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Abstract
In this paper, we consider pointwise estimation over lp (1 ≤ p <∞) risk for a density
function based on a negatively associated sample. We construct linear and nonlinear
wavelet estimators and provide their convergence rates. It turns out that those
wavelet estimators have the same convergence rate up to the lnn factor. Moreover,
the nonlinear wavelet estimator is adaptive.
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1 Introduction
In practical problems, due to the existence of noise, it is possible to obtain real measure-
ment data only with bias (noise). This paper considers the following density estimation
model. Let Y1, Y2, . . . , Yn be identically distributed continuous random variables with the
density function

g(y) =
ω(y)f (y)

μ
, y ∈ [0, 1]. (1)

In this equation, ω is a known biasing function, f denotes the unknown density function of
unobserved random variable X, and μ := E[ω(X)] < ∞. The aim of this model is to estimate
the unknown density function f by the observed negatively associated data Y1, Y2, . . . , Yn.

This model has many applications in industry [4] and economics [8]. Since wavelet bases
have a good local property in both time and frequency domains, the wavelet method has
been widely used for density estimation problem. When the observed data Y1, Y2, . . . , Yn

are independent, Ramírez and Vidakovic [13] constructed a linear wavelet estimator and
study the L2 consistency of this wavelet estimator. Shirazi and Doosti [15] expanded their
work to the multivariate case. Because the definition of linear wavelet estimator depends
on the smooth parametric of the density function f , the linear estimator is not adaptive.
To overcome this shortage, Chesneau [3] proposed a nonlinear wavelet estimator by hard
thresholding method. Moreover, an optimal convergence rate over Lp (1 ≤ p < ∞) risk is
considered. When the independence of data is relaxed to the strong mixing case, Kou and
Guo [10] studied the L2 risk of linear and nonlinear wavelet estimators in the Besov space.
Note that all those studies all focus on the global error. There is a lack of theoretical results
on pointwise wavelet estimation for this density estimation model (1).
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In this paper, we establish wavelet estimations on pointwise lp (1 ≤ p < ∞) risk for a
density function based on a negatively associated sample. Upper bounds of linear and
nonlinear wavelet estimators are considered in the Besov space Bs

r,q(R). It turns out that
the convergence rate of our estimators coincides with the optimal convergence rate for
pointwise estimation [2]. Furthermore, our theorem reduces to the corresponding results
of Rebelles [14] when ω(y) ≡ 1 and the sample is independent.

1.1 Negative association and wavelets
We first introduce the definition of negative association [1].

Definition 1.1 A sequence of random variables Y1, Y2, . . . , Yn is said to be negatively as-
sociated if for each pair of disjoint nonempty subsets A and B of {i = 1, 2, . . . , n},

Cov
(
f (Xi, i ∈ A), g(Xj, j ∈ B)

) ≤ 0,

where f and g are real-valued coordinatewise nondecreasing functions and the corre-
sponding covariances exist.

It is well known that Cov(Yi, Yj) ≡ 0 when the random variables are independent. Hence
the independent and identically distributed data must be negatively associated. Next, we
give an important property of negative association, which will be needed in the later dis-
cussion.

Lemma 1.1 ([9]) Let Y1, Y2, . . . , Yn be a sequence of negatively associated random vari-
ables, and let A1, A2, . . . , Am be pairwise disjoint nonempty subsets of {i = 1, 2, . . . , n}. If
fi (i = 1, 2, . . . , m) are m coordinatewise nondecreasing (nonincreasing) functions, then
f1(Yi, i ∈ A1), f2(Yi, i ∈ A2), . . . , fm(Yi, i ∈ Am) are also negatively associated.

To construct our wavelet estimators, we provide the basic theory of wavelets.
Throughout this paper, we work with the wavelet basis described as follows. Let {Vj, j ∈

Z} be a classical orthonormal multiresolution analysis of L2(R) with a scaling function ϕ.
Then for each f ∈ L2(R),

f =
∑

k∈Z
αj0,kϕj0,k +

∞∑

j=j0

∑

k∈Z
βj,kψj,k ,

where αj0,k = 〈f ,ϕj0,k〉, βj,k = 〈f ,ψj,k〉 and

ϕj0,k = 2j0/2ϕ
(
2j0 x – k

)
, ψj,k = 2j/2ψ

(
2jx – k

)
.

