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Abstract
In this manuscript, we introduce two iterative methods for finding the common zeros
of two H-accretive mappings in uniformly smooth and uniformly convex Banach
spaces. The proposed iterative methods are based on Mann and Halpern iterative
methods and viscosity approximation method. Strong convergence results are
established for iterative algorithms. Applications based on convex minimization
problem, variational inequality problem and equilibrium problem are derived from
the main result. Numerical implementation of the main results and application are
demonstrated by some examples. Our results extend, generalize, and unify the
previously known results given in literature.
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1 Introduction
For a real Banach space B with a nonempty, convex, and closed subset C and for a set-
valued mapping Φ : B → 2B whose domain, range, and graph are defined as

dom(Φ) =
{

y ∈ B : Φ(y) �= ∅}
,

range(Φ) =
⋃{

Φ(y) : y ∈ dom(Φ)
}

and

graph(Φ) =
{

(y, z) ∈ B ×B : y ∈ dom(Φ), z ∈ Φ(y)
}

,

respectively, the inclusion problem or zero point problem is to search a point ỹ ∈ B such
that

0 ∈ Φ(ỹ). (1.1)

The set of zeros of Φ is defined as

Φ–1(0) =
{

y ∈ dom(Φ) : 0 ∈ Φ(y)
}

.
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A very effective and convenient approach to solve a large number of problems in opti-
mization theory and nonlinear analysis is their formulation in the zero point problem. In
problem (1.1), different mathematicians defined Φ in various ways in various frameworks,
such as maximal monotone in Hilbert spaces and m-accretive in Banach spaces, and they
introduced iterative schemes to solve (1.1).

In 2004, Fang et al. [12] introduced the notion of H-accretive mappings in Banach
spaces. It is noted that H-accretive mapping is a generalization of m-accretive mapping.
They defined the resolvent operator affiliated to H-accretive mapping and showed that it
is single-valued and Lipschitz continuous.

One of the important methods to solve (1.1) for maximal monotone operator Φ in a
Hilbert space H is proximal point algorithm which was introduced by Martinet [20] and
defined in the following manner:

⎧
⎨

⎩
x1 ∈H,

xn+1 = Jμn ,Φ (xn), n ∈ N,
(1.2)

where I : H →H is the identity mapping, Jμn ,Φ (xn) = (I + μnΦ)–1(xn), and {μn} ⊂R+.
In 1976, Rockafellar [28] posed an open question regarding the strong convergence of

the sequence obtained from (1.2); indeed an example was given by Güler [13] discussing
that Rockafellar’s proximal point algorithm does not strongly converge. Furthermore,
Bauschke et al. [3] showed by an example that proximal point algorithm only converges
weakly but not in norm.

In 2005, a modification of Mann iteration method was presented by Kim et al. [17] for
finding the solution of (1.1) with an m-accretive mapping Φ in a uniformly smooth Banach
space and described in the following manner:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ B,

yn = Jμn ,Φ (xn),

xn+1 = ρnl + (1 – ρn)yn, n ∈N,

(1.3)

where l ∈ B, {ρn} ⊂ (0, 1), and {μn} ⊂ R+ with certain conditions. They established an
outcome of the strong convergence of the sequence {xn} acquired from (1.3).

In 2007, the following iteration scheme:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ C,

yn = κnxn + (1 – κn)Jμn ,Φ (xn),

xn+1 = ρnl + (1 – ρn)yn, n ∈N,

(1.4)

where l ∈ C and the sequences {κn}, {ρn} ⊂ (0, 1), was described by Qin et al. [22] in a
uniformly smooth Banach space. The demonstration of the strong convergence of the se-
quence {xn} acquired from (1.4) to a zero of an m-accretive mapping Φ was also given.

Based on viscosity approximation method, in 2008, Chen et al. [9] developed an iterative
scheme in the following manner:

⎧
⎨

⎩
x1 ∈ C,

xn+1 = ρng(xn) + (1 – ρn)Jμn ,Φ (xn), n ∈N,
(1.5)
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where g : C → C is a contraction mapping. They established an outcome which ensures the
strong convergence of the sequence {xn} acquired from (1.5) to a zero of an m-accretive
mapping Φ in a uniformly smooth Banach space. For detailed reviews regarding iteration
methods to various inclusion problems, see [1, 6, 7, 10, 29, 30] and the references therein.

In this manuscript, we consider the problem of searching common zeros of two H-
accretive mappings in a uniformly smooth and uniformly convex Banach space, i.e., search
ỹ ∈ B such that

ỹ ∈ Ω = Φ–1(0) ∩ Ψ –1(0), (1.6)

where Φ , Ψ : B → 2B are H-accretive mappings.
In 2005, Bauschke et al. [2] studied problem (1.6) for two maximal monotone mappings

Φ and Ψ in a Hilbert space and developed the following iterative method:

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈H,

x2n+1 = Jμ,Φ (x2n), n ∈N∪ {0},
x2n = Jμ,Ψ (x2n–1), n ∈ N.

(1.7)

They proved that the sequence {xn} obtained from (1.7) is weakly convergent to a fixed
point of Jμ,Φ Jμ,Ψ . This iterative method is based on alternating resolvents method which
is an extension of alternating projections method introduced and studied by von Neumann
[33] and Bregmann [5]. For other modification of von Neumann’s alternating projections
method, see [8].

Further, in 2011, Boikanyo et al. [4] constructed an iterative scheme using alternating
resolvents method in the following manner:

⎧
⎪⎪⎨

⎪⎪⎩

x0 ∈H,

x2n+1 = Jμn ,Φ (ρnl + (1 – ρn)x2n + en), n ∈N∪ {0},
x2n = Jνn ,Ψ (x2n–1 + e′

n), n ∈N,

(1.8)

where l ∈ H, {ρn} ⊂ (0, 1), and {en}, {e′
n} are error sequences. Under appropriate restric-

tions on control sequences, they established the strong convergence of the sequence ob-
tained from (1.8) to a common zero point of maximal monotone mappings Φ and Ψ in a
Hilbert space.

Motivated by the above discussed work, we introduce two iterative methods which are
based on Mann and Halpern iteration methods and viscosity approximation method. We
call it Mann–Halpern type iterative method and Mann type viscosity iterative method.
Our proposed iteration methods include alternating resolvents method as a particular
case for suitable choice of control sequence. Strong convergence results are established for
both iterative methods. Some consequences and applications are derived from the main
result. We present numerical examples to show the implementation of our main result and
its application. Our results extend, generalize, and unify the results given by Bauschke et
al. [2], Kim et al. [17], Qin et al. [22], Chen et al. [9], and Boikanyo et al. [4].
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2 Preliminaries
For the whole of this manuscript, let B be a Banach space with norm ‖ · ‖ over the field of
real numbers R, and let B∗ be its dual space. Let 〈·, ·〉 be the duality pairing between B and
B∗. We use yn → y, yn ⇀ y, and yn

∗
⇀ y as symbolic representations for strong, weak, and

weak∗ convergence of the sequence {yn} to y in B and in B∗, respectively. Let F (T ) be the
set of all fixed points of a mapping T , i.e., F (T ) = {y ∈ dom(T ) : T (y) = y}. Let N and R+

be the set of all natural numbers and all positive real numbers, respectively.
We take J : B → 2B∗ to symbolize the normalized duality mapping, given by

J (y) =
{
φ ∈ B∗ : 〈y,φ〉 = ‖y‖2 = ‖φ‖2}, ∀y ∈ B.

Clearly, if B = H, a Hilbert space, then J = I , where I : B → B is the identity mapping.
When B is smooth, we know from [11] that J is single-valued. Now we recollect the
following definitions and results which are needed for establishing our main results.

Definition 2.1 Let UB = {y ∈ B : ‖y‖ = 1}. The modulus of convexity δB : (0, 2] → [0, 1]
and the modulus of smoothness ρB : [0, +∞) → [0, +∞) of B are defined by

δB(ε) := inf

{
2 – ‖y + z‖

2
: y, z ∈ UB ,‖y – z‖ ≥ ε

}
and

ρB(h) := sup

{‖y + z‖ + ‖y – z‖
2

– 1 : y ∈ UB ,‖z‖ ≤ h
}

,

respectively. Then the Banach space B is termed
• uniformly convex if δB(ε) > 0, ∀0 < ε ≤ 2;
• uniformly smooth if ρB(h)

h → 0 as h → 0.

Definition 2.2 A mapping T : B → B is termed
• ϑ1-Lipschitz continuous if there exists a constant ϑ1 ∈R+ such that

∥∥T (y) – T (z)
∥∥ ≤ ϑ1‖y – z‖, ∀y, z ∈ B.

