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Abstract
In current continuation, we have incorporated the notion of s – (α,m)-convex
functions and have established new integral inequalities. In order to generalize
Hermite–Hadamard-type inequalities, some new integral inequalities of
Hermite–Hadamard and Simpson type using s – (α,m)-convex function via
Riemann–Liouville fractional integrals are obtained that reproduce the results
presented by (Appl. Math. Lett. 11(5):91–95, 1998; Comput. Math. Appl. 47(2–3):
207–216, 2004; J. Inequal. Appl. 2013:158, 2013). Applications to special means are
also provided.
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1 Introduction
Let R be the set of real numbers, I ⊆ R be an interval, and η : I ⊂ R → R be a convex in
the classical sense function which satisfies the inequality

η
(
κs1 + (1 – κ)s2

) ≤ κη(s1) + (1 – κ)η(s2)

whenever s1, s2 ∈ I and κ ∈ [0, 1]. Numerous authors have presented inequalities for con-
vex functions, however, because of its wide applicability and importance, one of the most
notable is Hermite–Hadamard inequality, which is expressed as follows [4]:

Let η : I ⊂ R → R be a convex function on the interval I of real numbers and s1, s2 ∈ I
with s1 < s2. Then

η

(
s1 + s2

2

)
≤ 1

s2 – s1

∫ s2

s1

g(t) dt ≤ η(s1) + η(s2)
2

.

Both inequalities hold reversed if η is concave. In the field of mathematical inequalities,
Hermite–Hadamard inequalities have been considered by numerous mathematicians be-
cause of their pertinence and handiness. Various researchers have extended the Hermite–
Hadamard inequality to different structures utilizing the classical convex functions. First
we recall some important definitions and results which we have used in this paper.

M. Muddassar [5] presented the class of s – (α, m)-convex functions as follows:
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Definition 1 A function η : [0,∞) → [0,∞) is said to be s – (α, m)-convex in the first
sense, or f belongs to the class Kα,s

m,1, if for every s1, s2 ∈ [0,∞] and κ ∈ [0, 1], the following
inequality holds:

η
(
κs1 + m(1–κ)s2

) ≤ καsη(s1) + m
(
1 – καs)η(s2),

where (α, m) ∈ [0, 1]2, for some fixed s ∈ (0, 1].

Definition 2 A function η : [0,∞) → [0,∞) is said to be s – (α, m)-convex function in the
second sense, or f belongs to the class Kα,s

m,2, if for every s1, s2 ∈ [0,∞] and κ ∈ [0, 1], the
following inequality holds:

η
(
κs1 + m(1–κ)s2

) ≤ (
κα

)s
η(s1) + m

(
1–κα

)s
η(s2),

where (α, m) ∈ [0, 1]2, for some fixed s ∈ (0, 1].

Definition 3 Let f ∈ L1[a, b]. The left-sided and right-sided Riemann–Liouville fractional
integrals of order α > 0, with a ≥ 0, are defined by

Jα
a+ f (x) =

1
Γ (α)

∫ x

a
(x – t)α–1f (t) dt, a < x,

and

Jα
b– f (x) =

1
Γ (α)

∫ b

x
(t – x)α–1f (t) dt, x < b,

respectively, where Γ (·) is the Gamma function defined by Γ (α) =
∫ ∞

0 e–uuα–1 du.

It is to be noted that J0
a+ f (x) = J0

b– f (x) = f (x). In the case of α = 1, the fractional integral
reduces to the classical integral. Properties relating to this operator can be found in [6],
and for useful details on Hermite–Hadamard and Simpson’s type inequalities connected
with fractional integral inequalities, the interested readers are directed to [7, 8].

In [1], Dragomir and Agarwal obtained inequalities for differentiable convex mappings
which are connected with the right-hand side of Hermite–Hadamard (trapezoid) inequal-
ity and applied them to obtain some elementary inequalities for real numbers and in nu-
merical integration.

Theorem 1 Let η : I ⊂ R → R be a differentiable mapping on I where s1, s2 ∈ I with s1 < s2.
If |η′|q is convex on [s1, s2], for some q ≥ 1, then the following inequality holds:

∣∣
∣∣
η(s1) + η(s2)

2
–

1
s2 – s1

∫ s2

s1

η(u) du
∣∣
∣∣ ≤ s2 – s1

8
[∣∣η′(s1)

∣
∣ +

∣
∣η′(s2)

∣
∣]. (1)

In [9], a variant of Hermite–Hadamard-type inequalities was obtained as follows.