Let Pj be the orthogonal projection operator from L2(R) onto the space Vj with or-
thonormal basis {ϕj,k , k ∈ Z}. If the scaling function ϕ satisfies Condition θ , that is,

∑

k∈Z

∣∣ϕ(x – k)
∣∣ ∈ L∞(R),

then it can be shown that for each f ∈ Lp(R) (1 ≤ p < ∞),

Pjf =
∑

k∈Z
αj,kϕj,k . (2)
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On the other hand, a scaling function ϕ is called m regular if ϕ ∈ Cm(R) and |Dδϕ(y)| ≤
c(1 + y2)–l for each l ∈ Z (δ = 0, 1, 2, . . . , m). In this paper, we choose the Daubechies scaling
function D2N [5]. It is easy to see that D2N satisfies m regular when N gets large enough.

Note that a wavelet basis can characterize a Besov space. These spaces contain many
well-known function spaces, such as the Hölder and L2 Sobolev spaces. The following
lemma gives equivalent definition of Besov spaces.

Lemma 1.2 ([7]) Let f ∈ Lr(R) (1 ≤ r ≤ +∞), let the scaling function ϕ be m-regular, and
let 0 < s < m. Then the following statements are equivalent:

(i) f ∈ Bs
r,q(R), 1 ≤ q ≤ +∞;

(ii) {2js‖Pjf – f ‖r} ∈ lq;
(iii) {2j(s– 1

r + 1
2 )‖βj‖r} ∈ lq.

The Besov norm of f can be defined as

‖f ‖Bs
r,q :=

∥
∥(αj0 )

∥
∥

r +
∥
∥(

2j(s– 1
r + 1

2 )‖βj‖r
)

j≥j0

∥
∥

q

with ‖(αj0 )‖r
r :=

∑
k∈Z |αj0,k|r and ‖βj‖r

r :=
∑

k∈Z |βj,k|r .

In this paper, we assume that the density function f belongs to the Besov ball with radius
H > 0, that is,

f ∈ Bs
r,q(H) :=

{
f ∈ Bs

r,q(R),‖f ‖Bs
r,q ≤ H

}
.

1.2 Wavelet estimators and theorem
Define our linear wavelet estimator as follows:

f̂ lin
n (y) :=

∑

k∈Λ

α̂j0,kϕj0,k(y) (3)

with

α̂j0,k =
μ̂n

n

n∑

i=1

ϕj0,k(Yi)
ω(Yi)

(4)

and

μ̂n =

[
1
n

n∑

i=1

1
ω(Yi)

]–1

. (5)

Using the hard thresholding method, a nonlinear wavelet estimator is defined by

f̂ non
n (y) :=

∑

k∈Λ

α̂j0,kϕj0,k(y) +
j1∑

j=j0

∑

k∈Λj

β̂j,kI{|β̂j,k |≥κtn}ψj,k(y), (6)

where tn =
√

ln n
n and

β̂j,k =
μ̂n

n

n∑

i=1

ψj,k(Yi)
ω(Yi)

. (7)
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In these definitions, Λ := {k ∈ Z, supp f ∩ suppϕj0,k �= ∅} and Λj := {k ∈ Z, supp f ∩
suppψj,k �= ∅}. Note that the cardinality of Λ (Λj) satisfies |Λ| ∼ 2j0 (|Λj| ∼ 2j) due to
the compactly supported properties of the functions f and ϕj0,k (ψj,k). Here and further,
A ∼ B stands for both A � B and B � A, where A � B denotes A ≤ cB with a positive
constant c that is independent of A and B. In addition, the constant κ will be chosen in
later discussion.

We are in position to state our main theorem.

Theorem 1 Let f ∈ Bs
r,q(H) (r, q ∈ [1,∞), s > 1

r ), and let ω(y) be a nonincreasing func-
tion such that ω(y) ∼ 1. Then for each 1 ≤ p < ∞, the linear wavelet estimator with
2j0 ∼ n

1
2(s–1/r)+1 satisfies

E
[∣∣̂f lin

n (y) – f (y)
∣
∣]p � n– (s–1/r)p

2(s–1/r)+1 , (8)

and the nonlinear wavelet estimator with 2j0 ∼ n
1

2m+1 (m > s) and 2j1 ∼ n
ln n satisfies

E
[∣∣̂f non

n (y) – f (y)
∣∣]p � (ln n)

3p
2 n– (s–1/r)p

2(s–1/r)+1 . (9)

Remark 1 Note that n– (s–1/r)p
2(s–1/r)+1 is the optimal convergence rate in the minimax sense for

pointwise estimation in a Besov space [2]. Moreover, our theorem reduces to the results
of Rebelles [14] when ω(y) ≡ 1 and the random sample is independent.