If 0 < ϑ1 < 1, then T is termed ϑ1-contraction and if ϑ1 = 1, then T is termed
nonexpansive.

• accretive if there exists j(y – z) ∈ J (y – z) such that

〈
T (y) – T (z), j(y – z)

〉 ≥ 0, ∀y, z ∈ B;

• strictly accretive if there exists j(y – z) ∈ J (y – z) such that

〈
T (y) – T (z), j(y – z)

〉 ≥ 0, ∀y, z ∈ B

and equality holds if and only if y = z;
• ϑ2-strongly accretive if there exists a constant ϑ2 ∈R+ and j(y – z) ∈ J (y – z) such that

〈
T (y) – T (z), j(y – z)

〉 ≥ ϑ2‖y – z‖2, ∀y, z ∈ B.
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Definition 2.3 A set-valued mapping Φ : B → 2B is termed
• accretive if there exists j(y – z) ∈ J (y – z) such that

〈
v – w, j(y – z)

〉 ≥ 0, ∀y, z ∈ B, v ∈ Φ(y), w ∈ Φ(z);

• m-accretive if Φ is accretive and range(I + μΦ) = B, ∀μ ∈R+.

Definition 2.4 A mapping Jμ,Φ : range(I + μΦ) → dom(Φ) defined by Jμ,Φ (y) = (I +
μΦ)–1(y), μ ∈R+, is termed resolvent affiliated to an accretive mapping Φ .

Definition 2.5 ([12]) Let H : B → B be a single-valued mapping. Then a set-valued map-
ping Φ : B → 2B is termed H-accretive if the following are satisfied:

• Φ is accretive;
• range(H + ϑ3Φ) = B, where ϑ3 ∈R+.

For further generalizations of H-accretive mapping, see [15, 16].

Remark 2.1 From Definition 2.5, we have the following as special cases:
• If B = H, a Hilbert space and H ≡ I , then the H-accretive mapping becomes maximal

monotone mapping.
• If H ≡ I , then the H-accretive mapping becomes m-accretive mapping.
• The identity mapping I is m-accretive, but it is not H-accretive mapping, where

H(y) = y2 (see [12]).
• If we take B = R, H(y) = –y3, and

T (y) = sgn(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1, y > 0,

0, y = 0,

–1, y < 0,

for all y ∈ B, then T is H-accretive, but it is not m-accretive (see [19]).

Lemma 2.1 ([12]) Let H : B → B and Φ : B → 2B be strictly accretive and H-accretive
mappings, respectively. Then the operator (H + μΦ)–1, where μ ∈R+, is single-valued.

Definition 2.6 ([12]) Let H : B → B and Φ : B → 2B be strictly accretive and H-accretive
mappings, respectively. The resolvent operator JH

μ,Φ : B → B affiliated to H and Φ is defined
by

JH
μ,Φ (y) = (H + μΦ)–1(y), ∀y ∈ B,μ ∈R+.

Using Definition 2.6, one can easily prove that

F
(
JH
μ,ΦH

)
= Φ–1(0). (2.1)

Lemma 2.2 ([12]) Let H : B → B be a ξH -strongly accretive mapping, and let Φ : B →
2B be an H-accretive mapping. Then the resolvent operator JH

μ,Φ : B → B is 1
ξH

-Lipschitz
continuous.
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We give an example which legitimizes Lemma 2.2.

Example 2.1 Let B = R with usual norm ‖y‖ = |y|. Let H : B → B and Φ : B → 2B be
defined by

H(y) = 3y and Φ(y) = {6y}, ∀y ∈ B,

respectively. It can be conveniently verified that H is 3-strongly accretive, Φ is accretive,
and for μ = 2, range(H + μΦ) = B. Hence, Φ is H-accretive. Therefore the resolvent
operator JH

μ,Φ : B → B affiliated with H and Φ is given by

JH
μ,Φ (y) =

y
15

, ∀y ∈ B. (2.2)

It is quite easy to verify that the resolvent operator defined in (2.2) is single-valued and
1
3 -Lipschitz continuous.

Definition 2.7 Let C andD be nonempty subsets of a Banach spaceB such that C is closed
and convex and D ⊂ C . A mapping Q : C →D is termed

• sunny if Q[Q(y) + h(I – Q)y] = Q(y), ∀y ∈ C and h ≥ 0, whenever Q(y) + h(I – Q)y ∈ C ;
• retraction if Q(y) = y, ∀y ∈D;
• sunny nonexpansive retraction from C onto D if Q is a retraction from C onto D,

which is also sunny and nonexpansive.
Moreover, D is termed sunny nonexpansive retract of C if there exists a sunny nonex-

pansive retraction Q from C onto D (see [18]).

Proposition 2.3 ([23]) Let C and D be nonempty subsets of a smooth Banach space B such
that C is closed and convex and D ⊂ C . If D is a retract of C with a retraction Q : C → D,
then the following are equivalent:

(i) Q is sunny and nonexpansive;
(ii) ‖Q(y) – Q(z)‖2 ≤ 〈y – z,J (Q(y) – Q(z))〉, ∀y, z ∈ C ;

(iii) 〈y – Q(y),J (z – Q(y))〉 ≤ 0, ∀y ∈ C, z ∈D.

Theorem 2.4 ([35]) Let C be a nonempty, convex, and closed subset of a uniformly smooth
Banach space B, and let W : C → C be a nonexpansive mapping with F (W ) �= ∅. Then the
sequence {xt} defined by xt = tg(xt) + (1 – t)W (xt), where g ∈ ΠC , the set of all contractions
on C and 0 < t < 1, converges strongly to a point in F (W ) as t → 0. If QF (W ) : ΠC →F (W )
is defined as

QF (W )(g) := lim
t→0

xt , g ∈ ΠC , (2.3)

then QF (W )(g) solves the following variational inequality:

〈
(I – g)QF (W )(g),J

(
QF (W )(g) – x

)〉 ≤ 0, g ∈ ΠC , x ∈F (W ).

In particular, if g = l ∈ C is a constant, then (2.3) is reduced to the sunny nonexpansive
retraction of Reich [25] from C onto F (W ) fulfilling

〈
QF (W )(l) – l,J

(
QF (W )(l) – x

)〉 ≤ 0, l ∈ C, x ∈F (W ).



Vaish et al. Journal of Inequalities and Applications        (2019) 2019:209 Page 7 of 25

Proposition 2.5 ([19]) Let H : B → B be a strongly accretive and Lipschitz continuous
mapping with constant ξH ; let Φ : B → 2B be an H-accretive mapping. Then the mappings
HJH

μ,Φ : B → B and JH
μ,ΦH : B → B are nonexpansive.

Lemma 2.6 ([21]) Let B be a Banach space. Then, for all y, z ∈ B and j(y + z) ∈ J (y + z),

‖y + z‖2 ≤ ‖y‖2 + 2
〈
z, j(y + z)

〉
.

Lemma 2.7 ([31]) Let {xn} and {wn} be bounded sequences in a Banach space B, and let
{σn} ⊂ [0, 1] with 0 < lim infn→∞ σn ≤ lim supn→∞ σn < 1. Assume that xn+1 = (1 – σn)wn +
σnxn, n ∈N, and lim supn→∞(‖wn+1 – wn‖ – ‖xn+1 – xn‖) ≤ 0. Then limn→∞ ‖wn – xn‖ = 0.

Lemma 2.8 ([35]) Assume that {xn} is a sequence in R+ ∪ {0} such that

xn+1 ≤ (1 – θn)xn + ηn, n ∈N,

where {θn} ⊂ (0, 1) and {ηn} ⊂R with
(i)

∑∞
n=1 θn = ∞;

(ii) lim supn→∞
ηn
θn

≤ 0 or
∑∞

n=1 |ηn| < ∞.
Then limn→∞ xn = 0.

Lemma 2.9 ([34]) Let B be a uniformly convex Banach space. Then there exists a function
f : [0, +∞) → [0, +∞) which is continuous, strictly increasing, and convex with f (0) = 0
such that

∥∥hy + (1 – h)z
∥∥2 ≤ h‖y‖2 + (1 – h)‖z‖2 – h(1 – h)f

(‖y – z‖)

for all y, z ∈ UB[0, r] := {v ∈ B : ‖v‖ ≤ r, r ∈R+} and 0 ≤ h ≤ 1.

