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Abstract
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1 Introduction
Over the last several years, an increasing attention has been given to the oscillation theory
and asymptotic behavior of various classes of second-order and high-order differential
equations and dynamic equations on time scales [1–17]. So far, much research activity
concerns the oscillation problem of the third-order (TO) neutral differential and dynamic
equations [18–26]. Recently, the research focus has been shifted to the study of the TO
differential equations (DE) with distributed deviating arguments (DDA), and some results
can be found in [27–35].

Li et al. [3] investigated
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where z(t) = x(t) + p(t)x(τ (t)), 0 ≤ p(t) ≤ p0 < ∞ and α ≥ 1 is a constant. Under the meth-
ods proposed by Li et al. [3, 20], Jiang and Li [30] studied the following equation with
DDA:
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where α > 0 is a constant, and obtained several theorems for (1.1) whenever
∫ ∞

t0

r– 1
α (t) dt = ∞, or

∫ ∞
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r– 1
α (t) dt < ∞.
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Furthermore, Elabbasy and Moaaz [31], and Wang et al. [32] examined a TODE with DDA
under the assumption 0 ≤ p(t) ≤ P < 1. However, the obtained oscillation theorems cannot
be applied when p(t) ≥ 1. Then Tunç [33] utilized a new technique, different from the
existing methods, to give some criteria for a TODE with DDA, when p(t) ≥ 1.

The main objective here is to establish several oscillation criteria for the TO neutral
delay (ND) DE with DDA

E′
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∣∣x
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where t ≥ t0 > 0,

E2(t) = r2(t)
∣
∣E′

1(t)
∣
∣α2–1E′

1(t),

E1(t) = r1(t)
∣∣z′(t)

∣∣α1–1z′(t), (1.3)

z(t) = x(t) + p(t)x
(
τ (t)

)
,

and α1, α2, and α3 are positive constants. We assume that:

(A1) ri(t) ∈ C([t0,∞), (0,∞)),
∫ ∞

t0
r

– 1
αi

i (t) dt = ∞, i = 1, 2;
(A2) p(t) ∈ C([t0,∞), [1,∞)) with p(t) �≡ 1, and q(t, ξ ) ∈ C([t0,∞) × [a, b], [0,∞)) with

q(t, ξ ) �≡ 0 eventually;
(A3) τ (t) ∈ C1([t0,∞),R), τ (t) ≤ t, τ ′(t) > 0 and limt→∞ τ (t) = ∞;
(A4) g(t, ξ ) ∈ C([t0,∞) × [a, b],R) is a nondecreasing function for ξ , which satisfies

lim inft→∞ g(t, ξ ) = ∞ for ξ ∈ [a, b];
(A5) σ (ξ ) ∈ C([a, b],R) is nondecreasing and the integral of (1.2) is taken in the

Riemann–Stieltjies sense.
This article is organized in the following manner. Section 2 presents three lemmas to

prove our results. Section 3 establishes some new oscillation criteria for (1.2). Two exam-
ples finalize this article.

2 Some lemmas
For simplicity, we use some notations for sufficiently large t1 with t1 ≥ t0 as below:

g1(t) = g(t, a), g2(t) = g(t, b), d+(t) = max
{

0, d(t)
}

,

δ1(t, t1) =
∫ t

t1

(
1

r2(s)

) 1
α2

ds, δ2(t, t1) =
(

δ1(t, t1)
r1(t)

) 1
α1

,

δ3(t, t1) =
∫ t

t1

δ2(s, t1) ds, t ≥ t1.

Furthermore, assume that

p1(t) =
1

p(τ–1(t))

(
1 –

1
p(τ–1(τ–1(t)))

)
> 0, (2.1)

p2(t) =
1

p(τ–1(t))

(
1 –

δ3(τ–1(τ–1(t)), t1)
p(τ–1(τ–1(t)))δ3(τ–1(t), t1)

)
> 0, (2.2)
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Lemma 2.1 Assume that (A1)–(A5) hold. Furthermore, let x(t) be an eventually positive
solution of (1.2). Then z(t) satisfies either

(I) z(t) > 0, z′(t) > 0, E′
1(t) > 0, E′

2(t) ≤ 0,

or

(II) z(t) > 0, z′(t) < 0, E′
1(t) > 0, E′

2(t) ≤ 0.