Remark 2 In contract to the linear wavelet estimator, the convergence rate of the nonlinear
estimator remains the same as that of the linear one up to the ln n factor. However, the
nonlinear one is adaptive, which means that both j0 and j1 do not depend on s.

2 Auxiliary lemmas
In this section, we give some lemmas, which are very useful for proving Theorem 1.

Lemma 2.1 For the model defined by (1), we have

E

[
1

ω(Yi)

]
=

1
μ

, E

[
μϕj,k(Yi)
ω(Yi)

]
= αj,k and E

[
μψj,k(Yi)

ω(Yi)

]
= βj,k .

Proof This lemma can be proved by the same arguments of Kou and Guo [10]. �

Lemma 2.2 Let f ∈ Bs
r,q (1 ≤ r, q < +∞, s > 1/r), and let ω(y) be a nonincreasing function

such that ω(y) ∼ 1. If 2j ≤ n and 1 ≤ p < +∞, then

E
[|̂αj0,k – αj0,k|p

]
� n– p

2 , E
[|β̂j,k – βj,k|p

]
� n– p

2 .

Proof Because the proofs of both inequalities are similar, we only prove the second one.
By the definition of β̂j,k we have

|β̂j,k – βj,k| ≤
∣∣
∣∣
∣
μ̂n

μ

(
μ

n

n∑

i=1

ψj,k(Yi)
ω(Yi)

– βj,k

)∣∣
∣∣
∣

+
∣∣
∣∣βj,kμ̂n

(
1
μ

–
1
μ̂n

)∣∣
∣∣.
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Note that the definition of μ̂n and ω(y) ∼ 1 imply |μ̂n| � 1. We have Bs
r,q(R) ⊆ Bs–1/r∞,∞(R) in

the case of s > 1
r ; then f ∈ Bs–1/r∞,∞(R) and ‖f ‖∞ � 1. Moreover, |βj,k| = |〈f ,ψj,k〉| � 1 by the

Cauchy–Schwarz inequality and the orthonormality of wavelet functions. Hence, we have
the following conclusion:

E
[|β̂j,k – βj,k|p

]
� E

[∣
∣∣
∣∣

1
n

n∑

i=1

μψj,k(Yi)
ω(Yi)

– βj,k

∣
∣∣
∣∣

p]

+ E

[∣
∣∣∣

1
μ

–
1
μ̂n

∣
∣∣∣

p]
. (10)

Then we need to estimate T1 := E[| 1
n
∑n

i=1
μψj,k (Yi)

ω(Yi)
– βj,k|p] and T2 := E[| 1

μ
– 1

μ̂n
|p].

• An upper bound for T1. Taking ηi := μψj,k (Yi)
ω(Yi)

– βj,k , we get

T1 = E

[∣∣
∣∣
∣

1
n

n∑

i=1

ηi

∣∣
∣∣
∣

p]

=
(

1
n

)p

E

[∣∣
∣∣
∣

n∑

i=1

ηi

∣∣
∣∣
∣

p]

.

Note that ψ is a function of bounded variation (see Liu and Xu [12]). We can get ψ :=
ψ̃ – ψ , where ψ̃ and ψ bounded nonnegative nondecreasing functions. Define

η̃i :=
μψ̃j,k(Yi)

ω(Yi)
– β̃j,k , ηi :=

μψ j,k(Yi)
ω(Yi)

– β j,k

with β̃j,k := 〈f , ψ̃j,k〉 and β j,k := 〈f ,ψ j,k〉. Then ηi = η̃i – ηi, βj,k = β̃j,k – β j,k , and

T1 =
(

1
n

)p

E

[∣∣
∣∣∣

n∑

i=1

(̃ηi – ηi)

∣∣
∣∣∣

p]