Theorem 2 Let η : I ⊆R →R be a differentiable function on I and let s1, s2 ∈ I with s1 < s2.
If |η′| is a convex function on [s1, s2], then the following inequality holds:

∣
∣∣∣

1
s2 – s1

∫ s2

s1

η(u) du – η

(
s1 + s2

2

)∣
∣∣∣ ≤ s2 – s1

8
[∣∣η′(s1)

∣∣ +
∣∣η′(s2)

∣∣]. (2)
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In [2], Yang obtained Hermite–Hadamard (trapezoid) inequalities for differentiable
mapping for concave functions.

Theorem 3 Let I ⊂ R be an open interval, l, m, n, P, Q ∈ I with l ≤ P ≤ n ≤ Q ≤ m (n 
= l, m)
l, m, n ∈ R and η : [s1, s2] → R be a differentiable function. If |η′|q is concave on [s1, s2], and
1 ≤ θ ≤ q, then

∣∣
∣∣(P – l)η(l) + (m – Q)η(m) + (Q – P)η(n) –

∫ s2

s1

η(u) du
∣∣
∣∣ ≤ K(P, Q, n, θ )J(P, Q, n, θ ), (3)

where

K(P, Q, n, θ ) =
(

1
2
[
(P – l)2 + (n – P)2 + (Q – n)2 + (m – Q)2]

) (θ–1)
θ

,

and

J(P, Q, n, θ )

=
(

1
2
[
(P – l)2 + (n – P)2]

∣∣
∣∣η

′
(

(P – l)2 + (n – P)2(2n – 3l + P)
3[(P – l)2 + (n – P)2]

+ l
)∣∣

∣∣

θ) (θ–1)
θ

+
(

1
2
[
(Q – n)2 + (m – Q)2]

∣∣
∣∣η

′
(

m –
(Q – n)2(3m – 2n – Q) + (m – Q)3

3[(Q – n)2 + (m – Q)2]

)∣∣
∣∣

θ) (θ–1)
θ

.

Proposition 1 Under the assumptions of Theorem 3 with P = Q = n = (l + m)/2 and θ = 1,
we get the following inequality:

∣
∣∣∣
η(s1) + η(s2)

2
–

1
s2 – s1

∫ s2

s1

η(u) du
∣
∣∣∣ ≤ s2 – s1

8

[∣
∣∣∣η

′
(

5s1 + s2

6

)∣
∣∣∣ +

∣
∣∣∣η

′
(

s1 + 5s2

6

)∣
∣∣∣

]
. (4)

Proposition 2 Under the assumptions of Theorem 3 with P = s1, Q = s2, n = (l + m)/2 and
θ = 1, we get the following inequality:

∣
∣∣∣η

(
s1 + s2

2

)
–

1
s2 – s1

∫ s2

s1

η(u) du
∣
∣∣∣ ≤ s2 – s1

8

[∣
∣∣∣η

′
(

2s1 + s2

3

)∣
∣∣∣ +

∣
∣∣∣η

′
(

s1 + 2s2

3

)∣
∣∣∣

]
. (5)

The aim of this paper is to build up Hermite–Hadamard-type inequalities for Riemann–
Liouville fractional integral using the s–(α, m) convexity, as well as concavity, for functions
whose absolute values of the first derivative are convex. The results presented in this paper
provide extension of those given in earlier works. The interested readers are referred to
[3, 10–25].

2 Main results
In order to prove our main results, we need the following integral inequality

Lemma 1 Let f : [a, b] →R be a differentiable function on (a, b) with a < b, such that f ′ is
integrable. Then the following inequality for Riemann–Liouville fractional integrals holds
with 0 < α ≤ 1:

(
1 –

2
2α

λ

)
f
(

a + b
2

)
+ λ

f (a) + (b)
2α

–
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]
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≤ b – a
2α+1

[
L1 + L2 + (L3 + L4)

]
,

where L1 =
∫ 1

0 [(1 – t)α – λ]f ′(ta + (1 – t) a+b
2 ) dt, L2 =

∫ 1
0 [λ – (1 – t)α]f ′(tb + (1 – t) a+b

2 ) dt,
L3 =

∫ 1
0 [2α – λ – (2 – t)α]f ′(t a+b

2 + (1 – t)a) dt, L4 =
∫ 1

0 [λ – 2α + (2 – t)α]f ′(t a+b
2 + (1 – t)b) dt.