Proof From the condition of Lemma 2.1, there exists a t1 ≥ t0 such that

x(t) > 0, x
(
τ (t)

)
> 0 and x

(
g(t, ξ )

)
> 0, ξ ∈ [a, b], (2.3)

for t ≥ t1. Then (1.2) implies that

E′
2(t) = –

∫ b

a
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∣∣x
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)∣∣α3–1x
(
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)
dσ (ξ ) ≤ 0, (2.4)

which means that E2(t) is nonincreasing and of constant sign, and E′
1(t) is also of constant

sign. We claim that E′
1(t) > 0. To prove this, assume on the contrary that E′

1(t) < 0 and there
exists M1, s.t. for t ≥ t2 ≥ t1,

E2(t) ≤ –M1 < 0.

Then

∣∣E′
1(t)

∣∣ ≥
(

M1

r2(t)

) 1
α2

> 0. (2.5)

We integrate (2.5) to get

E1(t) ≤ E1(t2) – M
1
α2
1

∫ t

t2

(
1

r2(s)

) 1
α2

ds.

Letting t → ∞ and from (A1), we obtain limt→∞ E1(t) = –∞. Then there exist constants
M2 and t3 ≥ t2 such that

E1(t) ≤ –M2 < 0, t ≥ t3,

which yields that

∣
∣z′(t)

∣
∣ ≥

(
M2

r1(t)

) 1
α1

> 0.
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Integrating the latter inequality from t3 to t, we have

z(t) ≤ z(t3) – M
1
α1
2

∫ t

t3

(
1

r1(s)

) 1
α1

ds.

We use (A1) again to have limt→∞ z(t) = –∞, which contradicts z(t) > 0. Hence, E′
1(t) > 0

for t ≥ t1, and z(t) has properties (I) and (II). �

Lemma 2.2 Assume that (A1)–(A5) and (2.1) hold. Furthermore, suppose that x(t) is an
eventually positive solution of (1.2) and z(t) has property (II) of Lemma 2.1. If

∫ ∞

t0

[
1

r1(u)

∫ ∞

u

(
1

r2(v)

∫ ∞

v
q1(s) ds

) 1
α2

dv
] 1

α1
du = ∞, (2.6)

then limt→∞ x(t) = 0.

Proof One can see that (1.3) yields (see [33])

z
(
τ–1(t)

)
= x

(
τ–1(t)

)
+ p

(
τ–1(t)

)
x(t),

which can be rewritten as

x(t) ≥ z(τ–1(t))
p(τ–1(t))

–
z(τ–1(τ–1(t)))

p(τ–1(t))p(τ–1(τ–1(t)))
(2.7)

≥ p1(t)z
(
τ–1(t)

)
. (2.8)

Combining (2.4) and (2.8), we get

E′
2(t) ≤ –

∫ b

a
q(t, ξ )pα3

1
(
g(t, ξ )

)
zα3

(
τ–1(g(t, ξ )

))
dσ (ξ )

≤ –q1(t)zα3
(
τ–1(g2(t)

))
, (2.9)

based on the fact that z′(t) < 0 for t ≥ t1. Since z(t) has property (II) of Lemma 2.1, one gets
limt→∞ z(t) = l ≥ 0. We claim that l = 0. Indeed, if we assume on the contrary that l > 0,
then there exists t2 ≥ t1 s.t. τ–1(g2(t)) ≥ t2 and z(τ–1(g2(t))) ≥ l, t ≥ t2. Inequality (2.9) then
yields

E′
2(t) ≤ –lα3 q1(t). (2.10)

We integrate (2.10) to get

r2(t)
(
E′

1(t)
)α2 ≥ lα3

∫ ∞

t
q1(s) ds,

which indicates that

E′
1(t) ≥

(
lα3

r2(t)

∫ ∞

t
q1(s) ds

) 1
α2

. (2.11)
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Integrating (2.11) from t to ∞, we have

–E1(t) ≥ l
α3
α2

∫ ∞

t

(
1

r2(v)

∫ ∞

v
q1(s) ds

) 1
α2

dv,

and then

∣∣z′(t)
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α3
α1α2

[
1

r1(t)

∫ ∞

t

(
1

r2(v)

∫ ∞

v
q1(s) ds

) 1
α2

dv
] 1

α1
,

since z′(t) < 0 for t ≥ t2. Integrating the latter inequality from t2 to ∞, we get

z(t2) > l
α3

α1α2

∫ ∞

t2

[
1

r1(u)

∫ ∞

u

(
1

r2(v)