Lemma 2.10 ([14, 24]) Let B be a real uniformly convex and smooth Banach space. Then
there exists a function f : [0, 2r] → R which is continuous, strictly increasing, and convex
with f (0) = 0 such that

f
(‖y – z‖) ≤ ‖y‖2 – 2

〈
y,J (z)

〉
+ ‖z‖2, ∀y, z ∈ UB[0, r].

3 Main results
In this section, we demonstrate strong convergence of the sequences acquired from the
proposed iterative methods for finding a common zero of two H-accretive mappings. First,
we prove the following technical lemma.

Lemma 3.1 Let H : B → B and Φ : B → 2B be strictly accretive and H-accretive map-
pings, respectively. Then, for μ,ν ∈R+ and y ∈ B,

JH
μ,Φ (y) = JH

ν,Φ

(
ν

μ
y +

(
1 –

ν

μ

)
HJH

μ,Φ (y)
)

.
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Proof For y ∈ B, let ỹ = JH
μ,Φ (y). This implies that

y = H(ỹ) + μz̃ for some z̃ ∈ Φ(ỹ).

Then

ν

μ
y +

(
1 –

ν

μ

)
HJH

μ,Φ (y) =
ν

μ

(
H(ỹ) + μz̃

)
+

(
1 –

ν

μ

)
H(ỹ)

∈ (H + νΦ)(ỹ),

which implies that

JH
ν,Φ

(
ν

μ
y +

(
1 –

ν

μ

)
HJH

μ,Φ (y)
)

= ỹ = JH
μ,Φ (y). �

Theorem 3.2 Let B be a uniformly convex and uniformly smooth Banach space. Let
H1, H2 : B → B be single-valued mappings such that H1 is strongly accretive and Lipschitz
continuous with constant ξH1 and H2 is strongly accretive and Lipschitz continuous with
constant ζH2 . Let Φ ,Ψ : B → 2B be H1-accretive and H2-accretive mappings, respectively.
Assume that Ω := Φ–1(0) ∩ Ψ –1(0) �= ∅. Let the sequences {yn} and {xn} be generated by the
following iterative scheme:

⎧
⎪⎪⎨

⎪⎪⎩

x1 ∈ B,

yn = κnxn + (1 – κn)JH1
μn ,ΦH1(xn),

xn+1 = ρnl + σnxn + τnJH2
νn ,Ψ H2(yn), n ∈N,

(3.1)

where l ∈ B is an arbitrary element, sequences {μn}, {νn} are inR+, and sequences {κn}, {ρn},
{σn}, {τn} are in [0, 1] with ρn + σn + τn = 1, n ∈ N. Assume that the following conditions are
fulfilled:

(C1) lim infn→∞ κnτn > 0, limn→∞ |κn+1 – κn| = 0;
(C2) limn→∞ ρn = 0,

∑∞
n=1 ρn = ∞;

(C3) 0 < lim infn→∞ σn ≤ lim supn→∞ σn < 1;
(C4) For some ε ∈ R+ and for all n ∈ N, μn ≥ ε, νn ≥ ε and limn→∞ |μn+1 – μn| = 0 and

limn→∞ |νn+1 – νn| = 0.
Then the sequence {xn} converges strongly to QΩ l, where QΩ : B → Ω is a sunny nonexpan-
sive retraction from B onto Ω .

Proof The proof will be divided into six steps.
Step 1. We show that {xn} and {yn} are bounded. Assume that w ∈ Ω . By utilizing (2.1),

we find that

JH1
μn ,ΦH1(w) = w ∈ Φ–1(0) and JH2

νn ,Ψ H2(w) = w ∈ Ψ –1(0). (3.2)
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Then, from (3.1), (3.2), and Proposition 2.5, we have

‖xn+1 – w‖ =
∥∥ρnl + σnxn + τnJH2

νn ,Ψ H2(yn) – w
∥∥

≤ ρn‖l – w‖ + σn‖xn – w‖ + τn
∥∥JH2

νn ,Ψ H2(yn) – w
∥∥

≤ ρn‖l – w‖ + σn‖xn – w‖ + τn‖yn – w‖. (3.3)

Now we calculate ‖yn – w‖.

‖yn – w‖ =
∥∥κnxn + (1 – κn)JH1

μn ,ΦH1(xn) – w
∥∥

≤ κn‖xn – w‖ + (1 – κn)
∥∥JH1

μn ,ΦH1(xn) – w
∥∥

≤ κn‖xn – w‖ + (1 – κn)‖xn – w‖,

⇒ ‖yn – w‖ ≤ ‖xn – w‖. (3.4)

Using (3.4) and the relation ρn + σn + τn = 1 in (3.3), we obtain by induction

‖xn+1 – w‖ ≤ ρn‖l – w‖ + σn‖xn – w‖ + τn‖xn – w‖
= ρn‖l – w‖ + (1 – ρn)‖xn – w‖
≤ max

{‖l – w‖,‖xn – w‖}

...

≤ max
{‖l – w‖,‖x1 – w‖}.

Hence {xn} is bounded. Therefore {yn}, {JH1
μn ,ΦH1(xn)}, and {JH2

νn ,Ψ H2(yn)} are also bounded.
Step 2. We claim that limn→∞ ‖xn+1 – xn‖ = 0 and limn→∞ ‖yn+1 – yn‖ = 0.
Setting xn+1 = (1 – σn)wn + σnxn, we see that wn = xn+1–σnxn

1–σn
. Then

‖wn+1 – wn‖ =
∥∥∥∥

xn+2 – σn+1xn+1

1 – σn+1
–

xn+1 – σnxn

1 – σn

∥∥∥∥

=
∥∥∥∥
ρn+1l + τn+1JH2

νn+1,Ψ H2(yn+1)
1 – σn+1

–
ρnl + τnJH2

νn ,Ψ H2(yn)
1 – σn

∥∥∥∥

=
∥∥∥∥
ρn+1l + τn+1JH2

νn+1,Ψ H2(yn+1)
1 – σn+1

–
τnJH2

νn+1,Ψ H2(yn+1)
1 – σn

+
τnJH2

νn+1,Ψ H2(yn+1)
1 – σn

–
ρnl + τnJH2

νn ,Ψ H2(yn)
1 – σn

∥∥∥∥

≤
∣∣∣∣

ρn+1

1 – σn+1
–

ρn

1 – σn

∣∣∣∣‖l‖ +
∣∣∣∣

τn+1

1 – σn+1
–

τn

1 – σn

∣∣∣∣
∥∥JH2

νn+1,Ψ H2(yn+1)
∥∥

+
(

τn

1 – σn

)∥∥JH2
νn+1,Ψ H2(yn+1) – JH2

νn ,Ψ H2(yn)
∥∥

≤
∣∣
∣∣

ρn+1

1 – σn+1
–

ρn

1 – σn

∣∣∣∣L1 +
∥∥JH2

νn+1,Ψ H2(yn+1) – JH2
νn ,Ψ H2(yn)

∥∥, (3.5)

where L1 = supn{‖l‖ + ‖JH2
νn+1,Ψ H2(yn+1)‖}. Now, two cases arise.
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Case I. When νn+1 ≥ νn, by utilizing Lemmas 3.1 and 2.2, we acquire

∥∥JH2
νn+1,Ψ H2(yn+1) – JH2

νn ,Ψ H2(yn)
∥∥

=
∥∥∥∥JH2

νn ,Ψ

(
νn

νn+1
H2(yn+1) +

(
1 –

νn

νn+1

)
H2JH2

νn+1,Ψ H2(yn+1)
)

– JH2
νn ,Ψ H2(yn)

∥∥∥∥

≤ 1
ζH2

{∥∥H2(yn+1) – H2(yn)
∥∥ +

∣∣∣∣
νn+1 – νn

νn+1

∣∣∣∣
∥∥H2JH2

νn+1,Ψ H2(yn+1) – H2(yn+1)
∥∥
}

≤ ‖yn+1 – yn‖ + |νn+1 – νn|L2, (3.6)

where L2 = 1
ε

[supn{‖yn‖ + ‖JH2
νn ,Ψ H2(yn)‖}].