�
(

1
n

)p
{

E

[∣∣
∣∣∣

n∑

i=1

η̃i

∣∣
∣∣∣

p]

+ E

[∣∣
∣∣∣

n∑

i=1

ηi

∣∣
∣∣∣

p]}

. (11)

Similar arguments as in Lemma 2.1 show that E[̃ηi] = 0. The function ψ̃j,k (y)
ω(y) is nonde-

creasing by the monotonicity of ψ̃(y) and ω(y). Furthermore, we get that {̃ηi, i = 1, 2, . . . , n}
is negatively associated by Lemma 1.1. On the other hand, it follows from (1) and ω(y) ∼ 1
that

E
[|̃ηi|p

]
� E

[∣∣
∣∣
μψ̃j,k(Yi)

ω(Yi)

∣∣
∣∣

p]
�

∫

[0,1]

∣
∣ψ̃j,k(y)

∣
∣pf (y) dy � 2j(p/2–1). (12)

In particular, E[|̃ηi|2] � 1. Recall Rosenthal’s inequality [12]: if Y1, Y2, . . . , Yn are negatively
associated random variables such that E[Yi] = 0 and E[|Yi|p] < ∞, then

E

[∣
∣∣
∣∣

n∑

i=1

Yi

∣
∣∣
∣∣

p]

�

⎧
⎨

⎩

∑n
i=1 E[|Yi|p] + (

∑n
i=1 E[|Yi|2])p/2, p > 2;

(
∑n

i=1 E[|Yi|2])p/2, 1 ≤ p ≤ 2.

From this we clearly have

E

[∣∣∣
∣∣

n∑

i=1

η̃i

∣∣∣
∣∣

p]

�

⎧
⎨

⎩
n2j(p/2–1) + np/2, p > 2;

np/2, 1 ≤ p ≤ 2.
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This, together with 2j ≤ n, shows that E[|∑n
i=1 η̃i|p] � np/2. Similarly, E[|∑n

i=1 ηi|p] � np/2.
Combining these with (11), we get that

T1 �
(

1
n

)p
{

E

[∣∣
∣∣
∣

n∑

i=1

η̃i

∣∣
∣∣
∣

p]

+ E

[∣∣
∣∣
∣

n∑

i=1

ηi

∣∣
∣∣
∣

p]}

� n– p
2 . (13)

• An upper bound for T2. It is easy to see from the definition of μ̂n that

T2 = E

[∣
∣∣
∣

1
μ

–
1
μ̂n

∣
∣∣
∣

p]
=

(
1
n

)p

E

[∣∣∣
∣∣

n∑

i=1

(
1

ω(Yi)
–

1
μ

)∣∣∣
∣∣

p]

. (14)

Defining ξi := 1
ω(Yi)

– 1
μ

, we obtain that E[ξi] = 0 and E[|ξi|p] � 1 by Lemma 2.1 and ω(y) ∼
1. In addition, by the monotonicity of ω(y) and Lemma 1.1 we know that ξ1, ξ2, . . . , ξn are
also negatively associated. Then using Rosenthal’s inequality, we get

E

[∣
∣∣∣
∣

n∑

i=1

ξi

∣
∣∣∣
∣

p]

�

⎧
⎨

⎩
n + np/2, p > 2;

np/2, 1 ≤ p ≤ 2.

Hence

T2 =
(

1
n

)p

E

[∣∣
∣∣∣

n∑

i=1

ξi

∣∣
∣∣∣

p]

� n– p
2 . (15)

Finally, by (10), (13), and (15) we have

E
[|β̂j,k – βj,k|p

]
� n– p

2 .

This ends the proof. �

Lemma 2.3 Let f ∈ Bs
r,q (1 ≤ r, q < +∞, s > 1/r) and β̂j,k be defined by (7). If ω(y) is a non-

increasing function, ω(y) ∼ 1, and 2j ≤ n
ln n , then for each λ > 0, there exists a constant κ > 1

such that

P
{|β̂j,k – βj,k| ≥ κtn

}
� 2–λj.