∫ ∞

v
q1(s) ds

) 1
α2

dv
] 1

α1
du,

which contradicts (2.6). Thus, we obtain l = 0 and limt→∞ x(t) = 0, since 0 < x(t) ≤ z(t). �

Lemma 2.3 Assume that (A1)–(A5) and (2.2) hold. Furthermore, suppose that x(t) is an
eventually positive solution of (1.2) and z(t) has property (I) of Lemma 2.1. Then for t ≥
t1 ≥ t0,

[
r2(t)

((
r1(t)

(
z′(t)

)α1)′)α2]′ + q2(t)zα3
(
τ–1(g1(t)

)) ≤ 0. (2.12)

Proof Property (I) of z(t) yields

E2(t) = r2(t)
((

r1(t)
(
z′(t)

)α1)′)α2 > 0.

Applying the monotonicity of E
1
α2
2 (t) gives

r1(t)
(
z′(t)

)α1 = r1(t1)
(
z′(t1)

)α1 +
∫ t

t1

r
1
α2
2 (s)(r1(s)(z′(s))α1 )′

r
1
α2
2 (s)

ds

≥ δ1(t, t1)r
1
α2
2 (t)

(
r1(t)

(
z′(t)

)α1)′. (2.13)

It can be seen from (2.13) that

(
r1(t)(z′(t))α1

δ1(t, t1)

)′
≤ 0,

which, together with r1(t)(z′(t))α1 > 0, yields that z′(t)/δ2(t, t1) is nonincreasing for t ≥ t1.
Therefore,

z(t) = z(t1) +
∫ t

t1

z′(s)
δ2(s, t1)

δ2(s, t1) ds ≥ δ3(t, t1)
δ2(t, t1)

z′(t), (2.14)

which leads to
(

z(t)
δ3(t, t1)

)′
≤ 0. (2.15)
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Then for t ≥ t2 ≥ t1,

z
(
τ–1(τ–1(t)

)) ≤ δ3(τ–1(τ–1(t)), t1)z(τ–1(t))
δ3(τ–1(t), t1)

, (2.16)

due to τ–1(t) ≤ τ–1(τ–1(t)). Substituting (2.16) into (2.7), one has

x(t) ≥ p2(t)z
(
τ–1(t)

)
,

which leads to

x
(
g(t, ξ )

) ≥ p2
(
g(t, ξ )

)
z
(
τ–1(g1(t)

))
. (2.17)

Combining (1.2) and (2.17), we obtain (2.12). �

3 Main results
We respectively consider two cases g1(t) ≤ τ (t) and g1(t) ≥ τ (t) for t ≥ t0. Now, we begin
with the first case.

Theorem 3.1 Assume that (A1)–(A5), (2.1), (2.2), and (2.6) hold, and g1(t) ≤ τ (t). If there
exists ρ(t) ∈ C1([t0,∞), (0,∞)) s.t.

lim sup
t→∞

∫ t

t∗

[
ρ(s)q2(s)

(
δ3(τ–1(g1(s)), t1)

δ3(s, t1)

)α3

–
λ(ρ ′

+(s))α1α2+1

(ρ(s)γ (s)δ2(s, t1))α1α2

]
ds = ∞, (3.1)

for t1 and t∗ with t∗ ≥ t1 ≥ t0, where

λ =
(

α1α2

α3

)α1α2( 1
α1α2 + 1

)α1α2+1

,

γ (t) =

⎧
⎨

⎩
m1(δ3(t, t1))

α3
α1α2

–1, m1 is any positive constant, if α1α2 > α3,

m2, m2 is any positive constant, if α1α2 ≤ α3,

then every solution of (1.2) is either oscillatory or tends to zero.

Proof Suppose that (1.2) has a nonoscillatory solution x(t). We may assume that (2.3) holds
for t ≥ t1 ≥ t0. So we have that z(t) is positive and satisfies the two properties for t ≥ t1.

We first consider property (I). Define ω(t) by

ω(t) = ρ(t)
r2(t)((r1(t)(z′(t))α1 )′)α2

zα3 (t)
, t ≥ t1. (3.2)

Then ω(t) > 0 and

ω′(t) = ρ ′(t)
r2(t)((r1(t)(z′(t))α1 )′)α2

zα3 (t)
+ ρ(t)

[
[r2(t)((r1(t)(z′(t))α1 )′)α2 ]′

zα3 (t)

–
α3r2(t)((r1(t)(z′(t))α1 )′)α2 z′(t)

zα3+1(t)

]
(3.3)
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=
ρ ′(t)
ρ(t)