Case II. When νn+1 < νn, by utilizing Lemmas 3.1 and 2.2, we acquire

∥∥JH2
νn+1,Ψ H2(yn+1) – JH2

νn ,Ψ H2(yn)
∥∥

=
∥∥∥∥JH2

νn+1,Ψ H2(yn+1) – JH2
νn+1,Ψ

(
νn+1

νn
H2(yn) +

(
1 –

νn+1

νn

)
H2JH2

νn ,Ψ H2(yn)
)∥∥∥∥

≤ 1
ζH2

{∥∥H2(yn+1) – H2(yn)
∥∥ +

∣∣∣∣
νn – νn+1

νn

∣∣∣∣
∥∥H2(yn) – H2JH2

νn ,Ψ H2(yn)
∥∥
}

≤ ‖yn+1 – yn‖ + |νn+1 – νn|L2. (3.7)

From (3.5), (3.6), and (3.7), we obtain

‖wn+1 – wn‖

≤
∣∣∣∣

ρn+1

1 – σn+1
–

ρn

1 – σn

∣∣∣∣L1 + ‖yn+1 – yn‖ + |νn+1 – νn|L2. (3.8)

By utilizing (3.1) and Lemma 3.1, we acquire

‖yn+1 – yn‖
=

∥∥κn+1xn+1 + (1 – κn+1)JH1
μn+1,ΦH1(xn+1) – κnxn – (1 – κn)JH1

μn ,ΦH1(xn)
∥∥

≤ κn+1‖xn+1 – xn‖ + |κn+1 – κn|
(‖xn‖ +

∥∥JH1
μn ,ΦH1(xn)

∥∥)

+ (1 – κn+1)
∥∥JH1

μn+1,ΦH1(xn+1) – JH1
μn ,ΦH1(xn)

∥∥

= κn+1‖xn+1 – xn‖ + |κn+1 – κn|
(‖xn‖ +

∥∥JH1
μn ,ΦH1(xn)

∥∥)
+ (1 – κn+1)

·
∥∥∥∥JH1

μn ,Φ

(
μn

μn+1
H1(xn+1) +

(
1 –

μn

μn+1

)
H1JH1

μn+1,ΦH1(xn+1)
)

– JH1
μn ,ΦH1(xn)

∥∥∥∥

≤ κn+1‖xn+1 – xn‖ + |κn+1 – κn|
(‖xn‖ +

∥∥JH1
μn ,ΦH1(xn)

∥∥)

+
(1 – κn+1)

ξH1

{∥∥H1(xn+1) – H1(xn)
∥∥

+
∣∣∣∣
μn+1 – μn

μn+1

∣∣∣∣
∥∥H1JH1

μn+1,ΦH1(xn+1) – H1(xn+1)
∥∥
}

≤ ‖xn+1 – xn‖ + |κn+1 – κn|L3 + |μn+1 – μn|L4, (3.9)

where L3 = supn{‖xn‖ + ‖JH1
μn ,ΦH1(xn)‖} and L4 = 1

ε
[supn{‖JH1

μn ,ΦH1(xn)‖ + ‖xn‖}].
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Combining (3.8) and (3.9), we acquire

‖wn+1 – wn‖ – ‖xn+1 – xn‖

≤
∣∣∣∣

ρn+1

1 – σn+1
–

ρn

1 – σn

∣∣∣∣L1 + |νn+1 – νn|L2 + |κn+1 – κn|L3 + |μn+1 – μn|L4. (3.10)

From (C1), (C2), (C4), and (3.10), we acquire

lim sup
n→∞

(‖wn+1 – wn‖ – ‖xn+1 – xn‖
) ≤ 0.

It follows from Lemma 2.7 that limn→∞ ‖wn – xn‖ = 0, and hence

lim
n→∞‖xn+1 – xn‖ = lim

n→∞(1 – σn)‖wn – xn‖ = 0. (3.11)

From (C1), (C4), (3.9), and (3.11), we acquire

lim
n→∞‖yn+1 – yn‖ = 0.

Step 3. Our claim is limn→∞ ‖xn+1 – yn‖ = 0. From (3.1), (3.4), and Lemma 2.10, we have

‖yn – w‖2

=
〈
κn(xn – w) + (1 – κn)

(
JH1
μn ,ΦH1(xn) – w

)
,J (yn – w)

〉
, w ∈ Ω

≤ κn
〈
xn – w,J (yn – w)

〉
+ (1 – κn)

∥∥JH1
μn ,ΦH1(xn) – w

∥∥‖yn – w‖
≤ κn

2
[‖xn – w‖2 – f

(∥∥(xn – w) – (yn – w)
∥∥)

+ ‖yn – w‖2]

+ (1 – κn)‖xn – w‖‖yn – w‖
≤ κn

2
[‖xn – w‖2 – f

(‖xn – yn‖
)

+ ‖yn – w‖2] + (1 – κn)‖xn – w‖2

=
(

2 – κn

2

)
‖xn – w‖2 +

κn

2
[‖yn – w‖2 – f

(‖xn – yn‖
)]

,

which implies that

‖yn – w‖2 ≤ ‖xn – w‖2 –
(

κn

2 – κn

)
f
(‖xn – yn‖

)
. (3.12)

Then, by using (3.1) and (3.12), we acquire

‖xn+1 – w‖2

≤ ρn‖l – w‖2 + σn‖xn – w‖2 + τn
∥∥JH2

νn ,Ψ H2(yn) – w
∥∥2

≤ ρn‖l – w‖2 + σn‖xn – w‖2 + τn‖yn – w‖2

≤ ρn‖l – w‖2 + σn‖xn – w‖2 + τn

[
‖xn – w‖2 –

(
κn

2 – κn

)
f
(‖xn – yn‖

)]

≤ ρn‖l – w‖2 + ‖xn – w‖2 – τn

(
κn

2 – κn

)
f
(‖xn – yn‖

)
,
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which implies that

(
κnτn

2 – κn

)
f
(‖xn – yn‖

) ≤ ρn‖l – w‖2 + ‖xn – w‖2 – ‖xn+1 – w‖2

≤ ρn‖l – w‖2 + ‖xn+1 – xn‖
(‖xn – w‖ + ‖xn+1 – w‖). (3.13)

By utilizing (3.11), conditions (C1)–(C2), and the property of f in (3.13), we obtain

lim
n→∞‖xn – yn‖ = 0. (3.14)

Since ‖xn+1 – yn‖ ≤ ‖xn+1 – xn‖ + ‖xn – yn‖, so from (3.11) and (3.14), we acquire that
limn→∞ ‖xn+1 – yn‖ = 0.

Step 4. We claim that limn→∞ ‖W (xn) – xn‖ = 0, where W = 1
2 (JH1

ϑ ,ΦH1 + JH2
ϑ ,Ψ H2) and 0 <

ϑ < ε.

∥∥W (xn) – xn
∥∥ ≤ 1

2
(∥∥xn – JH1

ϑ ,ΦH1(xn)
∥∥ +

∥∥xn – JH2
ϑ ,Ψ H2(xn)

∥∥)
. (3.15)

First, we compute ‖xn – JH1
ϑ ,ΦH1(xn)‖. From Lemma 3.1 and (3.1), we have

∥∥xn – JH1
ϑ ,ΦH1(xn)

∥∥

≤ ‖xn – yn‖ +
∥∥yn – JH1

ϑ ,ΦH1(yn)
∥∥ +

∥∥JH1
ϑ ,ΦH1(xn) – JH1

ϑ ,ΦH1(yn)
∥∥

≤ 2‖xn – yn‖ + κn
∥∥xn – JH1

μn ,ΦH1(xn)
∥∥ +

∥∥JH1
μn ,ΦH1(xn) – JH1

ϑ ,ΦH1(yn)
∥∥

= 2‖xn – yn‖ + κn
∥∥xn – JH1

μn ,ΦH1(xn)
∥∥

+
∥∥∥∥JH1

ϑ ,Φ

(
ϑ

μn
H1(xn) +

(
1 –

ϑ

μn

)
H1JH1

μn ,ΦH1(xn)
)

– JH1
ϑ ,ΦH1(yn)

∥∥∥∥

≤ 2‖xn – yn‖ + κn
∥∥xn – JH1

μn ,ΦH1(xn)
∥∥

+
1

ξH1

{∥∥H1(xn) – H1(yn)
∥∥ +

∣∣∣∣
μn – ϑ

μn

∣∣∣∣
∥∥H1JH1

μn ,ΦH1(xn) – H1(xn)
∥∥
}

≤ 3‖xn – yn‖ +
(

μn – ϑ

μn
+ κn

)∥∥JH1
μn ,ΦH1(xn) – xn

∥∥

=
{

3 +
1

(1 – κn)

(
μn – ϑ

μn
+ κn

)}
‖xn – yn‖.

Since ‖xn –yn‖ → 0 as n → ∞ (from (3.14)), we acquire that limn→∞ ‖xn – JH1
ϑ ,ΦH1(xn)‖ = 0.

Next, we compute ‖xn – JH2
ϑ ,Ψ H2(xn)‖.

