - Wfinllw,,Bllgllezs

where the function ¢ is called the complementary of the functions ¥, ..., ¥,,.
In 2013, Cruz-Uribe and Moen [18] introduced the fractional B, condition: for 1 < p <
n/o and 1/g = 1/p — a/n, a Young function ¢ € By if

* o) dt
7 <
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And they proved that if ¢ € B, then M, 4 : L?(dx) — L(dx) and

00 / 1/q
()P dt

M, L < — .
IMy,pllr—ia < </1 R

2.2 The Lipschitz function spaces
For a locally integrable function f defined in R”, we say f belongs to the space Ag(R"),
0 < B < 1, if there exists a constant C > 0 such that

1
sup ——— x) — fg| dx < 00.
e s /)5l

The smallest bound C satisfying upper inequality is taken to be the norm of f denoted by
|[f||Aﬂ. Here B is a ball in R”, and

1
Js= ﬁfo(x)dx.

Lemma 2.1 Iff € Ag, then
(1) forevery x,y € R",

() =fO)| < I 1L, b = 917
(2) for any ball B,

suplf () ~fo| = CIlf 1L, 1BI”"
(3) for BC B,

Ifs —fo<l < If Il 4 |B* |13/n.

In particular, if A; are matrices satisfying (H), B is a measurable set, and
B;=A7'B,1<i<m,then

fs —fiur, ool < CIF i, 1BIP™,
and for B = B(cp, R), the ball centered at cg with radius R, and B := B(cz, 2R),j € N,
. i|Bln
Ufs —fl < Gilf i, | B
2.3 Weights and maximal operators

A weight function w is in the Muckenhoupt class A, for 1 < p < oo if there exists C > 1
such that, for any ball B,

1 1 oV
<®/Ba)(x)dx> (E/Bw(x)l P dx) <C,
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where 1/p + 1/p’ = 1 and the infimum of C satisfying the above inequality is denoted by
[@]a,- We define A = U A, . When p =1, w € A, if there exists C > 1 such that, for
almost every x,

1<p<oo

Mo(x) < Co(x),

and the infimum of C satisfying the above inequality is denoted by [w]y4;.
A weight function w belongs to A(p, q) for 1 < p < g < 0o if there exists C > 1 such that

1 1/q 1 i 1/p’
(E/Bw(x)qu) (ﬁ/l;w(x) P dx) <C,

where 1/p + 1/p' = 1 and the infimum of C satisfying the above inequality is denoted by
[@]a,,- When p =1, @ is in A(1,q) with 1 < g < oo if there exists C > 1 such that

1 a )( L)
(IBIwa(x) dx essilelg o) <dC,

and the infimum of C satisfying the above inequality is denoted by [w]4, -

Remark 2.1 For 1 <r<p<py <p, w € A(p,q), by Holder’s inequality, we can know w €
A(po,q) and w € A(p, po). For 0" € A(p/r,q/r), we also can know w € A(p, q).

The sharp maximal function is defined by

dy.

SE(x) = sup P 1 d
M) = sup |B|/B O =15 /Bf (=) az

A locally integrable function f has bounded mean oscillation (f € BMO) if M*f(x) € L*®
and the norm ||f||pmo = |M*f]|c0. Observe that the BMO norm is equivalent to

1

Fllsvo = | | ~ sup inf 17 /Blf(y) — a| dy.

There is also a weighted version of BMO, which is denoted by BMO(w), which is described
by the semi-norm
dy) .

1 1
Wl =swo ot (o [ o= [ e

It is easy to check that

I, = lears ]

Proposition 2.1 ([19]) Let ¥ be a Young function. Then, for all x € R" and r > 1, there
exists a constant C, such that

My f(x) = Moy f(x) < C.Mo,f(x).
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Proposition 2.2 ([15]) Let ¥ be a Young function and A be an invertible matrix. Set
w4 (x) = w(Ax). Then

Mot,lll (a)A ) (Ailx) =< CA,nMot,lI/ (w)(x)
for almost every x € R".