Proof A simple proof of this inequality can be obtained by integrating by parts. The details
are left to the interested readers. �

Using Lemma 1 the following results can be obtained.

Theorem 4 Let f : [a, b] → R be a differentiable function on (a, b) with a < b such that f ′

is integrable. If |f ′| is s – (α, m) convex on [a, b], then the following inequality for Riemann–
Liouville fractional integrals holds with 0 < α ≤ 1:

∣
∣∣∣

(
1 –

2
2α

λ

)
f
(

a + b
2

)
+ λ

f (a) + f (b)
2α

–
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]
∣
∣∣∣

≤
[{

M1
∣∣f ′(a)

∣∣ + 2m(M2 – M1)
∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣ + M1

∣∣f ′(b)
∣∣
}

+
{

M3
∣∣f ′(a)

∣∣ + m(M4 – M3)
∣∣∣
∣f

′
(

a + b
2

)∣∣∣
∣ + M3

∣∣f ′(b)
∣∣
}]

, (6)

M1 =
∫ 1

0

∣∣(1 – t)α – λ
∣∣tαs dt =

(αs)!
(αs + s + 1)!

–
λ

(s + 1)
,

M2 =
∫ 1

0

∣∣(1 – t)α – λ
∣∣dt

=
1 – 2(1 – ζ )α+1

α + 1
+ (1 – 2ζ )λ,

M3 =
∫ 1

0

∣∣2α – (2 – t)α – λ
∣∣tαs dt

=
2αs

s + 1
– 2αs

[
1

(s + 1)
–

αs
2(s + 1)

]
–

λ

(s + 1)
,

M4 =
∫ 1

0

∣
∣2α – (2 – t)α – λ

∣
∣dt

=
1 + 2α+1 – 2(2 – ξ )α+1

α + 1
+

(
2α – λ

)
(1 – 2ξ ),

where

ζ = 1 – λ
1
α and ξ = 2 –

(
2α – λ

) 1
α .

Proof Using s – (α, m) convexity of |f ′|, for all t ∈ [0, 1], we obtain:

|L1| ≤
∫ 1

0

(
(1 – t)α – λ

)
∣
∣∣∣f

′
(

ta + (1 – t)
a + b

2

)∣
∣∣∣dt

=
∫ 1

0

(
(1 – t)α – λ

)
∣∣
∣∣t

αsf ′(a) + m
(
1 – tαs)f ′

(
a + b

2

)∣∣
∣∣dt
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≤
∫ 1

0

(
(1 – t)α – λ

)
{

tαs∣∣f ′(a)
∣∣ + m

(
1 – tαs)

∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

}
dt

= M1
∣∣f ′(a)

∣∣ + m(M2 – M1)
∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣,

|L2| ≤
∫ 1

0

(
(1 – t)α – λ

)
∣∣
∣∣f

′
(

tb + (1 – t)
a + b

2

)∣∣
∣∣dt

=
∫ 1

0

(
(1 – t)α – λ

)
∣∣∣
∣t

αsf ′(b) + m
(
1 – tαs)f ′

(
a + b

2

)∣∣∣
∣dt

≤
∫ 1

0

(
(1 – t)α – λ

)
{

tαs∣∣f ′(b)
∣∣ + m

(
1 – tαs)

∣
∣∣∣f

′
(

a + b
2

)∣
∣∣∣

}
dt

= M1
∣∣f ′(b)

∣∣ + m(M2 – M1)
∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣,

|L3| =
∫ 1

0

(
2α – (2 – t)α – λ

){
∣∣
∣∣f

′
(

t
a + b

2
+ (1 – t)a

)∣∣
∣∣

}
dt

=
∫ 1

0

(
2α – (2 – t)α – λ

)
{∣∣∣
∣t

αsf ′
(

a + b
2

)
+ m

(
1 – tαs)f ′(a)

