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Abstract
In this paper, we consider a new class of singular nonlinear higher order fractional
boundary value problems supplemented with sum of Riemann–Stieltjes integral type
and nonlocal infinite-point discrete type boundary conditions. The fractional
derivative of different orders is involved in the nonlinear terms and boundary
conditions, and the nonlinear terms are allowed to be singular in regard to not only
time variable but also space variables. A unique positive solution is established by
using the fixed point theorem of mixed monotone operator. In addition, some
significant properties of the unique solution depending on the parameter λ are
stated. In the end, two examples are worked out to illustrate our main results.
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1 Introduction
In this paper, we are investigating the following singular nonlinear higher order fractional
boundary value problem (BVP for short):

⎧
⎪⎪⎨

⎪⎪⎩

Dγ
0+z(t) + λf (t, z(t), Dν1

0+z(t), . . . , Dνn–3
0+ z(t), Dνn–2

0+ z(t)) = 0, 0 < t < 1,

z(0) = Dq1
0+z(0) = · · · = Dqn–2

0+ z(0) = 0,

Dγ0
0+z(1) =

∑p
i=1 ai

∫

Ii
wi(s)Dαi

0+z(s) dAi(s) +
∑∞

j=1 bjD
βj
0+z(ξj),

(1.1)

where Dγ
0+ is the Riemann–Liouville fractional derivative of γ order, λ > 0 is a parameter,

n – 1 < γ ≤ n (n ≥ 3), k – 1 < νk , qk ≤ k (k = 1, 2, . . . , n – 2), νn–2 – qk ≤ n – 2 – k (k =
1, 2, . . . , n – 2), 1 < γ – νn–2 ≤ 2, νn–2 ≤ γ0 ≤ n – 1, γ – γ0 ≥ 1, ai ≥ 0 (i = 1, 2, . . . , p), νn–2 ≤
αi ≤ γ0 (i = 1, 2, . . . , p), bj ≥ 0 (j = 1, 2, . . .), νn–2 ≤ βj ≤ γ0 (j = 1, 2, . . .), 0 < ξ1 < ξ2 < · · · <
ξj < · · · < 1; Ii ⊆ [0, 1] (i = 1, 2, . . . , p) is measurable; wi : (0, 1) →R+ = [0, +∞) is continuous
with wi ∈ L1(0, 1), and

∫ 1
0 wi(s)z(s) dAi(s) denotes the Riemann–Stieltjes integral, in which

Ai : Ii → R (i = 1, 2, . . . , p) is a function of bounded variation. f : (0, 1) × (0, +∞)n–1 → R+
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(R+ = [0, +∞)) is continuous. A function z ∈ C[0, 1] is called a positive solution of BVP
(1.1) if it satisfies (1.1) and z(t) > 0 for t ∈ (0, 1).

In recent years, the fractional differential equations have drawn the attention of many
famous researchers, readers can refer to [1–41] and the references therein. It is caused by
the applications of fractional differential equations in a proposed framework for describing
significant phenomena, for example, the deflection of an elastic beam, the non-Newtonian
fluid theory, the degrading of polymer materials, etc. Some interesting results can be found
in [1–5].

In [7], the authors considered the following nonlinear fractional differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ z(t) + f (t, z(t), Tz(t), Sz(t)) = 0, 0 < t < 1,

z(0) = z′(0) = · · · = z(n–2)(0) = 0,

Dβ

0+ z(1) =
∑m

i=1 aiDγ

0+ z(ξi),

where Dα
0+ is the Riemann–Liouville fractional derivative, n–1 < α ≤ n (n ≥ 3), 1 ≤ β ≤ n–

2, 0 ≤ γ ≤ β , 0 < ξ1 < ξ2 < · · · < ξm < 1, Tz(t) =
∫ t

0 K(t, s)z(s) ds, and Sz(t) =
∫ 1

0 H(t, s)z(s) ds.
By using the Banach contraction mapping principle and the Krasnosel’skii fixed point the-
orem, they obtained the existence of nonnegative solutions for this problem.

By using the Banach contraction map principle and the theory of u0-positive linear op-
erator, Zhang and Zhong in [8] studied the following fractional differential equation:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ z(t) + f (t, z(t)) = 0, 0 < t < 1,

z(0) = z′(0) = · · · = z(n–2)(0) = 0,

Dβ

0+ z(1) = λ
∫ η

0 h(s)Dγ

0+ z(s) ds,

where Dα
0+ is the Riemann–Liouville derivative, n – 1 < α ≤ n (n ≥ 3), β ≥ 1, α – β > 1,

0 < η ≤ 1, λ > 0 is a parameter, h ∈ L1[0, 1], f : [0, 1] ×R → R is continuous. They got the
existence and uniqueness of solutions for this problem.

Based on the reducing method of fractional orders, the Schauder fixed point theorem,
and the upper and lower solutions method, Zhang, Liu, and Wu in [9] obtained an eigen-
value interval for the existence of positive solutions of the following fractional differential
equation:

⎧
⎨

⎩

–Dα
0+u(t) = λf (u(t), Dμ1

0+ u(t), Dμ2
0+ u(t), . . . , Dμn–1

0+ u(t)), 0 < t < 1,

u(0) = 0, Dμi
0+u(0) = 0, Dμ

0+u(1) =
∑p–2

j=1 ajDμ

0+ u(ξj), 1 ≤ i ≤ n – 2,

where Dα
0+ is the Riemann–Liouville fractional derivative, n – 1 < α ≤ n (n ≥ 3), n – i – 1 ≤

α –μi ≤ n – i (i = 1, 2, . . . , n – 2), μ–μn–1 > 0, α –μn–1 ≤ 2, α –μ > 1, aj ≥ 0 (j = 1, 2, . . . , p –
2), 0 < ξ1 < ξ2 < · · · < ξp–2 < 1; f : (0, +∞)n → R+ is continuous and is nonincreasing in
xi > 0 for i = 1, 2, . . . , n.

Inspired by the above-mentioned papers, we investigate BVP (1.1). As far as we know,
BVP (1.1) has seldom been researched up to now, and the novelty of this paper lies in three
aspects. Firstly, the boundary conditions are the combination of sum of Riemann–Stieltjes
integral type boundary conditions and nonlocal infinite-point discrete type boundary con-
ditions, which involves fractional derivative of different orders. This fact suggests BVP
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(1.1) is more general than the above-mentioned literature. For instance, let I1 = (0, 1), Ii = 0
(i = 2, 3, . . . , p), and bj = 0 (j = 1, 2, . . .), then the boundary condition of BVP (1.1) reduces
to the boundary condition in [16]; if bj = 0 (j = 1, 2, . . .), αi = 0 wi = 1 (i = 2, 3, . . . , p), then
the boundary condition is equal to [37]; and if I1 = (0,η) (η ∈ (0, 1)), Ii = 0 (i = 2, 3, . . . , p),
the boundary condition of BVP (1.1) is the same as [18]. Meanwhile the work to check
the properties of the corresponding Green’s function is too hard. Secondly, the non-
linearity f contains different orders of fractional derivative of the unknown function.
In general, many papers consider these kinds of boundary value problem in the space
E = {u ∈ C[0, 1] : Dνi

0+u ∈ C[0, 1], i = 1, 2, . . . , n – 2}, which makes the study extremely dif-
ficult. In this paper, we use the reducing method to transform BVP (1.1) into a relatively
low-order equivalent problem, which could be considered in the space C[0, 1], and is a
good way to do this. Some interesting results of the reducing method can be found in
[9, 17, 23, 25, 27, 29, 31] and the references therein. Thirdly, there is much to be learned
about the theory and applications of mixed monotone operator, recently. Especially, many
papers have taken it into the research for fractional boundary value problems. Some inter-
esting results can be found in [10, 11, 15, 21–23, 25, 27] and the references therein. Thus,
in this paper, by using the fixed point theorem of mixed monotone operator, we obtain
the uniqueness of positive solution under the assumption that f may be singular with re-
spect to both the time and space variables. It is worth mentioning that some important
properties of the unique solution rely on the parameter λ.

The paper is organized as follows. In Sect. 2, we present some preliminary setting, derive
the corresponding Green’s function, and transform BVP (1.1) into a relatively low-order
equivalent problem, in which the nonlinear term has no fractional derivatives. In Sect. 3,
we pay particular attention to establishing the uniqueness of positive solutions and con-
sider some relative properties of the unique positive solution. In Sect. 4, two examples are
devoted to our main results.