∥∥xn – JH2
ϑ ,Ψ H2(xn)

∥∥

≤ ∥∥xn – JH2
νn ,Ψ H2(xn)

∥∥ +
∥∥JH2

νn ,Ψ H2(xn) – JH2
ϑ ,Ψ H2(xn+1)

∥∥

+
∥∥JH2

ϑ ,Ψ H2(xn+1) – JH2
ϑ ,Ψ H2(xn)

∥∥

≤ ‖xn+1 – xn‖ +
∥∥xn – JH2

νn ,Ψ H2(xn)
∥∥

+
∥∥
∥∥JH2

ϑ ,Ψ

(
ϑ

νn
H2(xn) +

(
1 –

ϑ

νn

)
H2JH2

νn ,Ψ H2(xn)
)

– JH2
ϑ ,Ψ H2(xn+1)

∥∥∥∥
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≤ 2‖xn+1 – xn‖ +
(

2 –
ϑ

νn

)∥∥xn – JH2
νn ,Ψ H2(xn)

∥∥

≤ 2‖xn+1 – xn‖

+
(

2 –
ϑ

νn

)(∥∥xn – JH2
νn ,Ψ H2(yn)

∥∥ +
∥∥JH2

νn ,Ψ H2(xn) – JH2
νn ,Ψ H2(yn)

∥∥)

≤ 2‖xn+1 – xn‖ +
(

2 –
ϑ

νn

){∥∥∥∥xn –
(

xn+1 – ρnl – σnxn

τn

)∥∥∥∥ + ‖xn – yn‖
}

≤ 2‖xn+1 – xn‖ +
(

2 –
ϑ

νn

){
1
τn

(‖xn+1 – xn‖ + ρn‖xn – l‖) + ‖xn – yn‖
}

.

Since ‖xn+1 – xn‖ → 0 (from (3.11)), ‖xn – yn‖ → 0 (from (3.14)), and ρn → 0 (from (C2))
as n → ∞, we acquire that limn→∞ ‖xn – JH2

ϑ ,Ψ H2(xn)‖ = 0. Hence it follows from (3.15) that
limn→∞ ‖W (xn) – xn‖ = 0.

Step 5. Our claim is lim supn→∞〈(I – QΩ )l,J (xn – QΩ l)〉 ≤ 0. Define a sequence {xt} by
xt = tl + (1 – t)W (xt), t ∈ (0, 1). Then Theorem 2.4 ensures the strong convergence of {xt}
to QΩ l ∈F (W ) = Ω . Now

‖xt – xn‖2

=
∥∥tl + (1 – t)W (xt) – xn

∥∥2

=
∥∥t(l – xn) + (1 – t)

(
W (xt) – xn

)∥∥2

=
〈
t(l – xn) + (1 – t)

(
W (xt) – xn

)
,J (xt – xn)

〉

= t
〈
l – xt ,J (xt – xn)

〉
+ t

〈
xt – xn,J (xt – xn)

〉

+ (1 – t)
{〈

W (xt) – W (xn),J (xt – xn)
〉
+

〈
W (xn) – xn,J (xt – xn)

〉}

≤ t
〈
l – xt ,J (xt – xn)

〉
+ t‖xt – xn‖2

+ (1 – t)
{∥∥W (xt) – W (xn)

∥∥‖xt – xn‖ +
∥∥W (xn) – xn

∥∥‖xt – xn‖
}

,

which implies that

t
〈
l – xt ,J (xn – xt)

〉

≤ (1 – t)
{∥∥W (xt) – W (xn)

∥∥‖xt – xn‖ – ‖xt – xn‖2 +
∥∥W (xn) – xn

∥∥‖xt – xn‖
}

≤ (1 – t)
{‖xt – xn‖2 – ‖xt – xn‖2 +

∥∥W (xn) – xn
∥∥‖xt – xn‖

}

≤ ∥∥W (xn) – xn
∥∥‖xt – xn‖.

Let L5 = sup{‖xt – xn‖ : t ∈ (0, 1), n ∈N}. Then

〈
l – xt ,J (xn – xt)

〉 ≤ L5

t
∥∥W (xn) – xn

∥∥.

Since ‖W (xn) – xn‖ → 0 as n → ∞, we acquire

lim sup
n→∞

〈
l – xt ,J (xn – xt)

〉 ≤ 0. (3.16)
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By utilizing the fact that xt → QΩ l as t → 0+ and J is norm-to-weak∗ uniformly contin-
uous on bounded subsets of B, we acquire

∣∣〈(I – QΩ )l,J (xn – QΩ l)
〉
–

〈
l – xt ,J (xn – xt)

〉∣∣

=
∣∣〈l – QΩ l,J (xn – QΩ l) – J (xn – xt)

〉
+

〈
xt – QΩ l,J (xn – xt)

〉∣∣

≤ ∣∣〈l – QΩ l,J (xn – QΩ l) – J (xn – xt)
〉∣∣ + L5‖xt – QΩ l‖

−→ 0 as h → 0+.

For ε > 0, there is 0 < δ < 1 such that

〈
(I – QΩ )l,J (xn – QΩ l)

〉
<

〈
l – xt ,J (xn – xt)

〉
+ ε, ∀0 < t < δ.

From (3.16), we acquire

lim sup
n→∞

〈
(I – QΩ )l,J (xn – QΩ l)

〉 ≤ lim sup
n→∞

〈
l – xt ,J (xn – xt)

〉
+ ε ≤ ε.

Since ε is arbitrary, we acquire that lim supn→∞〈(I – QΩ )l,J (xn – QΩ l)〉 ≤ 0.
Step 6. Finally, our claim is xn → QΩ l as n → ∞. From (3.1), (3.4), Lemmas 2.6 and 2.9,

it follows that

‖xn+1 – QΩ l‖2

=
∥∥ρnl + σnxn + τnJH2

νn ,ΦH2(yn) – QΩ l
∥∥2

≤ ∥∥σn(xn – QΩ l) + τn
(
JH2
νn ,Ψ H2(yn) – QΩ l

)∥∥2 + 2ρn
〈
l – QΩ l,J (xn+1 – QΩ l)

〉

≤ (1 – σn)
∥∥∥∥

τn

(1 – σn)
(
JH2
νn ,Ψ H2(yn) – QΩ l

)
∥∥∥∥

2

+ σn‖xn – QΩ l‖2

+ 2ρn
〈
l – QΩ l,J (xn+1 – QΩ l)

〉

≤ τ 2
n

(1 – σn)
‖yn – QΩ l‖2 + σn‖xn – QΩ l‖2 + 2ρn

〈
l – QΩ l,J (xn+1 – QΩ l)

〉

≤
{

τ 2
n

(1 – σn)
+ σn

}
‖xn – QΩ l‖2 + 2ρn

〈
l – QΩ l,J (xn+1 – QΩ l)

〉

=
{

(1 – ρn) +
ρ2

n
(1 – σn)

– ρn

}
‖xn – QΩ l‖2 + 2ρn

〈
l – QΩ l,J (xn+1 – QΩ l)

〉

= (1 – ρn)‖xn – QΩ l‖2

+ ρn

{(
ρn

1 – σn
– 1

)
‖xn – QΩ l‖2 + 2

〈
l – QΩ l,J (xn+1 – QΩ l)

〉}

= (1 – ρn)‖xn – QΩ l‖2 + ηn.

Evidently,
∑∞

n=1 ρn = ∞, {ρn} ⊂ (0, 1) and lim supn→∞
ηn
ρn

≤ 0. Hence, by Lemma 2.8, we
acquire that xn → QΩ l as n → ∞. Thus, the proof is completed. �
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In the next theorem, we prove the strong convergence of the sequence generated by the
following Mann type viscosity approximation method:

⎧
⎪⎪⎨

⎪⎪⎩

u1 ∈ B,

vn = κnun + (1 – κn)JH1
μn ,ΦH1(un),

un+1 = ρng(vn) + σnun + τnJH2
νn ,Ψ H2(vn), n ∈N.

(3.17)

Theorem 3.3 Let B be a uniformly convex and uniformly smooth Banach space. Let
H1, H2 : B → B be single-valued mappings such that H1 is strongly accretive and Lips-
chitz continuous with constant ξH1 and H2 is strongly accretive and Lipschitz continu-
ous with constant ζH2 . Let Φ ,Ψ : B → 2B be H1-accretive and H2-accretive mappings,
respectively; let g : B → B be a ϑ-contraction mapping, where 0 < ϑ < 1. Assume that
Ω := Φ–1(0) ∩ Ψ –1(0) �= ∅. Let the sequences {vn} and {un} be generated by (3.17). Assume
that conditions (C1)–(C4) of Theorem 3.2 are fulfilled. Then the sequence {un} converges
strongly to ũ = QΩg(ũ) ∈ Ω .