2.4 Previous results
In this subsection, we illustrate some known results for the operator 7,,,,, which will be
used below, see [12] for more details.

Theorem 2.1 ([12]) Let0 <« <n,m € N, and T, ,, be the integral operator defined by (1).
For 1 <i < m, let ¥; be Young functions, 0 < «; < n such that oy + -+ + &, = n — . Also
suppose k; € S,_q, w, N\ Hyy_q, v, and that matrices A; satisfy hypothesis (H).

If o =0, suppose Ty, is of strong type (q., q.) for some 1 < g, < 00.

If ¢ is the complementary of the functions V1, ..., ¥,,, then there exists C > 0 such that,
for0<8 <landf eL>(R"),

Mi(Tapnf)) i= M* (| T pf 1°) @) < €D Maof (A7)

i=1
Theorem 2.2 ([12]) Let0 <« <n,m € N, and Ty, be the integral operator defined by (1).
For 1 <i < m, let ¥; be Young functions, 0 < o; < n such that oy + --- + o, = n — a. Also
suppose k; € S,_qo, w, N\ Hyy_o, v, and that matrices A; satisfy hypothesis (H).

When a = 0, suppose that Ty, is of strong type (., q.) for some 1 < g, < 00.

Let 0 < p < co. If ¢ is the complementary of the functions ¥,...,¥,,, then there exists
C > 0 such that, for v € Ax and f € L2°(R"),

/ | Tomf @[ 0x)dx<C / |Ma,of %) [P 0(Asx) dx,
RrR” i-1 RrR”

whenever the left-hand side is finite.

3 Sharp maximal function estimates and Coifman type inequality
This section is devoted to the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1 We just consider the case m =2 and k=1, i.e,, T;,z,b =[b, Ty 2], and
we will just write [b, T, ] for simplicity. The general case is proved in an analogous way.

Let f be a bounded function with compact support, 0 < < 1. For x € R”, let B = B(cs, R)
be a ball that contains x, centered at cz with radius R. We write B= B(cp, 2R), and for
1<i<2,setB;=A;'B.Letf; =fxz, 5 and fo =f —fi. Suppose that a := T, ((bp 3,3, -
b)f)(cp) < 00. For 0 < § <1, we write

(B, T.1()(x) = (b(x) = bpo,up,) Tef @) + To((bpuz,us, — D) @)

And from the inequality |#* — s*|'/% < |£ — 5| and Jensen’s inequality, we get

1/8
<|71| /B I Ta1(f>5(y>—a8|dy)
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1/8

<(= [115T)00) —al @y
(|B| ;

1
=B /B| (b0) = baup,um,) Tuf 0] dy
1
' ﬁ fB| T.((bpus,03, ~ D) )| dy

|B| /‘T Bu31u32 b)fZ)(J’ (bBU31U32 b)fZ)(CB)‘dy

=+ +1II. )
For I, by Lemma 2.1, we have
1<C||b||A,g|B|ﬂ““(|B| f|TJ(y)|dy)
< ClIbll i, Mp(Tof) ). (5)

For II, we know

1
H=—‘/ﬁ B |Ka(y;Z)||b(Z)—bguglugz|lﬁ(z)|dzdy
|B| B JB1UBy

2
1
=3 7, - 1561 [ 02 vt

We estimate only the first summand, that is, z € Bl, since the case z € Bz is analogous.
Observe that

/|Ka(y,z)|dy§/ {Ka(y,z)|dy+/ |Ka(y,z)|dy.
B {yeB:ly-A1z|<|y-Azzl} {yeB:ly-Azz|<|y-A1zl}

Forj € N, let us consider the set
Cl:={yeB:ly—Aizl < |y-Aszl,ly - Arz| ~27'R}.
Notice that if y € Band z € By, then |y — A;z| < 3R < 4R. Thus,