ω(t) + ρ(t)
[r2(t)((r1(t)(z′(t))α1 )′)α2 ]′

zα3 (t)

– α3ρ(t)
r2(t)((r1(t)(z′(t))α1 )′)α2 z′(t)

zα3+1(t)
. (3.4)

Based on (2.12), we have

[r2(t)((r1(t)(z′(t))α1 )′)α2 ]′

zα3 (t)
≤ –q2(t)

(
z(τ–1(g1(t)))

z(t)

)α3

. (3.5)

Since g1(t) ≤ τ (t), we get τ–1(g1(t)) ≤ t. Applying (2.15), we obtain

z(τ–1(g1(t)))
z(t)

≥ δ3(τ–1(g1(t)), t1)
δ3(t, t1)

. (3.6)

From (2.13), we have

z′(t) ≥ δ2(t, t1)
(
r2(t)

((
r1(t)

(
z′(t)

)α1)′)α2) 1
α1α2 . (3.7)

We combine (3.4)–(3.7) to conclude that

ω′(t) ≤ ρ ′
+(t)

ρ(t)
ω(t) – ρ(t)q2(t)

(
δ3(τ–1(g1(t)), t1)

δ3(t, t1)

)α3

–
α3δ2(t, t1)

ρ
1

α1α2 (t)
z

α3
α1α2

–1(t)ω
1

α1α2
+1(t). (3.8)

Next, we will compute z
α3

α1α2
–1(t) and consider the following two cases:

Case (i). Assume that α1α2 > α3. Since z(t)/δ3(t, t1) is nonincreasing, due to (2.15), there
exist constants h1 > 0 and t2 ≥ t1 such that

z(t)
δ3(t, t1)

≤ z(t2)
δ3(t2, t1)

= h1, t ≥ t2,

and

z
α3

α1α2
–1(t) ≥ m1

(
δ3(t, t1)

) α3
α1α2

–1, (3.9)

where m1 = h
α3

α1α2
–1

1 .
Case (ii). Assume that α1α2 ≤ α3. Since z′(t) > 0, there exists h2 > 0 such that

z(t) ≥ z(t1) = h2, t ≥ t1,

and

z
α3

α1α2
–1(t) ≥ m2, t ≥ t1, (3.10)
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where m2 = h
α3

α1α2
–1

2 . We combine (3.8) with (3.9) and (3.10) to have

ω′(t) ≤ ρ ′
+(t)

ρ(t)
ω(t) – ρ(t)q2(t)

(
δ3(τ–1(g1(t)), t1)

δ3(t, t1)

)α3

–
α3γ (t)δ2(t, t1)

ρ
1

α1α2 (t)
ω

1
α1α2

+1(t). (3.11)

By using the inequality (see [18])

Bu – Au
1
α +1 ≤ αα

(α + 1)α+1
Bα+1

Aα
, A > 0, (3.12)

where

B =
ρ ′

+(t)
ρ(t)

, A =
α3γ (t)δ2(t, t1)

ρ
1

α1α2 (t)
, α = α1α2, u = ω(t),

we obtain

ρ ′
+(t)

ρ(t)
ω(t) –

α3γ (t)δ2(t, t1)

ρ
1

α1α2 (t)
ω

1
α1α2

+1(t)

≤
(

α1α2

α3ρ(t)γ (t)δ2(t, t1)

)α1α2( ρ ′
+(t)

α1α2 + 1

)α1α2+1

=
λ(ρ ′

+(t))α1α2+1

(ρ(t)γ (t)δ2(t, t1))α1α2
. (3.13)

We combine (3.11) and (3.13) to conclude that

ω′(t) ≤ –ρ(t)q2(t)
(

δ3(τ–1(g1(t)), t1)
δ3(t, t1)

)α3

+
λ(ρ ′

+(t))α1α2+1

(ρ(t)γ (t)δ2(t, t1))α1α2
.