Proof Assume that ũ is a unique fixed point of QΩg . Then QΩg(ũ) = ũ. If we put g(ũ) in
place of l in (3.1), then Theorem 3.2 ensures the strong convergence of {xn} to QΩg(ũ) = ũ,
i.e., limn→∞ ‖xn – ũ‖ = 0.

First, we demonstrate that limn→∞ ‖un – xn‖ = 0. We are assuming on the contrary that

lim sup
n→∞

‖un – xn‖ > 0.

Then we can pick ε such that 0 < ε < lim supn→∞ ‖un – xn‖. As {xn} is strongly convergent
to ũ, so there exists m′ ∈N such that

‖xn – ũ‖ <
(

1 – ϑ

ϑ

)
ε, ∀n ≥ m′.

Now two possibilities arise.
(P1) There exists m ∈N with m ≥ m′ and ‖um – xm‖ ≤ ε;
(P2) ‖un – xn‖ > ε, ∀n ≥ m′.

In possibility (P1),

‖um+1 – xm+1‖
=

∥∥ρmg(vm) + σmum + τmJH2
νm ,Ψ H2(vm) – ρmg(ũ) – σmxm – τmJH2

νm ,Ψ H2(ym)
∥∥

≤ ρmϑ‖vm – ũ‖ + σm‖um – xm‖ + τm‖vm – ym‖
= ρmϑ

∥∥κmum + (1 – κm)JH1
μm ,ΦH1(um) – ũ

∥∥ + σm‖um – xm‖
+ τm

∥∥κmum + (1 – κm)JH1
μm ,ΦH1(um) – κmxm – (1 – κm)JH1

μm ,ΦH1(xm)
∥∥

≤ ρmϑ‖um – ũ‖ + (σm + τm)‖um – xm‖
≤ ρmϑ‖xm – ũ‖ +

(
1 – ρm(1 – ϑ)

)‖um – xm‖
≤ ρm(1 – ϑ)ε +

(
1 – ρm(1 – ϑ)

)
ε = ε.
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By induction,

‖un+1 – xn+1‖ ≤ ε, ∀n ≥ m,

which is a contradiction to ε < lim supn→∞ ‖un – xn‖.
In possibility (P2), for all n ≥ m′, we acquire

‖un+1 – xn+1‖
≤ ρnϑ‖vn – ũ‖ + σn‖un – xn‖ + τn‖vn – yn‖
= ρnϑ

∥∥κnun + (1 – κn)JH1
μn ,ΦH1(un) – ũ

∥∥ + σn‖un – xn‖
+ τn

∥∥κnun + (1 – κn)JH1
μn ,ΦH1(un) – κnxn – (1 – κn)JH1

μn ,ΦH1(xn)
∥∥

≤ ρnϑ‖un – ũ‖ + (σn + τn)‖un – xn‖
≤ (

1 – ρn(1 – ϑ)
)‖un – xn‖ + ρnϑ‖xn – ũ‖.

By Lemma 2.8, we acquire that limn→∞ ‖un –xn‖ = 0, which is a contradiction. Therefore
limn→∞ ‖un – xn‖ = 0, and hence

lim
n→∞‖un – ũ‖ ≤ lim

n→∞‖un – xn‖ + lim
n→∞‖xn – ũ‖ = 0.

Thus, the proof is completed. �

4 Consequences
In this section, we deduce some consequences from our main results.

Corollary 4.1 LetB be a uniformly convex and uniformly smooth Banach space. Let Φ ,Ψ :
B → 2B be m-accretive mappings, and let g : B → B be a ϑ-contraction mapping, where 0 <
ϑ < 1. Assume that Ω := Φ–1(0) ∩ Ψ –1(0) �= ∅. Let the sequences {vn} and {un} be generated
by the following iterative scheme:

⎧
⎪⎪⎨

⎪⎪⎩

u1 ∈ B,

vn = κnun + (1 – κn)Jμn ,Φ (un),

un+1 = ρng(vn) + σnun + τnJνn ,Ψ (vn), n ∈N,

(4.1)

where Jμn ,Φ (un) = (I +μnΦ)–1(un), Jνn ,Ψ (vn) = (I +νnΨ )–1(vn), sequences {μn}, {νn} are in R+

and {κn}, {ρn}, {σn}, {τn} are in [0, 1] with ρn + σn + τn = 1, n ∈ N. Assume that conditions
(C1)–(C4) of Theorem 3.2 are fulfilled. Then the sequence {un} converges strongly to ũ =
QΩg(ũ) ∈ Ω .

Proof If we take H1 ≡ H2 ≡ I in Theorem 3.3, then the conclusion holds. �

In the framework of Hilbert spaces, we have the following outcomes.

Corollary 4.2 Let H be a Hilbert space. Let H1, H2 : B → B be single-valued mappings
such that H1 is strongly monotone and Lipschitz continuous with constant ξH1 and H2 is
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strongly monotone and Lipschitz continuous with constant ζH2 . Let Φ ,Ψ : H → 2H be H1-
monotone and H2-monotone mappings, respectively, and let g : H →H be a ϑ-contraction
mapping, where 0 < ϑ < 1. Assume that Ω := Φ–1(0) ∩ Ψ –1(0) �= ∅. Let the sequences {vn}
and {un} be generated by the iterative scheme (3.17). Assume that conditions (C1)–(C4) of
Theorem 3.2 are fulfilled. Then the sequence {un} converges strongly to ũ = PΩg(ũ) ∈ Ω ,
where PΩ : H → Ω is a metric projection from H onto Ω .

For H ≡ I , the H-monotone mapping becomes maximal monotone mapping in Hilbert
spaces. Hence we have the following outcome.

Corollary 4.3 Let H be a Hilbert space. Let Φ ,Ψ : H → 2H be maximal monotone map-
pings, and let g : H → H be a ϑ-contraction mapping, where 0 < ϑ < 1. Assume that
Ω := Φ–1(0) ∩ Ψ –1(0) �= ∅. Let the sequences {vn} and {un} be generated by the iterative
scheme (4.1). Assume that conditions (C1)–(C4) of Theorem 3.2 are fulfilled. Then the se-
quence {un} converges strongly to ũ = PΩg(ũ) ∈ Ω .

5 Applications
In this section, firstly, we examine a few of applications based on convex minimization
problem.

Theorem 5.1 Let H be a Hilbert space. Let f1, f2 : H → (–∞, +∞] be proper mappings
with convexity and lower semi-continuity, and let g : H →H be a ϑ-contraction mapping,
where 0 < ϑ < 1. Assume that Ω := (∂f1)–1(0) ∩ (∂f2)–1(0) �= ∅. Let the sequences {vn}, {wn},
and {un} be generated by the following iterative scheme:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1 ∈H,

vn = κnun + (1 – κn) argminy∈H{f1(y) + 1
2μn

‖un – y‖2},
wn = argminy∈H{f2(y) + 1

2νn
‖vn – y‖2},

un+1 = ρng(vn) + σnun + τnwn, n ∈N,

(5.1)

where sequences {μn}, {νn} are in R+ and sequences {κn}, {ρn}, {σn}, {τn} are in [0, 1] with
ρn +σn + τn = 1, n ∈ N. Assume that conditions (C1)–(C4) of Theorem 3.2 are fulfilled. Then
the sequence {un} converges strongly to ũ = PΩg(ũ) ∈ Ω .

Proof From (5.1), we can write

vn – κnun

(1 – κn)
= argmin

y∈H

{
f1(y) +

1
2μn

‖un – y‖2
}

. (5.2)

For a proper mapping with convexity and lower semi-continuity, the subdifferential map-
ping is maximal monotone (see [26]). Thus ∂f1 and ∂f2 are maximal monotone inH. Hence
(5.2) is equivalent to

un ∈
(

vn – κnun

1 – κn

)
+ μn∂f1

(
vn – κnun

1 – κn

)
,
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that is,

vn = κnun + (1 – κn)Jμn ,∂f1 (un), with Jμn ,∂f1 (un) = (I + μn∂f1)–1(un),

and

wn = argmin
y∈H

{
f2(y) +

1
2νn

‖vn – y‖2
}

is equivalent to

vn ∈ wn + νn∂f2(wn), i.e., wn = Jνn ,∂f2 (vn), with Jνn ,∂f2 (vn) = (I + νn∂f2)–1(vn).