/ K.y, )] dy
{yeB:ly-A1z|<|y-Aazl}

o0
52/ 1K, (2)| dy
=74

|B(A12,27R)|

= Z |B (A1z,27R)| Alz’z,,R)|K"‘(y’Z)|X{y:\y—A1z\~2*/*1R} dy
oo

< C > |B(412,27R) || k(- - Arz)
j=—2

X{y:ly-Arzl~27-1R) “ w1,B(A12,27/R)

X ||k2(' — A22) X (yly-ar2l~27-1R) ” Wy, B(A122R)
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o0
=C Z |B(AIZ’ 2_jR) | ”kl(' - A12) ” W ly-Arzl~25-1R
=2

X || k2( - AZZ) || '1/2,|j/*A12|~2’/”1R'

And for y € C}, we have |y — Ayz| > |y — A1z| > 277'R. By ky € Sy_ap,w, and k1 € Syay,u4»
we get

||k2(~ —Ayz) ||W2,Iy—A12I~2'i’1R = Z”kz( —AZZ)”q,zl‘y_Azz‘Nz-/»fk-lR

k=0
= Z||k2(.)||11/2,\}/\~2’f+k’1R
k>0
<CY (27*R) ™ < C(27R),
k=0
and
|ki(- = Ar2) ”l,l/1,|y7A1z|~2’/’1R < C(27R) ™ < C(27R) ™.
Consequently,

i[(a(y, Z)| dy < CZ(2—/R)n—a1—a2 < CR°.

/UGBIIy—AﬂSIy—AzzZI} j=—2

Similarly,

/ |Ka(y,2)| dy < CR*.
{yeB:|ly-Aaz|<|y-A1zl}

Then

2

1
I < CR”Z@/]; |b(z)—bguglugz|lf1(z)|dz

i=1 i

2
<Clbly, YR | [fo]dz
4 i=1 |BL| Bi

2
<Clblli, Y R If g5,
i=1
2
< Clblli, Y Muspaf (A7'). (©)

i=1

For III, we have

1
I = —// i |I(a(y,z)—I(a(cB,z)Hb(z)—bguéluéz|[f(z)|dzdy
[Bl Jg J(B,uBye

21
< Z Bl /B /;1|Ka(y,z) —Ka(cB,z)| |b(z) = bpup,ub, | [f(z)‘ dzdy,
I=1
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where
Z'=(BiUBy) N{z:lcg — Azl < leg - Ayzl,r #1,1 <r <2},
Let us estimate |K, (y,z) — K,(cs,z)| for y € Band z € Z:

Ko (32) - Ka(c, 2)| < |ka(y — A12) — ki(cs — A12)||ka(y — A2)|

+ |ka(y — A22) — ka(cp — Azz) ||k (cp — A12)|.

For simplicity we estimate the first summand of | K, (y, z) — K, (cg, )|, the other one follows
in an analogous way. For j € N, let

Di:={zeZ':|cp - Azl ~ 2R}

J

Observe that D]{ C {z:lcp — Azl ~ Z*'R} C A['B(cg, 2*?R) =: By;. Using the generalized
Holder inequality, we have

|k1(y Alz) kl(CB A1Z||k2(y AzZHb BUBﬂJBsz |dZ

=3 /D k= 412) =k (e = A12)| Koty = 422 [B(2) - by, | )] a2
j=1 77

-
|By,|

leB’| A |ki(y = A12) = k(e — Ar2) || ka(y - Azz)|xszz.cB_A,z|~yuR}

Lj 1j

x (|b(e) = bg, | + b5, — by | + |bg, — bgug, s, 1) | (2)] dz

o =
| B,
§Z|B}| - |k1()/ A1z) — k(e - Alz)sz()/ A2Z)|XDle|cB—Alz| ~2+1R)
Lj 1j

x (ClBILi, |Bil*" + Cjllb1 4, |Buyl”"™ + ClIb1 4, |BIP™) |f (2)] dz

< Clbll 4, DBI,P*'S’"— kG - Arz) - ki(es — Ar2)|
j=1 | l}| Bl,j

x [y = A22) [ X! Xiziep-aai~ivimy | (2)] 2

= CllblLi, D Bl (k= Av) = Kulen = A1) Xt gy oo
j=1

X ” ke (y = AZ')XDj. ” Wy, lcg—Az|~YtIR |lf||¢,1§z,j'