We integrate the latter inequality to make

∫ t

t2

[
ρ(s)q2(s)

(
δ3(τ–1(g1(s)), t1)

δ3(s, t1)

)α3

–
λ(ρ ′

+(s))α1α2+1

(ρ(s)γ (s)δ2(s, t1))α1α2

]
ds

≤ ω(t2) – ω(t) < ω(t2),

which contradicts (3.1).
Secondly, we investigate property (II) and deduce limt→∞ x(t) = 0. �

Theorem 3.2 Assume that (A1)–(A5), (2.1), (2.2), and (2.6) hold. Furthermore, suppose
that g1(t) ≤ τ (t) and α1α2 = α3. If there exists ρ(t) s.t.

lim sup
t→∞

∫ t

t∗

[
ρ(s)q2(s)

(
δ3(τ–1(g1(s)), t1)

δ3(s, t1)

)α3

–
ρ ′

+(s)
(δ3(s, t1))α3

]
ds = ∞, (3.14)

for t1 and t∗ with t∗ ≥ t1 ≥ t0, then we get the same conclusion as in Theorem 3.1.
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Proof Suppose that (2.3) holds for t ≥ t1 ≥ t0. Then z(t) satisfies the two properties.
We first consider property (I). From (2.13) and (2.14), we have

r1(t)zα1 (t) ≥
(

δ3(t, t1)
δ2(t, t1)

)α1

r1(t)
(
z′(t)

)α1

≥
(

δ3(t, t1)
δ2(t, t1)

)α1

δ1(t, t1)r
1
α2
2 (t)

(
r1(t)

(
z′(t)

)α1)′,

and

zα3 (t) ≥ (
δ3(t, t1)

)α3 r2(t)
((

r1(t)
(
z′(t)

)α1)′)α2 . (3.15)

Define ω(t) by (3.2). As in the proof of Theorem 3.1, we get (3.3). Since E2(t) > 0, (3.3)
indicates

ω′(t) ≤ ρ ′
+(t)

r2(t)((r1(t)(z′(t))α1 )′)α2

zα3 (t)
+ ρ(t)

[r2(t)((r1(t)(z′(t))α1 )′)α2 ]′

zα3 (t)
.

Combining the latter inequality with (3.5), (3.6), and (3.15), we see that

ω′(t) ≤ ρ ′
+(t)

(δ3(t, t1))α3
– ρ(t)q2(t)

(
δ3(τ–1(g1(t)), t1)

δ3(t, t1)

)α3

. (3.16)

An integration of (3.16) from t2 (t2 ≥ t1) to t leads to

∫ t

t2

[
ρ(s)q2(s)

(
δ3(τ–1(g1(s)), t1)

δ3(s, t1)

)α3

–
ρ ′

+(s)
(δ3(s, t1))α3

]
ds ≤ ω(t2) – ω(t) < ω(t2),

for all sufficiently large t, which contradicts (3.14).
Secondly, if property (II) holds, then limt→∞ x(t) = 0. �

Theorem 3.3 Assume that (A1)–(A5), (2.1), (2.2), and (2.6) hold. Furthermore, suppose
that g1(t) ≤ τ (t) and α1α2 = α3 ≥ 1. If there exists ρ(t) s.t.

lim sup
t→∞

∫ t

t∗

[
ρ(s)q2(s)

(
δ3(τ–1(g1(s)), t1)

δ3(s, t1)

)α3

–
(ρ ′

+(s))2

4α3ρ(s)γ (s)δ2(s, t1)(δ3(s, t1))α3–1

]
ds = ∞, (3.17)

for t1 and t∗ with t∗ ≥ t1 ≥ t0, where γ (t) is given in Theorem 3.1, then we get the same
conclusion as in Theorem 3.1.

Proof Suppose that (2.3) holds for t ≥ t1 ≥ t0. Then z(t) satisfies the two properties.
We first consider property (I). Proceeding as in the proof of Theorem 3.1, we get (3.11),

and

ω′(t) ≤ ρ ′
+(t)

ρ(t)
ω(t) – ρ(t)q2(t)

(
δ3(τ–1(g1(t)), t1)

δ3(t, t1)

)α3

–
α3γ (t)δ2(t, t1)ω2(t)

ρ
1

α1α2 (t)
ω

1
α1α2

–1(t). (3.18)
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From (3.2) and (3.15), one has

ω
1

α1α2
–1(t) = ρ

1
α1α2

–1(t)
(

r2(t)((r1(t)(z′(t))α1 )′)α2

zα3 (t)

) 1
α1α2

–1

≥ ρ
1

α1α2
–1(t)

(
δ3(t, t1)

)α3–1. (3.19)

We substitute (3.19) into (3.18) to see that

ω′(t) ≤ ρ ′
+(t)

ρ(t)
ω(t) – ρ(t)q2(t)

(
δ3(τ–1(g1(t)), t1)

δ3(t, t1)

)α3

–
α3γ (t)δ2(t, t1)(δ3(t, t1))α3–1

ρ(t)
ω2(t),

from which one gets

ω′(t) ≤ –ρ(t)q2(t)
(

δ3(τ–1(g1(t)), t1)
δ3(t, t1)