2 Preliminaries and lemmas
Let E be a Banach space and P be a cone in E. P is said to be normal if there exists a
constant N > 0 such that, for any u, v ∈ E, θ ≤ u ≤ v implies ‖u‖ ≤ N‖v‖, the smallest
constant, which satisfies this inequality, is called the normality constant of P. Then E is
partially ordered by P, i.e., u ≤ v if and only if v – u ∈ P. For any u, v ∈ E, the notation u ∼ v
means that there exist constants λ > 0 and μ > 0 such that λu ≤ v ≤ μu. Obviously, ∼ is
an equivalence relation. For fixed e ∈ Pe and e > θ , we denote Pe = {u ∈ E : u ∼ e} = {u ∈ E :
ωe ≤ u ≤ 1

ω
e, 0 < ω < 1}. It is easy to see that Pe ⊂ P is a component of P.

Definition 2.1 ([11]) Let E be a Banach space and D ⊂ E. The operator A : D × D → E is
called a mixed monotone operator if A(u, v) is increasing in u ∈ D and decreasing in v ∈ D,
i.e., ui, vi ∈ D (i = 1, 2), u1 ≤ u2, v1 ≥ v2 imply A(u1, v1) ≤ A(u2, v2). An element u ∈ D is
called a fixed point of A if A(u, u) = u.

Lemma 2.2 ([10, 12]) Let P be a normal cone in the Banach space E, and A, B : Pe ×Pe → Pe

be two mixed monotone operators which satisfy the following conditions:
(i) For any μ ∈ (0, 1), there exists ϕ(μ) ∈ (μ, 1] such that

A
(
μu,μ–1v

) ≥ ϕ(μ)A(u, v), ∀u, v ∈ Pe.



Wang et al. Journal of Inequalities and Applications        (2019) 2019:210 Page 4 of 26

(ii) For any μ ∈ (0, 1), u, v ∈ Pe,

B
(
μu,μ–1v

) ≥ μB(u, v).

(iii) There exists a constant κ > 0 such that A(u, v) ≥ κB(u, v), ∀u, v ∈ Pe.
Then there exists a unique fixed point u∗ ∈ Pe such that A(u∗, u∗) + B(u∗, u∗) = u∗. And

for any initial values u0, v0 ∈ Pe, by constructing successively the sequences as follows:

un = A(un–1, vn–1) + B(un–1, vn–1), vn = A(vn–1, un–1) + B(vn–1, un–1), n = 1, 2, . . . ,

we have un → u∗ and vn → u∗ in E, as n → ∞.

Lemma 2.3 ([10, 12]) Suppose that operators A and B satisfy all the conditions of
Lemma 2.2. Then the equation

λA(u, u) + λB(u, u) = u

has a unique solution uλ in Pe for all λ > 0, which satisfies:
(i) If there exists r ∈ (0, 1) such that

ϕ(μ) ≥ μr – μ

κ
+ μr , ∀μ ∈ (0, 1),

then uλ is continuous with respect to λ ∈ (0, +∞). That is, for any λ0 ∈ (0, +∞),

‖uλ – uλ0‖ → 0, as λ → λ0.

(ii) If

ϕ(μ) ≥ μ
1
2 – μ

κ
+ μ

1
2 , ∀μ ∈ (0, 1),

then 0 < λ1 < λ2 implies uλ1 < uλ2 .
(iii) If there exists r ∈ (0, 1

2 ) such that

ϕ(μ) ≥ μr – μ

κ
+ μr , ∀μ ∈ (0, 1),

then

lim
λ→0+

‖uλ‖ = 0, lim
λ→+∞‖uλ‖ = +∞.

Definition 2.4 ([5]) Let α > 0. The Riemann–Liouville fractional integral of order α of a
function z : (0,∞) →R is given by

Iα
0+ z(t) =

1
Γ (α)

∫ t

0
(t – s)α–1z(s) ds

provided that the right-hand side is pointwise defined on (0,∞).
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Definition 2.5 ([5]) Let α > 0. The Riemann–Liouville fractional derivative of order α of
a continuous function z : (0,∞) →R is given by

Dα
0+ z(t) =

(
d
dt

)n

In–α
0+ z(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0

z(s)
(t – s)α–n+1 ds,

where n = [α] + 1, [α] denotes the integer part of α, provided that the right-hand side is
pointwise defined on (0,∞).

Lemma 2.6 ([6]) Let z ∈ C(0, 1) ∩ L1(0, 1). Then the fractional differential equation

Dα
0+ z(t) = 0

has a unique solution

z(t) = c1tα–1 + c2tα–2 + · · · + cntα–n, ci ∈R, i = 1, 2, . . . , n,

where n is the smallest integer greater than or equal to α.

Lemma 2.7 ([6]) Let z ∈ C(0, 1) ∩ L1(0, 1) and Dα
0+ z ∈ C(0, 1) ∩ L1(0, 1). Then

Iα
0+ Dα

0+ z(t) = z(t) + c1tα–1 + c2tα–2 + · · · + cntα–n, ci ∈R, i = 1, 2, . . . , n,

where n is the smallest integer greater than or equal to α.

Lemma 2.8 ([5]) Suppose that z ∈ C(0, 1) ∩ L1(0, 1), then
(i) Iα

0+ Iβ

0+ z(t) = Iα+β

0+ z(t) for α, β > 0;
(ii) Dβ

0+ Iα
0+ z(t) = Iα–β

0+ z(t) for α ≥ β > 0.

Lemma 2.9 Suppose that BVP (1.1) has a solution z ∈ C[0, 1], then u = Dνn–2
0+ z is a solution

of the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dγ –νn–2
0+ u(t) + λf (t, Iνn–2

0+ u(t), Iνn–2–ν1
0+ u(t), . . . , Iνn–2–νn–3

0+ u(t), u(t)) = 0,

Dqn–2–νn–2
0+ u(0) = 0, 0 < t < 1,

Dγ0–νn–2
0+ u(1) =

∑p
i=1 ai

∫

Ii
wi(s)Dαi–νn–2

0+ u(s) dAi(s)

+
∑∞

j=1 bjD
βj–νn–2
0+ u(ξj),

(2.1)

where 1 < γ –νn–2 ≤ 2. On the other hand, if we assume BVP (2.1) has a solution u ∈ C[0, 1],
then BVP (1.1) has a solution z = Iνn–2

0+ u.

Proof Suppose that z ∈ C[0, 1] and satisfies BVP (1.1). Let

u(t) = Dνn–2
0+ z(t), t ∈ [0, 1]. (2.2)

It follows from Lemma 2.7 that

Iνn–2
0+ u(t) = Iνn–2

0+ Dνn–2
0+ z(t) = z(t) + c1tνn–2–1 + · · · + cn–2tνn–2–(n–2),
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where ci ∈R (i = 1, 2, . . . , n – 2). Hence,

z(t) = Iνn–2
0+ u(t) – c1tνn–2–1 – · · · – cn–2tνn–2–(n–2).

Since z(0) = 0, . . . , Dqn–3
0+ z(0) = 0, we immediately obtain that c1 = · · · = cn–2 = 0. Thus,

z(t) = Iνn–2
0+ u(t), t ∈ [0, 1]. (2.3)

By using (ii) in Lemma 2.8, we have

Dνi
0+ z(t) = Dνi

0+ Iνn–2
0+ u(t) = Iνn–2–νi

0+ u(t), i = 1, 2, . . . , n – 3, (2.4)

and

Dγ

0+ z(t) = Dγ

0+ Iνn–2
0+ u(t) =

dn

dtn In–γ

0+ Iνn–2
0+ u(t) =

dn

dtn In–(γ –νn–2)
0+ u(t)

=
d2

dt2
dn–2

dtn–2 In–2
0+ I2–(γ –νn–2)

0+ u(t)

= Dγ –νn–2
0+ u(t). (2.5)

Similar to (2.5), we have

Dγ0
0+ z(t) = Dγ0–νn–2

0+ u(t), (2.6)

Dqn–2
0+ z(t) = Dqn–2–νn–2

0+ u(t), (2.7)

Dαi
0+ z(t) = Dαi–νn–2

0+ u(t), i = 1, 2, . . . , p, (2.8)

Dβj
0+ z(t) = Dβj–νn–2

0+ u(t), j = 1, 2, . . . . (2.9)

It follows from (2.2)–(2.5) that

Dγ –νn–2
0+ u(t) + λf

(
t, Iνn–2

0+ u(t), Iνn–2–ν1
0+ u(t), . . . , Iνn–2–νn–3

0+ u(t), u(t)
)

= Dγ
0+z(t) + λf

(
t, z(t), Dν1

0+z(t), . . . , Dνn–3
0+ z(t), Dνn–2

0+ z(t)
)

= 0. (2.10)

On the basis of (2.6), (2.8), and (2.9), we have

Dγ0–νn–2
0+ u(1) = Dγ0

0+ z(1)

=
p∑

i=1

ai

∫

Ii

wi(s)Dαi
0+z(s) dAi(s) +

∞∑

j=1

bjD
βj
0+z(ξj)

=
p∑

i=1

ai

∫

Ii

wi(s)Dαi–νn–2
0+ u(s) dAi(s) +

∞∑

j=1

bjD
βj–νn–2
0+ u(ξj). (2.11)

From (2.7), we have

Dqn–2–νn–2
0+ u(0) = Dqn–2

0+ z(0) = 0. (2.12)

Combining (2.10)–(2.12), we deduce that u = Dνn–2
0+ z is a solution of BVP (2.1).
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On the other hand, we consider the case that BVP (2.1) has a solution u ∈ C[0, 1]. Let
z(t) = Iνn–2

0+ u(t), t ∈ [0, 1]. Then z = Iνn–2
0+ u is a solution of BVP (1.1). The proof is similar to

Lemma 3 in [31]. So, we omit details. �

Remark 2.10 With the analysis of Lemma 2.9, it is enough to show that the work on search-
ing solutions of BVP (1.1) is equivalent to finding solutions of BVP (2.1). Accordingly, we
will focus on seeking the solutions of BVP (2.1) in the rest of this paper.