Note that |cg — Ajz|/2 < |y — Aiz| < 2|cg — Aizl, and if |cp — Ajz| ~ 2R, then 2R < |y —
Ajz| < 2*2R. Thus,

||k1(y - Al')XD]l- “ W, lcg-Apz|~2+1R

< |kty - A Wy ly—Az|~UR
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+ || ki(y — Ar) “ W, ly-Az|~YHIR

= ”kl(')”w,,\xh?/'le + ||k1(')||wl,|x|~:)j+11z

<C(ZR)™,
where the last inequality holds since k; € S,_y, g, Also, by the hypothesis,
j+1 p\ %
||kl(CB _AI)XD/Z H ‘I/l,|CB—AlZ|’V2j+1R = C(zj R)

For r # 1, observe that if z € D!, then |cg — A,z| > |cg — Ajz| > Z*'1R. We decompose Dll. =
Ukz;(D;l‘)k,r» where

(D)), = {22 D} les - A,z ~ 2R}

Since (D;)k,, Clz:lcg—Avz| ~ 2R} and k, € Si-a,w,» We have

W, lcp—Az|~YTIR = Z”k -Ar )X(Dl Yer
k>j

<Z”k(y A ler

k>j

<> |kly-Ar)

k=>j

k>j

<CY (2R <C(¥R)™
k>j

Wy, |cp—Az| ~Y+IR

“kr(y _Ar‘)XD]l_

Wy, lcg—Arz|~2K+1R

W,,|cg—Ayz|~2K+1R

W, |x|~2KR + ||kr() || W, |x|~2k+1R

By the same arguments, we can get

“kr(CB _Ar')XD]l Wy, lcg—Arz|~2K+1R

Wy |cp-Apz| ~2HR = Z”k’(cB _A")X(Df)k,r
k>j

<CY (2R <C(ZR)™
k>j

As aresult, no matter / = 1 or [/ = 2, we have
”kZ(Y Ay )XDI ”tpz leg-Agz|~UH IR = C(sz)
”kl(CB _Al')XD]l. ||w1,|cB-A1z|~2/+1R = C(2/R)_D‘1

Hence,

o0
21: |Bl'j|1+ﬂ/nj” (k1()/ —Ar) —kileg - A '))XDj' H W1,lep—Ajz|~2*1R
j=

X ||k2(3’ - AZ‘)XD; “ Wy, lcg—Arzl~2+1R IIf2 ”¢,Bz,;
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oo
< Z 2/R n+p—oy || (/(1()/ —A1~) - kl(CB —Al'))XDll, ”le‘CB*AlZ‘NQFIR”f||¢’Bl./'
j=1

Z 2’R a+ﬁ|lf||¢31 21R)n ) a2]” (kl(y Ar) —ki(eg — Ay ))XD; ”l[/l,\chA[z\NQ/'*lR

= C (2R 1fly 5, (R (ka0 = A1) = Kaes = A1) Xt |, 1oy -aesionie
j=1
So, when [ =1, from k; € H,_,,w,,1, We can get