∣∣∣
∣

}
dt

≤
∫ 1

0

(
2α – (2 – t)α – λ

){
tαs

∣
∣∣∣f

′
(

a + b
2

)∣
∣∣∣ + m

(
1 – tαs)∣∣f ′(a)

∣∣
}

dt

= M3

∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣ + m(M4 – M3)

∣∣f ′(a)
∣∣,

|L4| ≤
∫ 1

0

(
2α – (2 – t)α – λ

){
∣∣
∣∣f

′
(

t
a + b

2
+ (1 – t)b

)∣∣
∣∣

}
dt

=
∫ 1

0

(
2α – (2 – t)α – λ

)
{∣
∣∣
∣t

αsf ′
(

a + b
2

)
+ m

(
1 – tαs)f ′(b)

∣
∣∣
∣

}
dt

≤
∫ 1

0

(
2α – (2 – t)α – λ

){
tαs

∣∣
∣∣f

′
(

a + b
2

)∣∣
∣∣ + m

(
1 – tαs)∣∣f ′(b)

∣
∣
}

dt

= M3

∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣ + m(M4 – M3)

∣∣f ′(b)
∣∣. �

Corollary 1 Under the assumptions Theorem 4, with α = s = m = 1,

∣∣
∣∣(1 – λ)f

(
a + b

2

)
+ λ

f (a) + f (b)
2

–
1

b – a

∫ b

a
f (x) dx

∣∣
∣∣

≤ b – a
8

[
2λ2 – 2λ + 1

](∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣). (7)

Remark 1 Taking λ = 1, inequality (7) reduces to inequality (1).

Remark 2 Taking λ = 0, inequality (7) reduces to inequality (2).

The corresponding version for powers of the absolute value of the derivative is incorpo-
rated in the following theorem.
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Theorem 5 Let f be defined as in Theorem 4 and suppose |f ′|q is a convex on [a, b], with
q ≥ 1. Then the following inequality holds:

∣
∣∣
∣

(
1 –

2
2α

λ

)
f
(

a + b
2

)
+ λ

f (a) + f (b)
2α

–
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]
∣
∣∣
∣

≤ (b – a)
2α

×
[

(M2)1–1/q
{(

M1
∣
∣f ′(b)

∣
∣q + m(M2 – M1)

∣∣
∣∣f

′
(

a + b
2

)∣∣
∣∣

q)1/q

+
(

M1
∣∣f ′(a)

∣∣q + m(M2 – M1)
∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q)1/q}

+ (M4)1–1/q
{(

M3
∣
∣f ′(b)

∣
∣q + m(M4 – M3)

∣∣
∣∣f

′
(

a + b
2

)∣∣
∣∣

q)1/q

+
(

M3
∣∣f ′(b)

∣∣q + m(M4 – M3)
∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q)1/q}]
. (8)

Proof Using the well-known power-mean integral inequality for q > 1 and convexity of
|f ′|q, we have

|L1| ≤
(∫ 1

0

∣
∣((1 – t)α – λ

)∣∣dt
)1–1/q(∫ 1

0

∣
∣((1 – t)α – λ

)∣∣
∣∣
∣∣f

′
(

ta + (1 – t)
a + b

2

)∣∣
∣∣

q

dt
)1/q

≤
(∫ 1

0

∣∣((1 – t)α – λ
)∣∣dt

)1–1/q

×
(∫ 1

0

∣
∣((1 – t)α – λ

)∣∣
{

tαs∣∣f ′(a)
∣
∣q + m

(
1 – tαs)

∣∣
∣∣f

′
(

a + b
2

)∣∣
∣∣

q}
dt

)1/q

≤ (M2)1–1/q
(

M1
∣∣f ′(a)

∣∣q + m(M2 – M1)
∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q)1/q

,

|L2| ≤
(∫ 1

0

∣
∣((1 – t)α – λ

)∣∣dt
)1–1/q

×
(∫ 1

0

∣∣((1 – t)α – λ
)∣∣dt

∣
∣∣∣f

′
(

tb + (1 – t)
a + b

2

)∣
∣∣∣

q

dt
)1/q

≤
(∫ 1

0

∣∣((1 – t)α – λ
)∣∣dt

)1–1/q

×
(∫ 1

0

∣
∣((1 – t)α – λ

)∣∣dt
{

tαs∣∣f ′(b)
∣
∣q + m

(
1 – tαs)