Therefore,

un+1 = ρng(vn) + σnun + τnJνn ,∂f2 (vn).

With the assistance of Corollary 4.3, including Φ = ∂f1 and Ψ = ∂f2, we get the strong
convergence of {un} to a point ũ ∈ Ω , which is the conclusion. �

Corollary 5.2 Let H be a Hilbert space. Let f : H → (–∞, +∞] be a proper mapping with
convexity and lower semi-continuity, and let g : H →H be a ϑ-contraction mapping, where
0 < ϑ < 1. Assume that Ω := (∂f )–1(0) �= ∅. Let the sequences {vn} and {un} be generated by
the following iterative scheme:

⎧
⎪⎪⎨

⎪⎪⎩

u1 ∈H,

vn = κnun + (1 – κn) argminy∈H{f (y) + 1
2μn

‖un – y‖2},
un+1 = ρng(vn) + σnun + τnvn, n ∈N,

(5.3)

where {μn} ⊂ R+ and sequences {κn}, {ρn}, {σn}, {τn} are in [0, 1] with ρn + σn + τn = 1,
n ∈ N. Assume that conditions (C1)–(C4) of Theorem 3.2 are fulfilled. Then the sequence
{un} converges strongly to ũ = PΩg(ũ) ∈ Ω .

For a nonempty, convex, and closed subset C of a Hilbert space H, the indicator function
symbolized by IC is defined by

IC(y) =

⎧
⎨

⎩
0, if y ∈ C,

+∞, if y /∈ C,

and the normal cone for C symbolized by NC at y ∈ C is defined by

NC(y) =
{

x ∈H : 〈z – y, x〉 ≤ 0,∀z ∈ C
}

.

Theorem 5.3 Let C1 and C2 be nonempty, convex, and closed subsets of a Hilbert space
H. Let g : H → H be a ϑ-contraction mapping, where 0 < ϑ < 1. Let PC1 : H → C1 and



Vaish et al. Journal of Inequalities and Applications        (2019) 2019:209 Page 19 of 25

PC2 : H → C2 be projections. Assume that Ω := C1 ∩ C2 �= ∅. Let the sequences {vn} and {un}
be generated by the following iterative scheme:

⎧
⎪⎪⎨

⎪⎪⎩

u1 ∈H,

vn = κnun + (1 – κn)PC1 (un),

un+1 = ρng(vn) + σnun + τnPC2 (vn), n ∈ N,

(5.4)

where sequences {κn}, {ρn}, {σn}, and {τn} are in [0, 1] with ρn + σn + τn = 1, n ∈N. Assume
that conditions (C1)–(C3) of Theorem 3.2 are fulfilled. Then the sequence {un} converges
strongly to ũ = PΩg(ũ) ∈ Ω .

Proof Since indicator functions IC1 and IC2 of C1 and C2, respectively, are proper map-
pings with convexity and lower semi-continuity and argminIC1 = C1 and argminIC2 = C2,
therefore

Ω = C1 ∩ C2 = argminIC1 ∩ argminIC2 .

With the assistance of Theorem 5.1 including f1 = IC1 and f2 = IC2 and for all convex closed
subset C in H and for all μ ∈ R+, PC = (I + μ∂IC)–1 = (I + μNC)–1, we secure the conclu-
sion. �

Next, we evaluate a common solution of the variational inequality problem and convex
minimization problem.

For a nonempty, convex, and closed subset C of a Hilbert space H and for a single-valued
monotone and hemi-continuous mapping Φ : C → H, the variational inequality problem
is to seek a point y ∈ C such that the following inequality is fulfilled:

〈
z – y,Φ(y)

〉 ≥ 0, ∀z ∈ C. (5.5)

VI(C,Φ) stands for the solution set of the variational inequality problem (5.5).

Theorem 5.4 Let C be a nonempty, convex, and closed subset of a Hilbert space H. Let
f : H → (–∞, +∞] be a proper mapping with convexity and lower semi-continuity, and
let Φ : C → H be a monotone and hemi-continuous mapping. Assume that Ω := ∂f –1(0) ∩
VI(C,Φ) �= ∅. Let the sequences {vn}, {wn}, and {un} be generated by the following iterative
scheme:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u1 ∈H,

vn = κnun + (1 – κn) argminy∈H{f1(y) + 1
2μn

‖un – y‖2},
wn = VI(C,νnΦ + I – vn),

un+1 = ρng(vn) + σnun + τnwn, n ∈N,

(5.6)

where sequences {μn}, {νn} are in R+ and sequences {κn}, {ρn}, {σn}, {τn} are in [0, 1] with
ρn +σn + τn = 1, n ∈ N. Assume that conditions (C1)–(C4) of Theorem 3.2 are fulfilled. Then
the sequence {un} converges strongly to ũ = PΩg(ũ) ∈ Ω .
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Proof Define a mapping T ⊂H×H by

T (y) =

⎧
⎨

⎩
Φ(y) + NC(y), if y ∈ C,

∅, if y /∈ C.

From [27], we know that T is maximal monotone, and T –1(0) = VI(C,Φ).
From (5.5) and (5.6), we can easily observe that

wn = VI(C,νnΦ + I – vn) ⇔ 〈
z – wn,νnΦ(wn) + wn – vn

〉 ≥ 0, ∀z ∈ C,

which gives

–νnΦ(wn) – wn + vn ∈ νnNC(wn), i.e., wn = (I + νnT )–1(vn) = Jνn ,T (vn).

With the assistance of Corollary 4.3 and the proof of Theorem 5.1, we obtain the conclu-
sion. �

Finally, we derive an application to equilibrium problem which is as follows:
Let C be a nonempty, convex, and closed subset of a Hilbert space H. Let Θ : C×C →R

be a bi-function. The equilibrium problem is to seek a point y ∈ C such that the following
inequality is fulfilled:

Θ(y, z) ≥ 0, ∀z ∈ C. (5.7)

Let the solution set of equilibrium problem be identified by EP(Θ). To study problem
(5.7), suppose that the following conditions are fulfilled by Θ :

(E1) For all z ∈ C , Θ(z, z) = 0;
(E2) Θ is monotone, i.e., for all y, z ∈ C , Θ(y, z) + Θ(z, y) ≤ 0;
(E3) limt↓0 Θ((1 – t)y + tw, z) ≤ Θ(y, z) for each y, z, w ∈ C ;
(E4) For each y ∈ C , z �−→ Θ(y, z) is convex and lower semi-continuous.

Lemma 5.5 ([32]) Let C be a nonempty, convex, and closed subset of a Hilbert space H.
Let Θ : C × C → R be a bi-function which fulfills (E1)–(E4). Then a set-valued mapping
AΘ : H → 2H defined by

AΘ (y) =

⎧
⎨

⎩
{w ∈H : 〈z – y, w〉 ≤ Θ(y, z),∀z ∈ C}, y ∈ C,

∅, y /∈ C

is maximal monotone with dom(AΘ ) ⊂ C , EP(Θ) = A–1
Θ (0), and the resolvent Tμ,AΘ

= (I +
μAΘ )–1 affiliated with AΘ is defined by

Tμ,AΘ
(y) =

{
w ∈ C : Θ(w, z) +

1
μ

〈z – w, w – y〉 ≥ 0,∀z ∈ C
}

, ∀y ∈H.

Theorem 5.6 Let C be a nonempty, convex, and closed subset of a Hilbert space H. Let
Θ1,Θ2 : C × C → R be bi-functions which fulfill (E1)–(E4), and let g : H → H be a ϑ-
contraction mapping, where 0 < ϑ < 1. Assume that Ω := EP(Θ1) ∩ EP(Θ2) �= ∅. Let the
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sequences {vn} and {un} be generated by the following iterative scheme:

⎧
⎪⎪⎨

⎪⎪⎩

u1 ∈H,

vn = κnun + (1 – κn)Tμn ,AΘ1
(un),

un+1 = ρng(vn) + σnun + τnTνn ,AΘ2
(vn), n ∈ N,

(5.8)

where sequences {μn}, {νn} are in R+ and sequences {κn}, {ρn}, {σn}, {τn} are in [0, 1] with
ρn +σn + τn = 1, n ∈ N. Assume that conditions (C1)–(C4) of Theorem 3.2 are fulfilled. Then
the sequence {un} converges strongly to ũ = PΩg(ũ) ∈ Ω .