o0
2R W o, (R (k= A1) = Kalen = 40) X sy a1
j=1

X oy = A2) X0t | -0

< CMy.pof (A7'x Z @R j| (ki (y - Ar-) kl(CB—Ar))XD}’, ”-1/1,|cjng,z|~2/+1R
j=1

< CMasp.of (A7 ).
For [ = 2, note that

1620 -1 ~kxes =415 Ly oy e

< Z ” (kl(.y _Al') - kl(CB _Al'))X(D]-Z)k,l H l]/l,|cB—Alz|~2k+1R’
k>j

we have
o0
D (@R) || (kay - Ar) - Ka(es - Ar- ))XDZ [P
j=1

(2R) “VZ” ki(y — A1) —ki(cs — Ar)) x Dzk1||wl|cB_Alz|~zk+1R
j=1 k>j

Mg

~
I

oy g 2R)
(2R) 12(2kR)alk||(kl(y Ar) = kales = A1) X2y Ly eg-nyzpaionr

E%g

1

~.
I

(ZR)" «
1 kX: (ZkR)al ( kR) lk” (kl(y —Al-) - kl(CB _Al'))X(DjZ)k,l ||W1,\CB—A12|~2k+1R
)

E%g

~.
I

IA

Mg T™Me

k
(Z(z_al)k_l) (2kR)alk|| (k1()/ —Al') - kl (CB _Al.))X(D]z)k,l || le‘CB*AIZ|N2k+1R

j=1

(ZkR)alkH (kl(y Aq- ) k](CB Ay- )) D2 Y1 H W Jeg—Arzl~2k 1R < 00,

>
L

1

Page 12 0f 18
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where the last inequality follows from that k; € H,,_q, v, 1. Hence,

00
Z 2]R b |lf||¢3 (2]R)a1]|| (kl(y Ar-) —ki(ep - Ar- ))XD2 ”‘1’1 lcg—Ayz|~2+1R
j=1

00

=< CMa+ﬁ¢fA X Z 2]R D‘l]” kl(y Ar) —ki(cg —Ar- )) D2 ||W1:ICB—AIZI~W*1R
j=1

< CMayipof (A3 %).

Then
2
HI<CIblli, Y Marpaf (A7 '%). (7)
i=1
Summing up (4)—(7), we know that
2
M;(TL,, . )®) < ClbILi, Mp(Tuf)@) + ClIbILi, Y Maspaf (A7'5).

i=0

For the case a = 0, we repeat the same argument to inequality (4) and get the desired
conclusion.

For the general case, from the definition of T‘f,m,b, we know that, for any A,

Ty )O)
_ /]R (b0) - b)) K2 2) 2

- [ 001 b0 Kt 22

k .
= Z /Rn ca(by) - 1) (r - b(z))k"Ka (0, 2)f(2) dz
i=0

k

=Z(b(y)—k)if ai(h - (@) K (3,2f (2)

i=0

- / (- b(@) Kuly, 2)f (2) dz
Rn

k . .
+ Z cki(b(y) - )\)l /]R” (A —b(y) + b(y) - b(z))kill(a 5, 2)f (z) dz
i=1

=ch, b(y) - ch, (A —b(») / n(b(y)—b(z))"*"*’j@(y,z)f(z)dz

+ Ta,m(<)\ - b()) f)()’)
k k-i

=2 ei(bl) - 1) /R RUOR b(2) K, (1, 2)f (2) dz

i=1 j=0
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+ Tu((A = 5()F) )

= Tom((2 = b() Zc/d b(y) - é,m,bf(y).

Let A:= bB‘UE]UBZUwUEm’ a:=T,(b- bEuisluEzumuBm)ﬁ)(cB)' We write

(|B| /| T} ,.(N0) -4l )dy U8
(IBI/ 5@)1/5

(i [T 6- o) o) dy)m

k-1
Z () - 1) T )
=0

5 1/
(|B|/|T (1= 50) B)0) = T (h = b)) Fo)les) dy)

=1V +V+ VI

To estimate IV, by Holder’s inequality and Lemma 2.1, we obtain

1/8
(IBI /! lT«i,m,hf(y)de)

Clib|5 1181 ’>ﬂ/”(|3|/| Tl 0)] dy)

| /\

M’“ ”M”