Lemma 2.11 Let x ∈ C(0, 1) ∩ L1(0, 1). Then the boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

Dγ –νn–2
0+ u(t) + x(t) = 0, 0 < t < 1, 1 < γ – νn–2 ≤ 2,

Dqn–2–νn–2
0+ u(0) = 0,

Dγ0–νn–2
0+ u(1) =

∑p
i=1 ai

∫

Ii
wi(s)Dαi–νn–2

0+ u(s) dAi(s) +
∑∞

j=1 bjD
βj–νn–2
0+ u(ξj),

(2.13)

is equivalent to

u(t) =
∫ 1

0
K(t, s)x(s) ds, (2.14)

where

K(t, s) = K0(t, s) + tγ –νn–2–1
p∑

i=1

(∫

Ii

Ki(τ , s)wi(τ ) dAi(τ )
)

+ tγ –νn–2–1
∞∑

j=1

Hj(ξj, s), (2.15)

in which

K0(t, s) =
1

Γ (γ – νn–2)

⎧
⎨

⎩

tγ –νn–2–1(1 – s)γ –γ0–1 – (t – s)γ –νn–2–1, 0 ≤ s ≤ t ≤ 1,

tγ –νn–2–1(1 – s)γ –γ0–1, 0 ≤ t ≤ s ≤ 1,

Ki(t, s) =
ai

σΓ (γ – νn–2)Γ (γ – αi)

⎧
⎨

⎩

tγ –αi–1(1 – s)γ –γ0–1 – (t – s)γ –αi–1, 0 ≤ s ≤ t ≤ 1,

tγ –αi–1(1 – s)γ –γ0–1, 0 ≤ t ≤ s ≤ 1,

(i = 1, 2, . . . , p),

Hj(t, s) =
bj

σΓ (γ – νn–2)Γ (γ – βj)

⎧
⎨

⎩

tγ –βj–1(1 – s)γ –γ0–1 – (t – s)γ –βj–1, 0 ≤ s ≤ t ≤ 1,

tγ –βj–1(1 – s)γ –γ0–1, 0 ≤ t ≤ s ≤ 1,

(j = 1, 2, . . .),

σ =
1

Γ (γ – γ0)
–

p∑

i=1

ai

Γ (γ – αi)

∫

Ii

sγ –αi–1wi(s) dAi(s) –
∞∑

j=1

bj

Γ (γ – βj)
ξ

γ –βj–1
j �= 0.

Obviously, K(t, s) is continuous on [0, 1] × [0, 1].
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Proof By using Lemma 2.7, we may express (2.13) as

u(t) = –
∫ t

0

(t – s)γ –νn–2–1

Γ (γ – νn–2)
x(s) ds + c1tγ –νn–2–1 + c2tγ –νn–2–2, (2.16)

where c1, c2 ∈R. Since Dqn–2–νn–2
0+ u(0) = 0, we get c2 = 0 and rewrite (2.16) as

u(t) = –
∫ t

0

(t – s)γ –νn–2–1

Γ (γ – νn–2)
x(s) ds + c1tγ –νn–2–1. (2.17)

With the help of (ii) in Lemma 2.8, we have

Dγ0–νn–2
0+ u(t) = –

1
(γ – γ0)

∫ t

0
(t – s)γ –γ0–1x(s) ds + c1

Γ (γ – νn–2)
Γ (γ – γ0)

tγ –γ0–1,

Dαi–νn–2
0+ u(t) = –

1
(γ – αi)

∫ t

0
(t – s)γ –αi–1x(s) ds + c1

Γ (γ – νn–2)
Γ (γ – αi)

tγ –αi–1, i = 1, 2, . . . , p,

and

Dβj–νn–2
0+ u(t) = –

1
(γ – βj)

∫ t

0
(t – s)γ –βj–1x(s) ds + c1

Γ (γ – νn–2)
Γ (γ – βj)

tγ –βi–1, j = 1, 2, . . . ,

which combined with the boundary condition

Dγ0–νn–2
0+ u(1) =

p∑

i=1

ai

∫

Ii

wi(s)Dαi–νn–2
0+ u(s) dAi(s) +

∞∑

j=1

bjD
βj–νn–2
0+ u(ξj)

yields

c1 =
1

σΓ (γ – νn–2)

{
1

Γ (γ – γ0)

∫ 1

0
(1 – s)γ –γ0–1x(s) ds

–
p∑

i=1

ai

Γ (γ – αi)

∫

Ii

wi(s)
(∫ s

0
(s – τ )γ –αi–1x(τ ) dτ

)

dAi(s)

–
∞∑

j=1

bj

Γ (γ – βj)

∫ ξj

0
(ξj – τ )γ –βj–1x(τ ) dτ

}

, (2.18)

where

σ =
1

Γ (γ – γ0)
–

p∑

i=1

ai

Γ (γ – αi)

∫

Ii

sγ –αi–1wi(s) dAi(s) –
∞∑

j=1

bj

Γ (γ – βj)
ξ

γ –βj–1
j

�= 0. (2.19)

Applying (2.18) into (2.17), we can obtain

u(t) = –
1

Γ (γ – νn–2)

∫ t

0
(t – s)γ –νn–2–1x(s) ds

+
tγ –νn–2–1

σΓ (γ – νn–2)

{
1

Γ (γ – γ0)

∫ 1

0
(1 – s)γ –γ0–1x(s) ds
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–
p∑

i=1

ai

Γ (γ – αi)

∫

Ii

(∫ s

0
(s – τ )γ –αi–1x(τ ) dτ

)

wi(s) dAi(s)

–
∞∑

j=1

bj

Γ (γ – βj)

∫ ξj

0
(ξj – τ )γ –βj–1x(τ ) dτ

}

= –
1

Γ (γ – νn–2)

∫ t

0
(t – s)γ –νn–2–1x(s) ds

+

{
1

Γ (γ – νn–2)
+

1
σΓ (γ – νn–2)

( p∑

i=1

ai

Γ (γ – αi)

∫

Ii

wi(s)sγ –αi–1 dAi(s)

+
∞∑

j=1

bj

Γ (γ – βj)
ξ

γ –βj–1
j

)}

tγ –νn–2–1
∫ 1

0
(1 – s)γ –γ0–1x(s) ds

–
tγ –νn–2–1

σΓ (γ – νn–2)

{ p∑

i=1

ai

Γ (γ – αi)

∫

Ii

(∫ s

0
(s – τ )γ –αi–1x(τ ) dτ

)

wi(s) dAi(s)

–
∞∑

j=1

bj

Γ (γ – βj)

∫ ξj

0
(ξj – τ )γ –βj–1x(τ ) dτ

}

= –
1

Γ (γ – νn–2)

∫ t

0
(t – s)γ –νn–2–1x(s) ds +

tγ –νn–2–1

Γ (γ – νn–2)

∫ 1

0
(1 – s)γ –γ0–1x(s) ds

+
p∑

i=1

aitγ –νn–2–1

σΓ (γ – νn–2)Γ (γ – αi)

∫

Ii

(∫ 1

0
sγ –αi–1(1 – τ )γ –γ0–1x(τ ) dτ

)

wi(s) dAi(s)

–
p∑

i=1

aitγ –νn–2–1

σΓ (γ – νn–2)Γ (γ – αi)

∫

Ii

(∫ s

0
(s – τ )γ –γ0–1x(τ ) dτ

)

wi(s) dAi(s)

+
∞∑

j=1

bjtγ –νn–2–1

σΓ (γ – νn–2)Γ (γ – βj)