∣∣
∣∣f

′
(

a + b
2

)∣∣
∣∣

q}
dt

)1/q

≤ (M2)1–1/q
(

M1
∣∣f ′(b)

∣∣q + m(M2 – M1)
∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q)1/q

,

|L3| ≤
(∫ 1

0

∣
∣2α – (2 – t)α – λ

∣
∣dt

)1–1/q

×
(∫ 1

0

∣∣2α – (2 – t)α – λ
∣∣
∣
∣∣
∣f

′
(

t
a + b

2
+ (1 – t)a

)∣
∣∣
∣

q

dt
)1/q

≤
(∫ 1

0

∣
∣2α – (2 – t)α – λ

∣
∣dt

)1–1/q
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×
(∫ 1

0

∣
∣2α – (2 – t)α – λ

∣
∣
{

tαs
∣∣
∣∣f

′
(

a + b
2

)∣∣
∣∣

q

+ m
(
1 – tαs)∣∣f ′(a)

∣
∣q

}
dt

)1/q

≤ (M4)1–1/q
(

M3

∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q

+ m(M4 – M3)
∣∣f ′(a)

∣∣q
)1/q

,

|L4| ≤
(∫ 1

0

∣
∣2α – (2 – t)α – λ

∣
∣dt

)1–1/q

×
(∫ 1

0

∣∣2α – (2 – t)α – λ
∣∣
∣
∣∣
∣f

′
(

t
a + b

2
+ (1 – t)b

)∣
∣∣
∣

q

dt
)1/q

≤
(∫ 1

0

∣
∣2α – (2 – t)α – λ

∣
∣dt

)1–1/q

×
(∫ 1

0

∣∣2α – (2 – t)α – λ
∣∣
{

tαs
∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q

+ m
(
1 – tαs)∣∣f ′(b)

∣∣q
}

dt
)1/q

≤ (M4)1–1/q
(

M3

∣∣
∣∣f

′
(

a + b
2

)∣∣
∣∣

q

+ m(M4 – M3)
∣
∣f ′(b)

∣
∣q

)1/q

.

This completes the proof. �

Corollary 2 Under the assumptions Theorem 5, with α = s = m = 1, λ = 0 in inequality (8),
the following inequality holds:

∣∣
∣∣f

(
a + b

2

)
–

1
b – a

∫ b

a
f (x) dx

∣∣
∣∣

≤ b – a
8

[(
1
3
∣∣f ′(a)

∣∣ +
2
3

∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q) 1
q

+
(

1
3
∣∣f ′(b)

∣∣ +
2
3

∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q) 1
q
]

.

Corollary 3 Under the assumptions Theorem 5, with α = s = m = 1, λ = 1 in inequality (8),
the following inequality holds:

∣∣
∣∣
f (a) + f (b)

2
–

1
b – a

∫ b

a
f (x) dx

∣∣
∣∣

≤ b – a
8

[(
2
3
∣∣f ′(a)

∣∣ +
1
3

∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q) 1
q

+
(

2
3
∣∣f ′(b)

∣∣ +
1
3

∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q) 1
q
]

.

Corollary 4 Under the assumptions Theorem 5, with α = s = m = 1, λ = 1
3 in inequality (8),

the following inequality holds:

∣∣
∣∣
1
3

{
2f

(
a + b

2

)
+

f (a) + f (b)
2

}
–

1
b – a

∫ b

a
f (x) dx

∣∣
∣∣

≤ 5(b – a)
72

×
[(

16
45

∣∣f ′(a)
∣∣q +

29
45

∣
∣∣
∣f

′
(

a + b
2

)∣
∣∣
∣

q) 1
q

+
(

16
45

∣
∣f ′(b)

∣
∣q +

29
45

∣∣
∣∣f

′
(

a + b
2

)∣∣
∣∣

q) 1
q
]

.