)α3

+
(ρ ′

+(t))2

4α3ρ(t)γ (t)δ2(t, t1)(δ3(t, t1))α3–1 ,

by completing the square with respect to ω(t). We integrate the latter inequality from t2

(t2 ≥ t1) to t to obtain

∫ t

t2

[
ρ(s)q2(s)

(
δ3(τ–1(g1(s)), t1)

δ3(s, t1)

)α3

–
(ρ ′

+(s))2

4α3ρ(s)γ (s)δ2(s, t1)(δ3(s, t1))α3–1

]
ds ≤ ω(t2),

for all sufficiently large t, which contradicts (3.17).
Secondly, if property (II) holds, then limt→∞ x(t) = 0. �

Next, we consider g1(t) ≥ τ (t) for t ≥ t0.

Theorem 3.4 Assume that conditions (A1)–(A5), (2.1), (2.2), and (2.6) hold, and g1(t) ≥
τ (t). If there exists ρ(t) s.t.

lim sup
t→∞

∫ t

t∗

[
ρ(s)q2(s) –

λ(ρ ′
+(s))α1α2+1

(ρ(s)γ (τ (s))δ2(τ (s), t1))α1α2

]
ds = ∞, (3.20)

for t1 and t∗ with t∗ ≥ t1 ≥ t0, then we get the same conclusion as in Theorem 3.1.

Proof Suppose that (2.3) holds for t ≥ t1 ≥ t0. Then z(t) satisfies the two properties.
We first consider property (I). Define ν(t) by

ν(t) = ρ(t)
r2(t)((r1(t)(z′(t))α1 )′)α2

zα3 (τ (t))
, t ≥ t1. (3.21)

Then ν(t) > 0 and

ν ′(t) = ρ ′(t)
r2(t)((r1(t)(z′(t))α1 )′)α2

zα3 (τ (t))
+ ρ(t)

[
[r2(t)((r1(t)(z′(t))α1 )′)α2 ]′

zα3 (τ (t))

–
α3r2(t)((r1(t)(z′(t))α1 )′)α2 (z(τ (t)))′

zα3+1(τ (t))

]
(3.22)
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=
ρ ′(t)
ρ(t)

ν(t) + ρ(t)
[r2(t)((r1(t)(z′(t))α1 )′)α2 ]′

zα3 (τ (t))

– α3ρ(t)
r2(t)((r1(t)(z′(t))α1 )′)α2 (z(τ (t)))′

zα3+1(τ (t))
. (3.23)

Since τ–1(g1(t)) ≥ t ≥ τ (t) and z′(t) > 0, we have

z(τ–1(g1(t)))
z(τ (t))

≥ 1, t ≥ t1,

which indicates that

[r2(t)((r1(t)(z′(t))α1 )′)α2 ]′

zα3 (τ (t))
≤ –q2(t), (3.24)

due to (2.12). Based on (3.7), E′
2(t) ≤ 0 and τ (t) ≤ t, so one has τ (t) ≥ t1 and

(
z
(
τ (t)

))′ ≥ δ2
(
τ (t), t1

)(
r2(t)

((
r1(t)

(
z′(t)

)α1)′)α2) 1
α1α2 , (3.25)

for t ≥ t2 > t1. Combining (3.9), (3.10), (3.23)–(3.25), we conclude that

ν ′(t) ≤ ρ ′
+(t)

ρ(t)
ν(t) – ρ(t)q2(t)

–
α3γ (τ (t))δ2(τ (t), t1)

ρ
1

α1α2 (t)
ν

1
α1α2

+1(t). (3.26)

Using (3.12) and (3.26) with

B =
ρ ′

+(t)
ρ(t)

, A =
α3γ (τ (t))δ2(τ (t), t1)

ρ
1

α1α2 (t)
,

one gets

ν ′(t) ≤ –ρ(t)q2(t) +
λ(ρ ′

+(t))α1α2+1

(ρ(t)γ (τ (t))δ2(τ (t), t1))α1α2
.