∫ 1

0
ξ

γ –βj–1
j (1 – s)γ –γ0–1x(s) ds

–
∞∑

j=1

bjtγ –νn–2–1

σΓ (γ – νn–2)Γ (γ – βj)

∫ ξj

0
(ξj – s)γ –βj–1x(s) ds

=
∫ 1

0
K0(t, s)x(s) ds +

p∑

i=1

∫

Ii

tγ –νn–2–1
(∫ 1

0
Ki(s, τ )x(τ ) dτ

)

wi(s) dAi(s)

+
∞∑

j=1

∫ 1

0
tγ –νn–2–1Hj(ξj, s)x(s) ds

=
∫ 1

0
K0(t, s)x(s) ds +

∫ 1

0
tγ –νn–2–1

p∑

i=1

(∫

Ii

Ki(τ , s)wi(τ ) dAi(τ )
)

x(s) ds

+
∫ 1

0
tγ –νn–2–1

∞∑

j=1

Hj(ξj, s)x(s) ds

=
∫ 1

0
K(t, s)x(s) ds.

The proof is complete. �
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Lemma 2.12 Let σ > 0 (defined in (2.19) of Lemma 2.11),
∫

Ii
sγ –αi–1wi(s) dAi(s) ≥ 0

(i = 1, 2, . . . , p), and 0 <
∑∞

j=1
bj

Γ (γ –βj)
ξ

γ –βj–1
j < ∞. Then the functions K0(t, s), Ki(t, s) (i =

1, 2, . . . , p) and Hj(t, s) (j = 1, 2, . . .) given in Lemma 2.11 have the following properties:
(i) tγ –νn–2–1k0(s) ≤ K0(t, s) ≤ 1

Γ (γ –νn–2) tγ –νn–2–1, where

k0(s) =
1

Γ (γ – νn–2)
(1 – s)γ –γ0–1(1 – (1 – s)γ0–νn–2

)
.

(ii) tγ –αi–1ki(s) ≤ Ki(t, s) ≤ ai
σΓ (γ –νn–2)Γ (γ –αi)

tγ –αi–1 (i = 1, 2, . . . , p), where

ki(s) =
ai

σΓ (γ – νn–2)Γ (γ – αi)
(1 – s)γ –γ0–1(1 – (1 – s)γ0–αi

)
.

(iii) tγ –βj–1hj(s) ≤ Hj(t, s) ≤ bj
σΓ (γ –νn–2)Γ (γ –βj)

tγ –βj–1 (j = 1, 2, . . .), where

hj(s) =
bj

σΓ (γ – νn–2)Γ (γ – βj)
(1 – s)γ –γ0–1(1 – (1 – s)γ0–βj

)
.

Proof (i) For s ≤ t,

K0(t, s) =
1

Γ (γ – νn–2)
(
tγ –νn–2–1(1 – s)γ –γ0–1 – (t – s)γ –νn–2–1)

≥ tγ –νn–2–1

Γ (γ – νn–2)
(
(1 – s)γ –γ0–1 – (1 – s)γ –νn–2–1)

=
tγ –νn–2–1(1 – s)γ –γ0–1

Γ (γ – νn–2)
(
1 – (1 – s)γ0–νn–2

)

= tγ –νn–2–1k0(s),

K0(t, s) ≤ tγ –νn–2–1

Γ (γ – νn–2)
.

For t ≤ s,

K0(t, s) =
tγ –νn–2–1

Γ (γ – νn–2)
(1 – s)γ –γ0–1

≥ tγ –νn–2–1(1 – s)γ –γ0–1

Γ (γ – νn–2)
(
1 – (1 – s)γ0–νn–2

)

= tγ –νn–2–1k0(s),

K0(t, s) ≤ tγ –νn–2–1

Γ (γ – νn–2)
.

Using the same argument again, it is straightforward to infer (ii) and (iii). The proof is
complete. �

Lemma 2.13 Let σ > 0 (defined in (2.19) of Lemma 2.11),
∫

Ii
sγ –αi–1wi(s) dAi(s) ≥ 0 (i =

1, 2, . . . , p), and 0 <
∑∞

j=1
bj

Γ (γ –βj)
ξ

γ –βj–1
j < ∞. Then the Green’s function K (t, s) defined in

Lemma 2.11 satisfies:
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(i) K(t, s) ≤ Q1e(t) for t, s ∈ [0, 1], where e(t) = tγ –νn–2–1,

Q1 =
1

Γ (γ – νn–2)
+

p∑

i=1

ai

σΓ (γ – νn–2)Γ (γ – αi)

∫

Ii

τ γ –αi–1wi(τ ) dAi(τ )

+
∞∑

j=1

bj

σΓ (γ – νn–2)Γ (γ – βj)
ξ

γ –βj–1
j .

(ii) K(t, s) ≥ Q2(s)e(t) for t, s ∈ [0, 1], where

Q2(s) = k0(s) +
p∑

i=1

ki(s)
∫

Ii

τ γ –αi–1wi(τ ) dAi(τ ) +
∞∑

j=1

Hj(ξj, s).

(iii) K(t, s) > 0 for t, s ∈ (0, 1).

Proof The conclusion can be easily given by Lemma 2.12. So we omit it. �

In this paper, we equip E = C[0, 1] with the norm ‖u‖ = sup0≤t≤1 |u(t)|. Then (E,‖ · ‖) is a
Banach space. Let P = {u ∈ E : u(t) ≥ 0, t ∈ [0, 1]} be a cone in E. Let us define a nonlinear
operator Tλ : P → P by

(Tλu)(t) = λ

∫ 1

0
K(t, s)f

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , Iνn–2–νn–3

0+ u(s), u(s)
)

ds,

t ∈ [0, 1]. (2.20)

It is easy to check that BVP (2.1) has a solution if and only if the operator Tλ has a fixed
point.

3 Main results
Theorem 3.1 Suppose that f ∈ C((0, 1) × (0, +∞)n–1,R+) satisfies:

(H1) There exist two functions f1, f2 ∈ C((0, 1) × (0, +∞)2(n–1),R+) such that

f (t, x1, x2, . . . , xn–1) = f1(t, x1, x2, . . . , xn–1, x1, x2, . . . , xn–1)

+ f2(t, x1, x2, . . . , xn–1, x1, x2, . . . , xn–1).

(H2) For all t ∈ (0, 1) and (y1, y2, . . . , yn–1) ∈ (0, +∞)n–1, f1(t, x1, x2, . . . , xn–1, y1, y2,
. . . , yn–1), f2(t, x1, x2, . . . , xn–1, y1, y2, . . . , yn–1) are increasing in (x1, x2, . . . , xn–1) ∈
(0, +∞)n–1; for all t ∈ (0, 1) and (x1, x2, . . . , xn–1) ∈ (0, +∞)n–1, f1(t, x1, x2, . . . , xn–1, y1,
y2, . . . , yn–1), f2(t, x1, x2, . . . , xn–1, y1, y2, . . . , yn–1) are decreasing in (y1, y2, . . . , yn–1) ∈
(0, +∞)n–1.

(H3) For all μ ∈ (0, 1), there exists ϕ(μ) ∈ (μ, 1] such that, for all t ∈ (0, 1) and (x1, x2,
. . . , xn–1), (y1, y2, . . . , yn–1) ∈ (0, +∞)n–1,

f1
(
t,μx1,μx2, . . . ,μxn–1,μ–1y1,μ–1y2, . . . ,μ–1yn–1

)

≥ ϕ(μ)f1(t, x1, x2, . . . , xn–1, y1, y2, . . . , yn–1),
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f2
(
t,μx1,μx2, . . . ,μxn–1,μ–1y1,μ–1y2, . . . ,μ–1yn–1

)

≥ μf2(t, x1, x2, . . . , xn–1, y1, y2, . . . , yn–1).

(H4) There exists a constant κ > 0 such that, for all t ∈ (0, 1) and (x1, x2, . . . , xn–1),
(y1, y2, . . . , yn–1) ∈ (0, +∞)n–1,

f1(t, x1, x2, . . . , xn–1, y1, y2, . . . , yn–1) ≥ κf2(t, x1, x2, . . . , xn–1, y1, y2, . . . , yn–1).

(H5) The functions f1 and f2 satisfy

0 <
∫ 1

0
f1

(
s, 1, 1, . . . , 1, sγ –1, sγ –1, . . . , sγ –1)ds < +∞,

0 <
∫ 1

0
f2

(
s, 1, 1, . . . , 1, sγ –1, sγ –1, . . . , sγ –1)ds < +∞.

Then BVP (1.1) has a unique solution z∗
λ in P, and there exists a constant ηλ ∈ (0, 1) such

that

ηλΓ (γ – νn–2)
Γ (γ )

tγ –1 ≤ z∗
λ(t) ≤ Γ (γ – νn–2)

ηλΓ (γ )
tγ –1, t ∈ [0, 1].