1/8

N
o

C||b||"-l|B| (k=Dpin B / T, . of )| dy

N
o

k-1
< C Y b1 M (Taaf ) 0)
1=0

The terms V and VI are analogous to the ones in the case m = 2 and k = 1, we can get

V< CIbIY, D Markpaf (A7),

i=1

m
VI<CIbIY, D Masipaf (A7 ).

i=1
Then we conclude

k-1

M| T, | @) < € IBIS Mo (Tonaf) @) + CIBIY D~ Maigof (A7)
=0

i=1

Theorem 1.1 is proved. O

Next, we prove Theorem 1.2.
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Proof of Theorem 1.2 By the extrapolation result Theorem 1.1 in [20], we need only to
show that (3) is true for some 0 < g, < 00 and all " € A(p/r, q./r) with (n — a)/n < g, < c0.
Without loss of generality, we may assume ||b|| 4 5 =1.We will prove the desired conclusion
by induction.

When k =0, T b = Laym- AS ki € Hy_o,w,0 = Hy—o,,w;, Theorem 3.3 in [15] tells us that

/R ) | Tomf (x) T 9% (Ax) dix.

T 0% (x) d. cm M,
W (x) dix < Z/R| S

Now, for any k € N, we assume that the results hold forall 0 <j < k-1, and let us see how
to derive the case k. For o € A(p/r, q./r), by Remark 2.1, we know that w € A(p, g..). Then
w?* € Ay, . By Lemma 5.1 in [12], we have || Ty, f l| 14+ (wa+) < 00. Therefore " € A(p/r, q../7)
and b € L*°, we have

k
Z C](,}'bk_j Ta,m (l’)]f)

j=0

” Tti(,m,thLq* (%) = < Q.

La# (*)

Besides, for p < p; < g4, w € A(p,q.) implies w € A(p;, q4), and 1/q, = 1/p; — (k - )B/n
implies g, = px when [ = k. Then there exists C > 0 such that

”M(k—l)ﬂ(Té,m,hf) ”Lq* (07%) = C” Té,m,hf”uvz (o)’

By the induction hypothesis, for 0 </ <k —1and 1/p; = 1/g; — (I - j)B/n, we get
g 1/g;
“ amhf”L!’l(wPl) = C”b”Aﬂ le()(f |Ma+,,3¢f(x | Tl (Ax dx) .
=1 j=

Since 1/q. = 1/p; — (k —)B/n and 1/p; = 1/q; — (I - j)B/n, which implies p; = g; when [ =,
we have

| T v

(/ M (T ,0f) )

< ( fR M7, ) @)
k-1

<Cy’ ||b||f{ff | Ma-p(Tams) ) )

=0

/8 Ve
T 0 () dx)

1/qx
T (x) dx)

m

1/
+Clbl, Z(/ (Maripaf (47 %)) " 0 () ””“)

i=1

m k-1

1/g;
<Clplg, 2> (f | Masjpaf () qu(Ax)d)

i=1 [=0 j=0

m

1/
+ C||b||kﬁ Z(/n a+kﬂ_¢f(A[1x))q*wq* (%) dx)

i=1
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k-1 l/q/
( |Ma+,ﬁ¢f(x | T % (A;x) dx>
=0

<Clbl, >

i=1 j

m 1/gx
+ClbG, Z( [R Moipf ()" ™ (A) dx)

i=1

m k-1

lip;
=clbl, Y Z( |Maip.0f @) lx)dx)

i=1 =0

1/pk
+C||b||AﬁZ(/Rn( wrkp.f ()" wpk(Aix)dx>

i=1

i 1/p;
<C||b||AﬂZZ( / a+1ﬁ¢f(x))P’wp’(Ax)dx> .

i=1 [=0

Namely,

l/p;
| T2 [ e ey < CHBI ZZ( / a+m.¢f<x))"’wpl(Aix>dx) . )

i=1 =0

For the general case, if b € /i,g, for any N € N, we define by = bxix—n<b)<n} +
N X(xbx)>N} — N Xix:b(x)<—N)» then ”bN”/iﬂ < c||b||Aﬂ. Using convergence theorems, for de-
tails see [21], we conclude that (8) holds for any b € Ag and " € A(p/r,q./r). Thus, as
mentioned, using the extrapolation results obtained in [20], (3) holds for all 0 < g < oo,
be A,g, and 0" € A(p/r,qlr).