Integrating the latter inequality from t2 to t, we have

∫ t

t2

[
ρ(s)q2(s) –

λ(ρ ′
+(s))α1α2+1

(ρ(s)γ (τ (s))δ2(τ (s), t1))α1α2

]
ds ≤ ω(t2),

for all sufficiently large t, which contradicts (3.20).
Secondly, if property (II) holds, then limt→∞ x(t) = 0. �

Theorem 3.5 Assume that (A1)–(A5), (2.1), (2.2), and (2.6) hold. Furthermore, suppose
that g1(t) ≥ τ (t) and α1α2 = α3. If there exists ρ(t) s.t.

lim sup
t→∞

∫ t

t∗

[
ρ(s)q2(s) –

ρ ′
+(s)

(δ3(τ (s), t1))α3

]
ds = ∞, (3.27)

for t1 and t∗ with t∗ ≥ t1 ≥ t0, then we get the same conclusion as in Theorem 3.1.
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Proof Suppose that (2.3) holds for t ≥ t1 ≥ t0. Then z(t) satisfies the two properties.
We first consider property (I). Proceeding as in the proof of Theorem 3.4, we get (3.22),

which implies

ν ′(t) ≤ ρ ′
+(t)

r2(t)((r1(t)(z′(t))α1 )′)α2

zα3 (τ (t))
+ ρ(t)

[r2(t)((r1(t)(z′(t))α1 )′)α2 ]′

zα3 (τ (t))
. (3.28)

Applying (3.15), the monotonicity of E2(t) and the fact that τ (t) ≤ t, one has τ (t) ≥ t1 and

zα3
(
τ (t)

) ≥ (
δ3

(
τ (t), t1

))α3 r2(t)
((

r1(t)
(
z′(t)

)α1)′)α2 , (3.29)

for t ≥ t2 > t1. Combining (3.24), (3.28), and (3.29), one gets

ν ′(t) ≤ ρ ′
+(t)

(δ3(τ (t), t1))α3
– ρ(t)q2(t). (3.30)

Upon integrating (3.30) from t2 to t, we obtain a contradiction to (3.27).
Secondly, if property (II) holds, then limt→∞ x(t) = 0. �

Theorem 3.6 Assume that (A1)–(A5), (2.1), (2.2), and (2.6) hold. Furthermore, suppose
that g1(t) ≥ τ (t) and α1α2 = α3 ≥ 1. If there exists ρ(t) s.t.

lim sup
t→∞

∫ t

t∗

[
ρ(s)q2(s) –

(ρ ′
+(s))2

4α3ρ(s)γ (τ (s))δ2(τ (s), t1)(δ3(τ (s), t1))α3–1

]
ds = ∞,

for t1 and t∗ with t∗ ≥ t1 ≥ t0, then we get the same conclusion as in Theorem 3.1.

We omit the proof of Theorem 3.6 here, since it is similar to that of Theorem 3.3.

4 Examples
The following examples are given to show the applications of Theorems 3.1 and 3.5.

Example 4.1 For t > k1 ≥ 1, consider a TONDDE with DDA

E′
2(t) +

∫ k1+1

k1

10(t + ξ )
∣
∣∣∣x

(
t – k1 –

1
ξ

)∣
∣∣∣

4
3

x
(

t – k1 –
1
ξ

)
dξ = 0, (4.1)

where

E2(t) =
∣∣E′

1(t)
∣∣4E′

1(t),

E1(t) = (t – k1)
∣
∣z′(t)

∣
∣– 2

3 z′(t),

z(t) = x(t) +
4t + 5
t + 1

x(t – k1).

Let α1 = 1/3, α2 = 5, α3 = 7/3, a = k1, b = k1 + 1, r1(t) = t – k1, r2(t) = 1, τ (t) = t – k1, g(t, ξ ) =
t – k1 – 1/ξ , σ (ξ ) = ξ , p(t) = (4t + 5)/(t + 1), q(t, ξ ) = 10(t + ξ ). Choose t0 = t1 = k1. Then we
obtain α1α2 < α3, 4 ≤ p(t) < 5,

g1(t) = g(t, k1) = t – k1 –
1
k1

,
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δ1(t, t1) = δ1(t, k1) = t – k1,

δ2(t, t1) =
(

δ1(t, k1)
t – k1

)3

= 1,

δ3(t, t1) = δ3(t, k1) = t – k1,

δ3
(
τ–1(t), t1

)
= δ3(t + k1, k1) = t,

δ3
(
τ–1(τ–1(t)

)
, t1

)
= δ3(t + 2k1, k1) = t + k1,

δ3
(
τ–1(g1(t)

)
, t1

)
= δ3

(
t –

1
k1

, k1

)
= t – k1 –

1
k1

.