And at the same time, z∗
λ satisfies:

(i) If there exists r ∈ (0, 1) such that

ϕ(μ) ≥ μr – μ

κ
+ μr , ∀μ ∈ (0, 1),

then z∗
λ is continuous with respect to λ ∈ (0, +∞), i.e., for ∀ λ0 ∈ (0, +∞),

∥
∥z∗

λ – z∗
λ0

∥
∥ → 0, as λ → λ0.

(ii) If

ϕ(μ) ≥ μ
1
2 – μ

κ
+ μ

1
2 , ∀μ ∈ (0, 1),

then 0 < λ1 < λ2 implies z∗
λ1

< z∗
λ2

.
(iii) If there exists r ∈ (0, 1

2 ) such that

ϕ(μ) ≥ μr – μ

κ
+ μr , ∀μ ∈ (0, 1),

then

lim
λ→0+

∥
∥z∗

λ

∥
∥ = 0, lim

λ→+∞
∥
∥z∗

λ

∥
∥ = +∞.
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Moreover, for any initial values z0, z̃0 ∈ Pe, by constructing successively the sequences as
follows:

zn(t) = Iνn–2
0+

{

λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ zn–1(s), Iνn–2–ν1
0+ zn–1(s), . . . , zn–1(s),

Iνn–2
0+ z̃n–1(s), Iνn–2–ν1

0+ z̃n–1(s), . . . , z̃n–1(s)
)

ds

+ λ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ zn–1(s), Iνn–2–ν1
0+ zn–1(s), . . . , zn–1(s),

Iνn–2
0+ z̃n–1(s), Iνn–2–ν1

0+ z̃n–1(s), . . . , z̃n–1(s)
)

ds
}

,

z̃n(t) = Iνn–2
0+

{

λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ z̃n–1(s), Iνn–2–ν1
0+ z̃n–1(s), . . . , z̃n–1(s),

Iνn–2
0+ zn–1(s), Iνn–2–ν1

0+ zn–1(s), . . . , zn–1(s)
)

ds

+ λ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ z̃n–1(s), Iνn–2–ν1
0+ z̃n–1(s), . . . , z̃n–1(s),

Iνn–2
0+ zn–1(s), Iνn–2–ν1

0+ zn–1(s), . . . , zn–1(s)
)

ds
}

,

n = 1, 2, . . . ,

we have zn → z∗
λ and z̃n → z∗

λ in E, as n → ∞.

Proof Let Pe = {u ∈ E : u ∼ e}, where e(t) = tγ –νn–2–1. Then Pe is a component of P. Now,
we define two operators Aλ, Bλ : Pe × Pe → P by

Aλ(u, v)(t) = λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , u(s),

Iνn–2
0+ v(s), Iνn–2–ν1

0+ v(s), . . . , v(s)
)

ds,

Bλ(u, v)(t) = λ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , u(s),

Iνn–2
0+ v(s), Iνn–2–ν1

0+ v(s), . . . , v(s)
)

ds.

Combining the definition of Tλ in (2.20) and (H1), we have

(Tλu)(t) = λ

∫ 1

0
K(t, s)f

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , Iνn–2–νn–3

0+ u(s), u(s)
)

ds

= λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , u(s),

Iνn–2
0+ u(s), Iνn–2–ν1

0+ u(s), . . . , u(s)
)

ds

+ λ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , u(s),

Iνn–2
0+ u(s), Iνn–2–ν1

0+ u(s), . . . , u(s)
)

ds

= Aλ(u, u)(t) + Bλ(u, u)(t), t ∈ [0, 1]. (3.1)

Then we can conclude that u is the solution of BVP (2.1) if u satisfies u = Aλ(u, u)+Bλ(u, u).
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We prove that Aλ, Bλ : Pe ×Pe → P are well defined at first. For any u, v ∈ Pe, there exists a
constant ω ∈ (0, 1) such that ωe(t) ≤ u(t) ≤ 1

ω
e(t), ωe(t) ≤ v(t) ≤ 1

ω
e(t), t ∈ [0, 1]. Moreover,

by the definition of fractional integral and e(t) ≤ 1, for all t ∈ [0, 1],

Iνn–2
0+ e(t) =

1
Γ (νn–2)

∫ t

0
(t – s)νn–2–1sγ –νn–2–1 ds

=
Γ (γ – νn–2)

Γ (γ )
tγ –1 ≤ 1 (3.2)

and

Iνn–2–νi
0+ e(t) =

1
Γ (νn–2 – νi)

∫ t

0
(t – s)νn–2–νi–1sγ –νn–2–1 ds

=
Γ (γ – νn–2)
Γ (γ – νi)

tγ –νi–1 ≤ 1, i = 1, 2, . . . , n – 3. (3.3)

Thus, by (H1), (H2), (H3), (H5), (3.2), and (3.3), we know that, for all t ∈ [0, 1],

Aλ(u, v)(t) = λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , u(s),

Iνn–2
0+ v(s), Iνn–2–ν1

0+ v(s), . . . , v(s)
)

ds

≤ λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ ω–1e(s), Iνn–2–ν1
0+ ω–1e(s), . . . ,ω–1e(s),

Iνn–2
0+ ωe(s), Iνn–2–ν1

0+ ωe(s), . . . ,ωe(s)
)

ds

≤ λ

∫ 1

0
K(t, s)f1

(

s,ω–1,ω–1, . . . ,ω–1,

Γ (γ – νn–2)
Γ (γ )

ωsγ –1,
Γ (γ – νn–2)
Γ (γ – ν1)

ωsγ –ν1–1, . . . ,ωsγ –νn–2–1
)

ds

≤ λ

∫ 1

0
K(t, s)f1

(
s, (ρω)–1, (ρω)–1, . . . , (ρω)–1,

ρωsγ –1,ρωsγ –ν1–1, . . . ,ωsγ –νn–3–1)ds

≤ λ
Q1

ϕ(ρω)
e(t)

∫ 1

0
f1

(
s, 1, 1, . . . , 1, sγ –1, sγ –1, . . . , sγ –1)ds

< +∞, (3.4)

where

ρ = min

{
Γ (γ – νn–2)

Γ (γ )
,
Γ (γ – νn–2)
Γ (γ – ν1)

, . . . ,
Γ (γ – νn–2)
Γ (γ – νn–3)

, 1
}

> 0.

Similarly, for all t ∈ [0, 1],

Bλ(u, v)(t) ≤ λ
Q1

ρω
e(t)

∫ 1

0
f2

(
s, 1, 1, . . . , 1, sγ –1, sγ –1, . . . , sγ –1)ds < +∞. (3.5)

So, Aλ, Bλ : Pe × Pe → P are well defined.
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Now, we prove that Aλ, Bλ : Pe × Pe → Pe. Taking a constant W > 1 such that

W > max

{
λQ1

ϕ(ρω)

∫ 1

0
f1

(
s, 1, 1, . . . , 1, sγ –1, sγ –1, . . . , sγ –1)ds,

λQ1

ρω

∫ 1

0
f2

(
s, 1, 1, . . . , 1, sγ –1, sγ –1, . . . , sγ –1)ds,

(

λϕ(ρω)
∫ 1

0
Q2(s)f1

(
s, sγ –1, sγ –1, . . . , sγ –1, 1, 1, . . . , 1

)
ds

)–1

,

(

λρω

∫ 1

0
Q2(s)f2

(
s, sγ –1, sγ –1, . . . , sγ –1, 1, 1, . . . , 1

)
ds

)–1}

. (3.6)

Then from (H1), (H2), and (H3), for all t ∈ [0, 1],

Aλ(u, v)(t) = λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , u(s),

Iνn–2
0+ v(s), Iνn–2–ν1

0+ v(s), . . . , v(s)
)

ds

≥ λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ ωe(s), Iνn–2–ν1
0+ ωe(s), . . . ,ωe(s),

Iνn–2
0+ ω–1e(s), Iνn–2–ν1

0+ ω–1e(s), . . . ,ω–1e(s)
)

ds

≥ λ

∫ 1

0
K(t, s)f1

(
s,ρωsγ –1,ρωsγ –ν1–1, . . . ,ωsγ –ν–1,

(ρω)–1, (ρω)–1, . . . , (ρω)–1)ds

≥ λϕ(ρω)e(t)
∫ 1

0
Q2(s)f1

(
s, sγ –1, sγ –1, . . . , sγ –1, 1, 1, . . . , 1

)
ds

≥ W –1e(t) (3.7)

and

Bλ(u, v)(t) ≥ λρωe(t)
∫ 1

0
Q2(s)f2

(
s, sγ –1, sγ –1, . . . , sγ –1, 1, 1, . . . , 1

)
ds

≥ W –1e(t). (3.8)