If w satisfies (2), we have

1/p;
| 72 | gy < ClIIY ZZ( / a+1ﬁ,¢f(x))plwp’(Aix)dx)

i=1 [=0

k

k
= Clbl;, > Mg f oy
=0

which completes the proof of Theorem 1.2. O

4 The weighted inequalities of commutators

This section is concerned with the proofs of Theorems 1.3 and 1.4. For the proof of Theo-
rem 1.3, we need the Coifman inequality (3) and the boundedness of the maximal operator,
given in [22] (see Theorem 2.6). Let us begin with the following previous result.

Theorem 4.1 ([22]) Let 0 <« < n, w be a weight, 1 < r <p <n/(a+kB),and 1/q=1/p -

(o + kB)/n. Let ¢ be a Young function such that o' = €B L for every p > r(n-—

(@ +kB))/(n— (o +kB)r), and let n be a Young function such that n‘l(t)t(‘“kﬁ)/” < ¢7L(¢t) for
everyt >0.If " € A(p/r,q/r), then My,kp e is bounded from LP (o) to L1(w?).

Now we are in a position to prove Theorem 1.3.

Proof of Theorem 1.3 For 1/q =1/p; — (k- 1)B/nand 1/qg =1/p — (& + kB)/n, we can know
p < pi < q. Then, for " € A(p/r,q/r), by Remark 2.1, we can get w" € A(p/r,p;/r) and
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w € A(p,q); moreover, w € A(p;, q). Therefore, from Theorem 4.1, we know that Mg, is
bounded from L?(w”) into LP!(w?"). Then, by Theorem 1.2 and w satisfies (2), we have

(EYa P—— CIIbIIA ZIIMa+lﬂ¢f||m o < CIbI S lper
=0

This proves the conclusion of Theorem 1.3. d
Finally, we give the proof of Theorem 1.4.

Proof of Theorem 1.4 Following the ideas in [21], for v” € A( ,00), we know

a+kﬂ)r
”wMOt+kﬂ,V,f”00 = |lfa)||n/(a+kﬂ)- 9)

Note that 0" € A(

oz+k/3 ,00) implies " € A( T l)ﬂr,oo), we have

”(’()M(k—l)ﬁvthi,m,hf ||oo = ” Té,m,bf w”n/(k—l)ﬂ’ (10)

Now, by (9), (10), (2), Proposition 2.1, Theorems 1.1 and 1.3, we get

N Temaf o, = oM Tg 0 |
k-1

< CY bl |eoMucnp(Temuf ) oo

=0

+CIbI, D [ oMaipaf (A7) |

i=1
k-1
< Ciiry, ) 1615 oMo (Tamaf ) |
=0

m
+ Cion 1Bl D oM (A7) |

i=1
k-1

< Cky, Z ”b”,;i_;Hthi,m,bf I nl(k=D)B
=0
+ Cky, IIbIIA anf ||n/ (a+kB)
< C/(,1 Z ||b|| ”b”Aﬂ ”a)f”n/ (o +kPB)

+ CK,«Z ”b”k Zwa Hn/ (a+kpB)

k
= Cien DI, Ieof ik

+ Cicr, ”b”l;i,; ;H“’(Ai')f”n/(mkﬁ)

Page 17 of 18
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k
S C”b”Aﬁ ”fw”Ln/ot+kﬂ.

This completes the proof of Theorem 1.4. d
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