Furthermore, we deduce that

p1(t) >
1
5

(
1 –

1
4

)
=

3
20

> 0,

p2(t) >
1
5

(
1 –

1
4

· t + k1

t

)
>

1
10

> 0,

q1(t) >
∫ k1+1

k1

3
20

· 10(t + ξ ) dξ =
3
2

(
t + k1 +

1
2

)
,

q2(t) >
∫ k1+1

k1

1
10

· 10(t + ξ ) dξ = t + k1 +
1
2

.

It is easy to verify that

∫ ∞

t0

[
1

r1(u)

∫ ∞

u

(
1

r2(v)

∫ ∞

v
q1(s) ds

) 1
α2

dv
] 1

α1
du

>
∫ ∞

k1

[
1

u – k1

∫ ∞

u

(∫ ∞

v

3
2

(
s + k1 +

1
2

)
ds

) 1
5

dv
]3

du

= ∞.

Therefore, conditions (A1)–(A5), (2.1), (2.2), and (2.6) hold, and g1(t) ≤ τ (t). We choose
ρ(t) = t and t∗ = k1 + 2. Applying Theorem 3.1, it remains to check (3.1), where

λ =
(

5
7

) 5
3
(

3
8

) 8
3

.

Then we get

∫ t

t∗

[
ρ(s)q2(s)

(
δ3(τ–1(g1(s)), t1)

δ3(s, t1)

)α3

–
λ(ρ ′

+(s))α1α2+1

(ρ(s)γ (s)δ2(s, t1))α1α2

]
ds

>
∫ t

k1+2

[
s
(

s + k1 +
1
2

)( s – k1 – 1
k1

s – k1

) 7
3

–
( 5

7 ) 5
3 ( 3

8 ) 8
3

(m2s) 5
3

]
ds → ∞,

as t → ∞, since
∫ t

k1+2 s– 5
3 ds < ∞. Hence, we get the same conclusion as in Theorem 3.1.
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Example 4.2 For t > k1 ≥ 1, consider a TONDDE with DDA

E′
2(t) +

∫ k1+l

k1

40ξ

t

∣
∣∣∣x

(
t + ξ

2

)∣
∣∣∣

2

x
(

t + ξ

2

)
dξ = 0, (4.2)

where l is a positive integer,

E2(t) =
∣
∣E′

1(t)
∣
∣– 2

3 E′
1(t),

E1(t) = (t – k1)
∣
∣z′(t)

∣
∣8z′(t),

z(t) = x(t) +
5t + 4k1

t + k1
x
(

t
2

)
.

Let α1 = 9, α2 = 1/3, α3 = 3, a = k1, b = k1 + l, r1(t) = t – k1, r2(t) = 1, σ (ξ ) = ξ ,

τ (t) =
t
2

, g(t, ξ ) =
t + ξ

2
, p(t) =

5t + 4k1

t + k1
, q(t, ξ ) =

40ξ

t
.

Choose t0 = t1 = k1. Then we have α1α2 = α3, 4 < p(t) < 5,

g1(t) = g(t, k1) =
t + k1

2
,

δ3
(
τ–1(t), t1

)
= δ3(2t, k1) = 2t – k1,

δ3
(
τ–1(τ–1(t)

)
, t1

)
= δ3(4t, k1) = 4t – k1,

δ3
(
τ (t), t1

)
= δ3

(
t
2

, k1

)
=

t
2

– k1 >
t
4

,

where t ≥ t2 > 4k1, δ1(t, t1), δ2(t, t1), and δ3(t, t1) are the same as in Example 4.1. Further-
more, we deduce that

p1(t) >
1
5

(
1 –

1
4

)
=

3
20

> 0,

p2(t) >
1
5

(
1 –

1
4

· 4t – k1

2t – k1

)
>

1
20

> 0,

q1(t) >
∫ k1+1

k1

3
20

· 40ξ

t
dξ =

6k1l + 3l2

t
,

q2(t) >
∫ k1+1

k1

1
20

· 40ξ

t
dξ =

2k1l + l2

t
.

Clearly, (2.6) holds. Choosing ρ(t) = t2 and t∗ = t2, one has

∫ t

t∗

[
ρ(s)q2(s) –

ρ ′
+(s)

(δ3(τ (s), t1))α3

]
ds

>
∫ t

t2

[
s2 · 2k1l + l2

s
–

2s
( s

4 )3

]
ds → ∞,

as t → ∞, which means that (3.27) holds, and all conditions of Theorem 3.5 are satisfied.
Hence, we get the same conclusion as in Theorem 3.1.
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