On the other hand, from (3.4) and (3.5), we know, for all u, v ∈ Pe, t ∈ [0, 1],

Aλ(u, v)(t) ≤ λQ1

ϕ(ρω)
e(t)

∫ 1

0
f1

(
s, 1, 1, . . . , 1, sγ –1, sγ –1, . . . , sγ –1)ds

≤ We(t) (3.9)

and

Bλ(u, v)(t) ≤ λQ1

ρω
e(t)

∫ 1

0
f2

(
s, 1, 1, . . . , 1, sγ –1, sγ –1, . . . , sγ –1)ds

≤ We(t). (3.10)

So, Aλ, Bλ : Pe × Pe → Pe.
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In fact, from (H2), it is easy to check that Aλ, Bλ are mixed monotone operators. Fur-
thermore, it follows from (H3) that, for all μ ∈ (0, 1), there exists ϕ(μ) ∈ (μ, 1] such that,
for any u, v ∈ Pe, t ∈ [0, 1],

Aλ

(
μu,μ–1v

)
(t) = λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ μu(s), Iνn–2–ν1
0+ μu(s), . . . ,μu(s),

Iνn–2
0+ μ–1v(s), Iνn–2–ν1

0+ μ–1v(s), . . . ,μ–1v(s)
)

ds

= λ

∫ 1

0
K(t, s)f1

(
s,μIνn–2

0+ u(s),μIνn–2–ν1
0+ u(s), . . . ,μu(s),

μ–1Iνn–2
0+ v(s),μ–1Iνn–2–ν1

0+ v(s), . . . ,μ–1v(s)
)

ds

≥ λϕ(μ)
∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , u(s),

Iνn–2
0+ v(s), Iνn–2–ν1

0+ v(s), . . . , v(s)
)

ds

= ϕ(μ)Aλ(u, v)(t) (3.11)

and

Bλ

(
μu,μ–1v

)
(t) = λ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ μu(s), Iνn–2–ν1
0+ μu(s), . . . ,μu(s),

Iνn–2
0+ μ–1v(s), Iνn–2–ν1

0+ μ–1v(s), . . . ,μ–1v(s)
)

ds

≥ λμ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , u(s),

Iνn–2
0+ v(s), Iνn–2–ν1

0+ v(s), . . . , v(s)
)

ds

= μBλ(u, v)(t). (3.12)

By (H4), we infer that there exists κ > 0 such that, for all u, v ∈ Pe, t ∈ [0, 1],

Aλ(u, v)(t) = λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ u(s), . . . , u(s),

Iνn–2
0+ v(s), Iνn–2–ν1

0+ v(s), . . . , v(s)
)

ds

≥ κλ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ u(s), Iνn–2–ν1
0+ z(s), . . . , u(s),

Iνn–2
0+ v(s), Iνn–2–ν1

0+ v(s), . . . , v(s)
)

ds

= κBλ(u, v)(t). (3.13)

Combining (3.11)–(3.13) and using Lemma 2.2, we infer that there exists a unique fixed
point u∗

λ ∈ Pe such that

Aλ

(
u∗

λ, u∗
λ

)
+ Bλ

(
u∗

λ, u∗
λ

)
= u∗

λ.
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That is, BVP (2.1) has a unique solution u∗
λ ∈ Pe. Since u∗

λ ∈ Pe, there exists a constant
ηλ ∈ (0, 1) such that

ηλtγ –νn–2–1 ≤ u∗
λ(t) ≤ 1

ηλ

tγ –νn–2–1, t ∈ [0, 1]. (3.14)

Moreover, for any λ > 0, let Ã = (λ–1Aλ) and B̃ = (λ–1Bλ). Obviously, Ã and B̃ satisfy all
the conditions of Lemma 2.3. With the preceding proof, we can infer that u∗

λ is the unique
positive solution of the following equation:

λÃ(u, u) + λB̃(u, u) = A(u, u) + B(u, u) = u.

By means of Lemma 2.3, we know that u∗
λ satisfies:

(1) If there exists r ∈ (0, 1) such that

ϕ(μ) ≥ μr – μ

κ
+ μr , ∀μ ∈ (0, 1),

then u∗
λ is continuous with respect to λ ∈ (0, +∞). That is, for ∀ λ0 ∈ (0, +∞),

∥
∥u∗

λ – u∗
λ0

∥
∥ → 0, as λ → λ0.

(2) If

ϕ(μ) ≥ μ
1
2 – μ

κ
+ μ

1
2 , ∀μ ∈ (0, 1),

then 0 < λ1 < λ2 implies u∗
λ1

< u∗
λ2

.
(3) If there exists r ∈ (0, 1

2 ) such that

ϕ(μ) ≥ μr – μ

κ
+ μr , ∀μ ∈ (0, 1),

then

lim
λ→0+

∥
∥u∗

λ

∥
∥ = 0, lim

λ→+∞
∥
∥u∗

λ

∥
∥ = +∞.

Furthermore, by Lemma 2.2, we can infer that, for any initial values u0, v0 ∈ Pe, by con-
structing successively the sequences as follows:

un(t) = λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ un–1(s), Iνn–2–ν1
0+ un–1(s), . . . , un–1(s),

Iνn–2
0+ vn–1(s), Iνn–2–ν1

0+ vn–1(s), . . . , vn–1(s)
)

ds

+ λ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ un–1(s), Iνn–2–ν1
0+ un–1(s), . . . , un–1(s),

Iνn–2
0+ vn–1(s), Iνn–2–ν1

0+ vn–1(s), . . . , vn–1(s)
)

ds,
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vn(t) = λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ vn–1(s), Iνn–2–ν1
0+ vn–1(s), . . . , vn–1(s),

Iνn–2
0+ un–1(s), Iνn–2–ν1

0+ un–1(s), . . . , un–1(s)
)

ds

+ λ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ vn–1(s), Iνn–2–ν1
0+ vn–1(s), . . . , vn–1(s),

Iνn–2
0+ un–1(s), Iνn–2–ν1

0+ un–1(s), . . . , un–1(s)
)

ds,

t ∈ [0, 1], n = 1, 2, . . . ,

we have

un → u∗
λ, vn → u∗

λ, in E, as n → ∞.

Finally, by what we have proved in Lemma 2.9, we know z∗
λ = Iνn–2 u∗

λ is the unique posi-
tive solution of BVP (1.1). From (3.14), we know that z∗ satisfies

ηλΓ (γ – νn–2)
Γ (γ )

tγ –1 ≤ z∗
λ(t) ≤ Γ (γ – νn–2)

ηλΓ (γ )
tγ –1, t ∈ [0, 1]. (3.15)

And from the monotonicity and continuity of fractional integral, we get:
(i) If there exists r ∈ (0, 1) such that

ϕ(μ) ≥ μr – μ

κ
+ μr , ∀μ ∈ (0, 1),

then for ∀ λ0 ∈ (0, +∞),

∥
∥z∗

λ – z∗
λ0

∥
∥ → 0, as λ → λ0.

(ii) If

ϕ(μ) ≥ μ
1
2 – μ

κ
+ μ

1
2 , ∀μ ∈ (0, 1),

then 0 < λ1 < λ2 implies z∗
λ1

< z∗
λ2

.
(iii) If there exists r ∈ (0, 1

2 ) such that

ϕ(μ) ≥ μr – μ

κ
+ μr , ∀μ ∈ (0, 1),

then

lim
λ→0+

∥
∥z∗

λ

∥
∥ = 0, lim

λ→+∞
∥
∥z∗

λ

∥
∥ = +∞.
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Furthermore, for any initial values z0, z̃0 ∈ Pe, by constructing successively the sequences
as follows:

zn(t) = Iνn–2
0+

{

λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ zn–1(s), Iνn–2–ν1
0+ zn–1(s), . . . , zn–1(s),

Iνn–2
0+ z̃n–1(s), Iνn–2–ν1

0+ z̃n–1(s), . . . , z̃n–1(s)
)

ds

+ λ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ zn–1(s), Iνn–2–ν1
0+ zn–1(s), . . . , zn–1(s),

Iνn–2
0+ z̃n–1(s), Iνn–2–ν1

0+ z̃n–1(s), . . . , z̃n–1(s)
)

ds
}

,

z̃n(t) = Iνn–2
0+

{

λ

∫ 1

0
K(t, s)f1

(
s, Iνn–2

0+ z̃n–1(s), Iνn–2–ν1
0+ z̃n–1(s), . . . , z̃n–1(s),

Iνn–2
0+ zn–1(s), Iνn–2–ν1

0+ zn–1(s), . . . , zn–1(s)
)

ds

+ λ

∫ 1

0
K(t, s)f2

(
s, Iνn–2

0+ z̃n–1(s), Iνn–2–ν1
0+ z̃n–1(s), . . . , z̃n–1(s),

Iνn–2
0+ zn–1(s), Iνn–2–ν1

0+ zn–1(s), . . . , zn–1(s)
)

ds
}

,

t ∈ [0, 1], n = 1, 2, . . . ,

we have

zn → z∗
λ, z̃n → z∗

λ, in E, as n → ∞.