Proof With the assistance of Corollary 4.3 and Lemma 5.5, we obtain the conclusion. �

6 Numerical implementation
Firstly, we discuss a numerical example to demonstrate the implementation of iterative
schemes (3.1) and (3.17) in Theorem 3.2 and Theorem 3.3, respectively. Matlab R2012a
is used for writing all the codes, and it is running on Lenovo Core(TM) i5-2320 CPU @

3.00 GHz with 4 GB RAM.

Example 6.1 Let B = R, with the usual norm | · |. Let us define Φ ,Ψ : R → 2R by Φ(y) =
{3y} and Ψ (y) = {4y}, and H1, H2 : R → R by H1(y) = 2y and H2(y) = y

3 for all y ∈ R. Easily,
we can check that H1 is strongly accretive and Lipschitz continuous with constant 2; H2

is strongly accretive and Lipschitz continuous with constant 1
3 ; Φ is H1-accretive and Ψ

is H2-accretive. We observe that Ω = Φ–1(0) ∩ Ψ –1(0) = {0}. On setting, for all n ∈N, κn =
3n+2

6n , μn = 2n+3
n+1 = νn, ρn = 1

n+1 , σn = 1
3 , τn = 2n–1

3(n+1) , all conditions (C1)–(C4) of Theorem 3.2
are fulfilled. Now we consider two cases:

Case I. For the iterative scheme (3.1) of Theorem 3.2, let l = 0.01. Then the sequence {xn}
obtained from (3.1) strongly converges to QΩ (0.01) = 0. For x1 = –0.4, the convergence of
{xn} and behavior of error ‖xn+1 – xn‖ are numerically shown in Table 1 and graphically in
Figures 1a and 1b, respectively.

Case II. For the iterative scheme (3.17) of Theorem 3.3, let g(y) = y
4 for all y ∈ R. Then

Table 1 and Fig. 2a ensures the strong convergence of the sequence {un} obtained from
(3.17) to ũ = QΩ (g(ũ)) = 0 for u1 = 0.5. The graphical representation of error ‖un+1 – un‖
is displayed in Fig. 2b.

Next, we discuss another numerical example for the iterative scheme (5.1) in Theo-
rem 5.1.

Table 1 Numerical outcomes of Example 6.1

Case I Case II

No. of iterat. x1 = –0.4 No. of iterat. u1 = 0.5

xn ‖xn+1 – xn‖ un ‖un+1 – un‖
1 –0.4000 0.2698 1 0.5000 0.2767
4 –0.0117 0.0096 4 0.0349 0.0217
8 0.0019 0.0001 8 0.0007 0.0004
12 0.0013 0.0001 12 0.0000 7.4623e–06
16 0.0010 6.0789e–05 16 0.0000 1.2479e–07
20 0.0007 3.8738e–05 20 0.0000 2.0360e–09
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Figure 1 Example 6.1, Case I with x1 = –0.4

Figure 2 Example 6.1, Case II with u1 = 0.5

Example 6.2 Let H = R
3, with the inner product defined by 〈y, z〉 = y1z1 + y2z2 + y3z3,

∀y = (y1, y2, y3), z = (z1, z2, z3) ∈ R
3 and induced Euclidean norm. For k = 1, 2, define fk :

R
3 → (–∞, +∞] as follows:

fk(y) = 〈Mky, y〉 +
〈Nk , y〉

2
+ Ck , k = 1, 2, (6.1)

with

M1 =

⎛

⎜
⎝

3 –3 –3
–3 3 3
–3 3 3

⎞

⎟
⎠ , N1 =

(
12 –12 –12

)
,

M2 =

⎛

⎜
⎝

0 0 0
0 3 3
0 3 3

⎞

⎟
⎠ , N2 =

(
0 –12 –12

)
, C1, C2 are any constants.

It can be easily demonstrated that f1 and f2 are proper mappings with convexity and
continuity. In Theorem 5.1, we seek a point ũ ∈ Ω = (∂f1)–1(0) ∩ (∂f2)–1(0), equivalently,
ũ ∈ Ω = argminy∈R3 f1(y) ∩ argminy∈R3 f2(y), where f1, f2 : R3 → (–∞, +∞] are proper map-
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Table 2 Numerical outcomes of Example 6.2

Case I Case II

n u1 = (–2, 1, 2) n u1 = (0, 1, 2)

(u1n ,u
2
n ,u

3
n) ‖un+1 – un‖2 (u1n ,u

2
n ,u

3
n) ‖un+1 – un‖2

1 (–2.0000, 1.0000, 2.0000) 1.6559 1 (0.0000, 1.0000, 2.0000) 1.5677
40 (–0.0363, 0.7380, 0.2755) 0.0011 40 (–0.0177, 0.4719, 0.5044) 0.0008
80 (–0.0181, 0.7440, 0.2627) 0.0003 80 (–0.0088, 0.4856, 0.5026) 0.0002
120 (–0.0120, 0.7460, 0.2585) 0.0001 120 (–0.0058, 0.4902, 0.5019) 9.2381e–05
160 (–0.0090, 0.7467, 0.2564) 7.1243e–05 160 (–0.0044, 0.4926, 0.5015) 5.2486e–05
200 (–0.0072, 0.7476, 0.2551) 4.5631e–05 200 (–0.0035, 0.4940, 0.5012) 3.3849e–05
240 (–0.0060, 0.7480, 0.2542) 3.1705e–05 240 (–0.0029, 0.4950, 0.5011) 2.3652e–05
280 (–0.0052, 0.7483, 0.2536) 2.3302e–05 280 (–0.0025, 0.4957, 0.5009) 1.7468e–05

Figure 3 Example 6.2, Case I with u1 = (–2, 1, 2)

pings with convexity and lower semi-continuity. For fk , k = 1, 2, as defined in (6.1),

Ω =
{

(y1, y2, y3) ∈R
3 : y1 = 0, y2 + y3 = 1

}
.

By taking, for all n ∈ N, κn = 9n+8
72n , μn = 2n+3

n+1 = νn, ρn = 1
n+1 , σn = 1

9 , τn = 8n–1
9(n+1) , it can be

easily verified that all conditions (C1)–(C4) of Theorem 5.1 are fulfilled. Now two cases
may occur:

Case I. If g(y) = (–0.5, 1, 0.5) for all y ∈ R
3, then the sequence {un} obtained from (5.1)

strongly converges to ũ = PΩ (–0.5, 1, 0.5) = (0, 0.75, 0.25) for u1 = (–2, 1, 2). The numerical
and graphical demonstration of convergence of the sequence {un} and the behavior of
error ‖un+1 – un‖2 are displayed in Table 2 and Fig. 3, respectively.

Case II. If g(y) = y+1
16 for all y ∈ R

3, then the sequence {un} obtained from (5.1) strongly
converges to ũ = PΩg(ũ) = (0, 0.5, 0.5) for u1 = (0, 1, 2). The convergence of {un} and the
behavior of error ‖un+1 – un‖2 are presented numerically in Table 2 and graphically in
Fig. 4.

7 Conclusion
In this manuscript, we have introduced two iterative methods for finding the common
zeros of two H-accretive mappings in the framework of Banach spaces. These iterative
methods are based on Mann and Halpern iterative methods and viscosity approximation
method. It is easy to observe that for κn = 0, n ∈N, our proposed iterative methods consist
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Figure 4 Example 6.2, Case II with u1 = (0, 1, 2)

of method of alternating resolvents, and hence our work extends the methods developed
by Bauschke et al. [2], Boikanyo et al. [4], and Liu et al. [19]. We have demonstrated the
strong convergence results of the sequences generated by our proposed iterations. Further,
we have examined some applications which are based on convex minimization problem,
variational inequality problem, and equilibrium problem. Finally, we have presented some
numerical examples for implementation of our main results and application.

Acknowledgements
The authors are thankful to the editor and anonymous referees for their helpful comments and suggestions.

Funding
No funding available.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally and significantly in writing this manuscript. All the authors read and approved the final
manuscript.

Author details
1Department of Mathematics, Aligarh Muslim University, Aligarh, India. 2Department of Mathematics, Madanapalle
Institute of Technology and Science, Madanapalle, India. 3Department of Mathematics, Faculty of Science and Arts,
Rabigh King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 April 2019 Accepted: 17 July 2019

References
1. Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer,

New York (2009)
2. Bauschke, H.H., Combettes, P.L., Reich, S.: The asymptotic behavior of the composition of two resolvents. Nonlinear

Anal. 60(2), 283–301 (2005)
3. Bauschke, H.H., Matoušková, E., Reich, S.: Projection and proximal point methods: convergence results and

counterexamples. Nonlinear Anal. 56(5), 715–738 (2004)
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