Theorem 6 Let f : [a, b] →R be a differentiable function on (a, b) with a < b such that f ′ is
integrable. If |f ′|q is concave on [a, b], then the following inequality for Riemann–Liouville



Li et al. Journal of Inequalities and Applications        (2019) 2019:214 Page 8 of 11

fractional integrals holds with 0 < α ≤ 1:

(
1 –

2
2α

λ

)
f
(

a + b
2

)
+ λ

f (a) + f (b)
2α

–
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]

≤ (b – a)
2α+1 ×

[
M2

{∣∣
∣∣f

′
(M5a + (M2 – M5)( a+b

2 )
M2

)∣∣
∣∣ +

∣∣
∣∣f

′
(M5b + (M2 – M5)( a+b

2 )
M2

)∣∣
∣∣

}

+ M4

∣
∣∣∣f

′
(M6( a+b

2 ) + (M4 – M6)a
M4

)∣
∣∣∣ +

∣
∣∣∣f

′
(M6( a+b

2 ) + (M4 – M6)b
M4

)∣
∣∣∣

]
, (9)

M5 =
∫ 1

0

∣
∣(1 – t)α – λ

∣
∣t dt

=
1 – 2(1 – ζ )α+2

(α + 1)(α + 2)
–

2ζ (1 – ζ )α+1

α + 1
+

λ

2
(
1 – 2ζ 2),

M6 =
∫ 1

0

∣∣2α – (2 – t)α – λ
∣∣t dt

=
1 + 2α+2 – 2(2 – ξ )α+2

(α + 1)(α + 2)
+

1 – 2ξ (2 – ξ )α+1

α + 1
+

(
2α – λ

)
(

1
2

– ξ 2
)

.

Proof Using the concavity of |f ′|q and the power-mean inequality, we obtain

∣∣f ′(λa + (1 – λ)b
)∣∣q > λ

∣∣f ′(a)
∣∣q + (1 – λ)

∣∣f ′(b)
∣∣q

≥ (
λ
∣
∣f ′(a)

∣
∣ + (1 – λ)f ′(b)|)q.

Hence

∣∣f ′(λa + (1 – λ)b
)∣∣ ≥ λ

∣∣f ′(a)
∣∣ + (1 – λ)

∣∣f ′(b)
∣∣,

so |f ′| is also concave. By the Jensen integral inequality, we have

(
1 –

2
2α

λ

)
f
(

a + b
2

)
+ λ

f (a) + f (b)
2α

–
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]

≤
(∫ 1

0

∣
∣((1 – t)α – λ

)∣∣dt
)∣∣

∣∣f
′
(∫ 1

0 |((1 – t)α – λ)|(ta + (1 – t) a+b
2 ) dt

∫ 1
0 |((1 – t)α – λ)|dt

)∣∣
∣∣

+
(∫ 1

0

∣
∣((1 – t)α – λ

)∣∣dt
)∣∣

∣∣f
′
(∫ 1

0 |((1 – t)α – λ)|(tb + (1 – t) a+b
2 ) dt

∫ 1
0 |((1 – t)α – λ)|dt

)∣∣
∣∣

+
(∫ 1

0

∣
∣(2α – (2 – t)α – λ

)∣∣dt
)∣∣

∣∣f
′
(∫ 1

0 |(2α – (2 – t)α – λ)|(t a+b
2 + (1 – t)a dt

∫ 1
0 |(2α – (2 – t)α – λ)|dt

)∣∣
∣∣

+
(∫ 1

0

∣∣(2α – (2 – t)α – λ
)∣∣dt

)∣∣∣
∣f

′
(∫ 1

0 |(2α – (2 – t)α – λ)|(t a+b
2 + (1 – t)b dt

∫ 1
0 |(2α – (2 – t)α – λ)|dt

)∣∣∣
∣,

(
1 –

2
2α

λ

)
f
(

a + b
2

)
+ λ

f (a) + f (b)
2α

–
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]

= M2

∣∣
∣∣f

′
(M5a + (M2 – M5)( a+b

2 )
M2

)∣∣
∣∣ + M2

∣∣
∣∣f

′
(M5b + (M2 – M5)( a+b

2 )
M2

)∣∣
∣∣
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+ M4

∣∣
∣∣f

′
(M6( a+b

2 ) + (M4 – M6)a
M4

)∣∣
∣∣ + M4

∣∣
∣∣f

′
(M6( a+b

2 ) + (M4 – M6)b
M4

)∣∣
∣∣. �

Remark 3 Under the assumptions Theorem 6, with α = s = 1, λ = 0 in inequality (9), we
obtain inequality (4).