The proof of Theorem 3.1 is completed. �

4 Examples
Example 4.1 We consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
5
2
0+z(t) + λ(6t– 1

3 u 1
8 (D

3
5
0+z(t))– 1

8 + 5u
1
6 (1 – t2)– 1

2 + (1 + t2)–1

× ((6D
3
5
0+z(t)) 1

3 + (D
3
5
0+z(t)) 1

4 + 1) + (tu)– 1
5 (7 + (u + 1)– 4

5 )) = 0, 0 < t < 1,

z(0) = D
2
3
0+z(0) = 0,

D
3
2
0+z(1) = 2

∫ 1
0 s 3

4 (1 – s)2D
5
4
0+z(s) dA1(s) + 1

2
∫ 2

3
0 s 7

8 (1 + s2)–1D
11
8

0+ z(s) dA2(s)

+
∑∞

j=1(5j – 4)–1(5j + 1)–1D
3
2 – 1

2(7+j)
0+ u((28 + 2j)–1),

(4.1)

where λ > 0 is a parameter, and

A1(t) =

⎧
⎨

⎩

1
7 , t ∈ [0, 1

2 ),
8
7 , t ∈ [ 1

2 , 1],
A2(t) =

⎧
⎨

⎩

1
9 , t ∈ [0, 1

2 ),
10
9 , t ∈ [ 1

2 , 1].

Let

f (t, u, v) = 6t– 1
3 u

1
8 v– 1

8 + 5u
1
6
(
1 – t2)– 1

2 +
(
6v

1
3 + v

1
4 + 1

)(
1 + t2)–1

+ (tu)– 1
5
(
7 + (u + 1)– 4

5
)
,
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n = 3, γ = 5
2 , γ0 = 3

2 , ν1 = 3
5 , q1 = 2

3 , a1 = 2, a2 = 1
2 , α1 = 5

4 , α2 = 11
8 , I1 = [0, 1], I2 = [0, 2

3 ],
bj = (5j – 4)–1(5j + 1)–1 (j = 1, 2, . . .), βj = 3

2 – 1
2(7+j) (j = 1, 2, . . .), ξj = (28 + 2j)–1 (j = 1, 2, . . .),

w1(t) = t 3
4 (1 – t)2, w2(t) = t 7

8 (1 + t2)–1. Then problem (4.1) can be transformed into BVP
(1.1) for λ > 0.

By simple computation, we have a rough estimate

∫

I1

τ γ –α1–1w1(τ ) dA1(τ ) =
∫ 1

0
τ (1 – τ )2 dA1(τ ) = 0.125 > 0,

∫

I2

τ γ –α2–1w2(τ ) dA2(τ ) =
∫ 2

3

0
τ
(
1 + τ 2)–1 dA2(τ ) = 0.4 > 0,

∞∑

j=1

bj

Γ (γ – βj)
ξ

γ –βj–1
j =

∞∑

j=1

1
Γ (1 + 2–(7+j))

(5j – 4)–1(5j + 1)–1(28 + 2j)– 1
2(7+j)

≤
∞∑

j=1

(5j – 4)–1(5j + 1)–1 = 0.2,

and

σ =
1

Γ (γ – γ0)
–

p∑

i=1

ai

Γ (γ – αi)

∫

Ii

sγ –αi–1wi(s) dAi(s) –
∞∑

j=1

bj

Γ (γ – βj)
ξ

γ –βj–1
j

≈ 1 –
2

Γ ( 5
4 )

∫ 1

0
s

1
4 s

3
4 (1 – s)2 ds –

1
2Γ ( 9

8 )

∫ 2
3

0
s

1
8 s

7
8
(
1 + s2)–1 ds

–
∞∑

j=1

1
Γ (1 + 2–(7+j))

(5j – 4)–1(5j + 1)–1(28 + 2j)– 1
2(7+j)

≥ 1 – 0.25 – 0.2 – 0.2 = 0.35 > 0,

which means the properties of Green’s function in Lemma 2.13 are achieved. Let

f1(t, u, v, w, z) = 5t– 1
3 u

1
8 z– 1

8 + 4u
1
6
(
1 – t2)– 1

2 +
(
6v

1
3 + 1

)(
1 + t2)–1 + 7(tw)– 1

5

and

f2(t, u, v, w, z) = t– 1
3 u

1
8 z– 1

8 + u
1
6
(
1 – t2)– 1

2 + v
1
4
(
1 + t2)–1 + (tw)– 1

5 (w + 1)– 4
5 .

Then

f (t, u, v) = f1(t, u, v, u, v) + f2(t, u, v, u, v).

It is easy to check the following conditions:
(1) For all t ∈ (0, 1) and (w, z) ∈ (0, +∞)2, f1(t, u, v, w, z), f2(t, u, v, w, z) are increasing in

(u, v) ∈ (0, +∞)2; for all t ∈ (0, 1) and (u, v) ∈ (0, +∞)2, f1(t, u, v, w, z), f2(t, u, v, w, z)
are decreasing in (w, z) ∈ (0, +∞)2.
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(2) Let ϕ(μ) = μ
1
3 . Then, for μ ∈ (0, 1), t ∈ (0, 1), and (u, v, w, z) ∈ (0, +∞)4,

f1
(
t,μu,μv,μ–1w,μ–1z

)
= 5μ

1
4 t– 1

3 u
1
8 z– 1

8 + 4μ
1
6 u

1
6
(
1 – t2)– 1

2

+
(
6μ

1
3 v

1
3 + 1

)(
1 + t2)–1 + 7μ

1
5 (tw)– 1

5

≥ μ
1
3 f1(t, u, v, w, z),

f2
(
t,μu,μv,μ–1w,μ–1z

)
= μ

1
4 t– 1

3 u
1
8 z– 1

8 + μ
1
6 u

1
6
(
1 – t2)– 1

2

+ μ
1
4 v

1
4
(
1 + t2)–1 + μ

4
15 (tw)– 1

5 (w + μ)– 4
5

≥ μf2(t, u, v, w, z).

(3) Let κ = 4. Then, for all (u, v, w, z) ∈ (0, +∞)4,

f1(t, u, v, w, z) ≥ κf2(t, u, v, w, z).

(4) The functions f1 and f2 satisfy

0 <
∫ 1

0
f1

(
s, 1, 1, sγ –1, sγ –1)ds

=
∫ 1

0

(
5s– 25

48 + 4
(
1 – s2)– 1

2 + 7
(
1 + s2)–1 + 7s– 1

2
)

< +∞,

0 <
∫ 1

0
f2

(
s, 1, 1, sγ –1, sγ –1)ds ≤

∫ 1

0

(
s– 25

48 +
(
1 – s2)– 1

2 +
(
1 + s2)–1 + s– 1

2
)

< +∞.

Let r = 7
15 < 1

2 . It is easy to check that
(i)

ϕ(μ) = μ
1
3 ≥ μr – μ

κ
+ μr =

5
4
μ

7
15 –

1
4
μ, ∀μ ∈ (0, 1).

(ii)

ϕ(μ) = μ
1
3 ≥ μ

1
2 – μ

κ
+ μ

1
2 =

5
4
μ

1
2 –

1
4
μ, ∀μ ∈ (0, 1).

Therefore, the assumptions of Theorem 3.1 are satisfied. Then BVP (4.1) has a unique
solution z∗

λ in P, and there exists a constant ηλ ∈ (0, 1) such that

6Γ ( 9
10 )ηλ

5Γ ( 1
2 )

t
3
2 ≤ z∗

λ(t) ≤ 6Γ ( 9
10 )

5Γ ( 1
2 )ηλ

t
3
2 , t ∈ [0, 1].

And at the same time, z∗
λ satisfies:

(i) z∗
λ is continuous with respect to λ ∈ (0, +∞), i.e., for ∀ λ0 ∈ (0, +∞),

∥
∥z∗

λ – z∗
λ0

∥
∥ → 0, as λ → λ0.

(ii) 0 < λ1 < λ2 implies z∗
λ1

< z∗
λ2

.
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(iii)

lim
λ→0+

∥
∥z∗

λ

∥
∥ = 0, lim

λ→+∞
∥
∥z∗

λ

∥
∥ = +∞.