Remark 4 Under the assumptions Theorem 6, with α = s = 1, λ = 1 in inequality (9), we
obtain inequality (5).

Corollary 5 Under the assumptions Theorem 6, with α = s = 1, λ = 1
3 in inequality (9), the

following inequality holds:

∣∣
∣∣

[
1
6

f (a) +
2
3

f
(

a + b
2

)
+

1
6

f (b)
]

–
1

b – a

∫ b

a
f (x) dx

∣∣
∣∣

≤ 5(b – a)
72

[∣
∣∣∣f

′
(

29a + 61b
90

)∣
∣∣∣ +

∣
∣∣∣f

′
(

61a + 29b
90

)∣
∣∣∣

]
. (10)

Remark 5 Inequality (10) is a generalization of the inequality obtained in [3, Theorem 8].

3 Applications to special means
We consider some means for arbitrary positive real numbers a and b (see, for instance,
[4]):

• The arithmetic mean

A = A(a, b) =
a + b

2
, a, b ∈R with a, b > 0;

• The geometric mean

G = G(a, b) =
√

ab, a, b ∈R with a, b > 0;

• The harmonic mean

H = H(a, b) =
2ab

a + b
, a, b ∈R\{0};

• The identric mean

I = I(a, b) =

⎧
⎨

⎩
a if a = b,
1
e ( bb

aa )
1

b–a if a 
= b, a, b > 0;

• The logarithmic mean

L = L(a, b) =

⎧
⎨

⎩
a if a = b,

b–a
ln b–ln a if a 
= b;

• Generalized logarithmic mean

Ln(a, b) =

⎧
⎨

⎩
a if a = b,

[ bn+1–an+1

(n+1)(b–a) ] 1
n if a 
= b, n ∈ Z\{–1, 0}, a, b > 0.
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Proposition 3 Let n ∈ Z\{–1, 0} and a, b > 0. Then we have the following inequality:

∣
∣(1 – λ)An(a, b) + λA

(
an, bn) – Ln

n(a, b)
∣
∣ ≤ n(b – a)

4
(
2λ2 – 2λ + 1

)
A

(∣∣an–1∣∣,
∣
∣bn–1∣∣).

For λ = 1, we have

∣∣λA
(
an, bn) – Ln

n(a, b)
∣∣ ≤ n(b – a)

4
(
2λ2 – 2λ + 1

)
A

(∣∣an–1∣∣,
∣∣bn–1∣∣).

For λ = 0, we have

∣∣λAn(an, bn) – Ln
n(a, b)

∣∣ ≤ n(b – a)
4

(
2λ2 – 2λ + 1

)
A

(∣∣an–1∣∣,
∣∣bn–1∣∣).

Proof The assertion follows from Corollary 1 for f (x) = xn and with n as specified above. �

Proposition 4 For all 0 < a ≤ b, we have the following inequality:

∣∣ln
[
A(1 + a, 1 + b)

]
I(1 + b, 1 + a)

∣∣ ≤ 2(b – a)

31+ 1
q

(
1

1 + a
+

2
Aq(1 + b, 1 + a)

) 1
q

.

Proof The first assertion follows from Corollary 2 for f (x) = – ln(1 + x)xn.

∣∣ln
[
G(1 + a, 1 + b)

]
I(1 + b, 1 + a)

∣∣ ≤ 2(b – a)

31+ 1
q

(
1

1 + a
+

2
Aq(1 + b, 1 + a)

) 1
q

.

The second assertion follows from Corollary 3 for f (x) = – ln(1 + x).
Let n ∈ Z\{–1, 0}; a, b > 0 then we have the following inequality

∣
∣2An(a, b) + A

(
an, bn) – 3L(a, b)

∣
∣ ≤ 5n(b – a)

12
[29Aq(n–1)(a, b) + 16bq(n–1)]

45
1
q

.

The third assertion follows from Corollary 4 for f (x) = xn and as n as specified above. �
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