Moreover, for any initial values z0, z̃0 ∈ Pe, by constructing successively the sequences as
follows:

zn(t) = I
3
5

0+

{

λ

∫ 1

0
K(t, s)f1

(
s, I

3
5

0+ zn–1(s), zn–1(s), I
3
5

0+ z̃n–1(s), z̃n–1(s)
)

ds

+ λ

∫ 1

0
K(t, s)f2

(
s, I

3
5

0+ zn–1(s), zn–1(s), I
3
5

0+ z̃n–1(s), z̃n–1(s)
)

ds
}

,

z̃n(t) = I
3
5

0+

{

λ

∫ 1

0
K(t, s)f1

(
s, I

3
5

0+ z̃n–1(s), z̃n–1(s), I
3
5

0+ zn–1(s), zn–1(s)
)

ds

+ λ

∫ 1

0
K(t, s)f2(

(
s, I

3
5

0+ z̃n–1(s), z̃n–1(s), I
3
5

0+ zn–1(s), zn–1(s)
)

ds
}

,

n = 1, 2, . . . ,

we have zn → z∗
λ and z̃n → z∗

λ in E, as n → ∞.

Example 4.2 We consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
8
3
0+z(t) + z 1

4 (t)(D
2
3
0+z(t))– 1

4 (t– 1
3 + t– 1

4 ) + (2D
2
3
0+z(t)) 1

3 (1 – t2)– 1
2

+ (tz(t))– 1
4 (1 + (z(t) + 1)– 3

4 ) = 0, 0 < t < 1,

z(0) = D
3
4
0+z(0) = 0,

D
3
2
0+z(1) = 2

∫ 1
0 s 3

4 (1 – s)2D
5
4
0+z(s) dA1(s) + 1

2
∫ 2

3
0 s 7

8 (1 + s2)–1D
11
8

0+ z(s) dA2(s)

+
∑∞

j=1(5j – 4)–1(5j + 1)–1D
5
3 –2–(7+j)

0+ u((28 + 2j)–1),

(4.2)

where

A1(t) =

⎧
⎨

⎩

1
11 , t ∈ [0, 1

2 ),
12
11 , t ∈ [ 1

2 , 1],
A2(t) =

⎧
⎨

⎩

1
13 , t ∈ [0, 1

2 ),
14
13 , t ∈ [ 1

2 , 1].

Let

f (t, u, v) = u
1
4 v– 1

4
(
t– 1

3 + t– 1
4
)

+ 2v
1
3
(
1 – t2)– 1

2 + (tu)– 1
4
(
1 + (u + 1)– 3

4
)
,

γ = 8
3 (n = 3), γ0 = 3

2 , ν1 = 2
3 , q1 = 3

4 , a1 = 2, a2 = 1
2 , α1 = 5

4 , α2 = 11
8 , I1 = [0, 1], I2 = [0, 2

3 ],
bj = (5j – 4)–1(5j + 1)–1 (j = 1, 2, . . .), βj = 5

3 – 2–(7+j) (j = 1, 2, . . .), ξj = (28 + 2j)–1 (j = 1, 2, . . .),
w1(t) = t 3

4 (1 – t)2, w2(t) = t 7
8 (1 + t2)–1. Then problem (4.2) can be transformed into BVP

(1.1) for λ = 1. By simple computation, we have a rough estimate:

∫

I1

τ γ –α1–1w1(τ ) dA1(τ ) =
∫ 1

0
τ (1 – τ )2 dA1(τ ) = 0.125 > 0,

∫

I2

τ γ –α2–1w2(τ ) dA2(τ ) =
∫ 2

3

0
τ
(
1 + τ 2)–1 dA2(τ ) = 0.4 > 0,
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∞∑

j=1

bj

Γ (γ – βj)
ξ

γ –βj–1
j =

∞∑

j=1

1
Γ (1 + 2–(7+j))

(5j – 4)–1(5j + 1)–1(28 + 2j)– 1
2(7+j)

≤
∞∑

j=1

(5j – 4)–1(5j + 1)–1 = 0.2,

and

σ =
1

Γ (γ – γ0)
–

p∑

i=1

ai

Γ (γ – αi)

∫

Ii

sγ –αi–1wi(s) dAi(s) –
∞∑

j=1

bj

Γ (γ – βj)
ξ

γ –βj–1
j

≈ 1 –
2

Γ ( 5
4 )

∫ 1

0
s

1
4 s

3
4 (1 – s)2 ds –

1
2Γ ( 9

8 )

∫ 2
3

0
s

1
8 s

7
8
(
1 + s2)–1 ds

–
∞∑

j=1

1
Γ (1 + 2–(7+j))

(5j – 4)–1(5j + 1)–1(28 + 2j)– 1
2(7+j)

≥ 1 – 0.25 – 0.2 – 0.2 = 0.35 > 0,

which means the properties of Green’s function in Lemma 2.13 are achieved. Let

f1(t, u, v, w, z) = t– 1
3 u

1
4 z– 1

4 + v
1
3
(
1 – t2)– 1

2 + (tw)– 1
4

and

f2(t, u, v, w, z) = t– 1
4 u

1
4 z– 1

4 + v
1
3
(
1 – t2)– 1

2 + (tw)– 1
4 (w + 1)– 3

4 .

Then

f (t, u, v) = f1(t, u, v, u, v) + f2(t, u, v, u, v).

It is easy to check the following conditions:
(1) For all t ∈ (0, 1) and (w, z) ∈ (0, +∞)2, f1(t, u, v, w, z), f2(t, u, v, w, z) are increasing in

(u, v) ∈ (0, +∞)2; for all t ∈ (0, 1) and (u, v) ∈ (0, +∞)2, f1(t, u, v, w, z), f2(t, u, v, w, z)
are decreasing in (w, z) ∈ (0, +∞)2.

(2) Let ϕ(μ) = μ
1
2 . Then, for μ ∈ (0, 1), t ∈ (0, 1), and (u, v, w, z) ∈ (0, +∞)4,

f1
(
t,μu,μv,μ–1w,μ–1z

)

= t– 1
3 (μu)

1
4
(
μ–1z

)– 1
4 + (μv)

1
3
(
1 – t2)– 1

2 + t– 1
4
(
μ–1w

)– 1
4

≥ μ
1
2 f1(t, u, v, w, z),

f2
(
t,μu,μv,μ–1w,μ–1z

)

= t– 1
4 (μu)

1
4
(
μ–1z

)– 1
4 + (μv)

1
3
(
1 – t2)– 1

2 + μ(tw)– 1
4 (w + μ)– 3

4

≥ μf2(t, u, v, w, z).

(3) Let κ = 1. Then, for all (u, v, w, z) ∈ (0, +∞)4,

f1(t, u, v, w, z) ≥ f2(t, u, v, w, z).
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(4) The functions f1 and f2 satisfy

0 <
∫ 1

0
f1

(
s, 1, 1, sγ –1, sγ –1)ds =

∫ 1

0

(
s– 3

4 +
(
1 – s2)– 1

2 + s– 2
3
)

< +∞,

0 <
∫ 1

0
f2

(
s, 1, 1, sγ –1, sγ –1)ds ≤

∫ 1

0

(
s– 2

3 +
(
1 – s2)– 1

2 + s– 2
3
)

< +∞.

Thus BVP (4.2) has a unique positive solution z∗
1. Then BVP (1.1) has a unique solution z∗

1

in P, and there exists a constant η1 ∈ (0, 1) such that

9η1

10Γ ( 2
3 )

t
5
3 ≤ z∗

1(t) ≤ 9
10Γ ( 2

3 )η1
t

5
3 , t ∈ [0, 1].

Moreover, for any initial values z0, z̃0 ∈ Pe, by constructing successively the sequences as
follows:

zn(t) = I
2
3

0+

{∫ 1

0
K(t, s)f1

(
s, I

2
3

0+ zn–1(s), zn–1(s), I
2
3

0+ z̃n–1(s), z̃n–1(s)
)

ds

+
∫ 1

0
K(t, s)f2

(
s, I

2
3

0+ zn–1(s), zn–1(s), I
2
3

0+ z̃n–1(s), z̃n–1(s)
)

ds
}

,

z̃n(t) = I
2
3

0+

{∫ 1

0
K(t, s)f1

(
s, I

2
3

0+ z̃n–1(s), z̃n–1(s), I
2
3

0+ zn–1(s), zn–1(s)
)

ds

+
∫ 1

0
K(t, s)f2

(
s, I

2
3

0+ z̃n–1(s), z̃n–1(s), I
2
3

0+ zn–1(s), zn–1(s)
)

ds
}

,

n = 1, 2, . . . ,

we have zn → z∗
1 and z̃n → z∗

1 in E, as n → ∞.
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