Proof By the same arguments of (10) we can obtain that

P
{|β̂j,k – βj,k| ≥ κtn

} ≤ P

{∣
∣∣
∣∣

1
n

n∑

i=1

(
1

ω(Yi)
–

1
μ

)∣
∣∣
∣∣
≥ κtn

2

}

+ P

{∣∣
∣∣
∣

1
n

n∑

i=1

(
μψj,k(Yi)

ω(Yi)
– βj,k

)∣∣
∣∣
∣
≥ κtn

2

}

. (16)

To estimate P{| 1
n
∑n

i=1( 1
ω(Yi)

– 1
μ

)| ≥ κtn
2 }, we also define ξi := 1

ω(Yi)
– 1

μ
. Then Lemma 2.1

implies that E[ξi] = 0. Moreover, |ξi|� 1 and E[|ξi|2] � 1 thanks to ω(y) ∼ 1. On the other
hand, because of the monotonicity of ω(y) and Lemma 1.1, ξ1, ξ2, . . . , ξn are also negatively
associated.
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Recall Bernstein’s inequality [12]: If Y1, Y2, . . . , Yn are negatively associated random vari-
ables such that E[Yi] = 0, |Yi| ≤ M < ∞, and E[|Yi|2] = σ 2, then for each ε > 0,

P

{∣∣
∣∣
∣
1
n

n∑

i=1

Yi

∣∣
∣∣
∣
≥ ε

}

� exp

(
–

nε2

2(σ 2 + εM/3)

)
.

Therefore, by the previous arguments for ξi and tn =
√

ln n
n , we derive

P

{∣∣
∣∣
∣
1
n

n∑

i=1

(
1

ω(Yi)
–

1
μ

)∣∣
∣∣
∣
≥ κtn

2

}

� exp

(
–

(ln n)κ2/4
2(σ 2 + κ/6)

)
.

Then there exists κ > 1 such that exp(– (ln n)κ2/4
2(σ 2+κ/6) ) � 2–λj with fixed λ > 0. Hence

P

{∣
∣∣
∣∣
1
n

n∑

i=1

(
1

ω(Yi)
–

1
μ

)∣
∣∣
∣∣
≥ κtn

2

}

� 2–λj. (17)

Next, we estimate P{| 1
n
∑n

i=1( μψj,k (Yi)
ω(Yi)

– βj,k)| ≥ κtn
2 }. By to the same arguments of (11) we

get

P

{∣∣∣
∣∣
1
n

n∑

i=1

ηi

∣∣∣
∣∣
≥ κtn

2

}

≤ P

{∣∣∣
∣∣

1
n

n∑

i=1

η̃i

∣∣∣
∣∣
≥ κtn

4

}

+ P

{∣∣∣
∣∣
1
n

n∑

i=1

ηi

∣∣∣
∣∣
≥ κtn

4

}

. (18)

It is easy to see from the definition of η̃i and Lemma 2.1 that E[̃ηi] = 0. Moreover,
E[|̃ηi|2] � 1 by (12) with p = 2. Using ω(y) ∼ 1, we get |μψ̃j,k (Yi)

ω(Yi)
|� 2j/2 and |̃ηi| ≤ |μψ̃j,k (Yi)

ω(Yi)
| +

E[|μψ̃j,k (Yi)
ω(Yi)

|] � 2j/2. Then it follows from Bernstein’s inequality, 2j ≤ n
ln n , and tn =

√
ln n
n that

P

{∣∣
∣∣∣
1
n

n∑

i=1

η̃i

∣∣
∣∣∣
≥ κtn

4

}

� exp

(
–

n(κtn/4)2

2(σ 2 + κtn2j/2/12)

)
� exp

(
–

(ln n)κ2/16
2(σ 2 + κ/12)

)
.

Clearly, we can take κ > 1 such that P{| 1
n
∑n

i=1 η̃i| ≥ κtn
4 } � 2–λj. Then similar arguments

show that P{| 1
n
∑n

i=1 ηi| ≥ κtn
4 } � 2–λj. Combining those with (18), we obtain

P

{∣
∣∣∣
∣
1
n

n∑

i=1

(
μψj,k(Yi)

ω(Yi)
– βj,k

)∣
∣∣∣
∣
≥ κtn

2

}

� 2–λj. (19)

By (16), (17), and (19) we get

P
{|β̂j,k – βj,k| ≥ κtn

}
� 2–λj.

This ends the proof. �

3 Proof of theorem
In this section, we prove the Theorem 1.
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Proof of (8) It is easy to see that

E
[∣∣̂f lin

n (y) – f (y)
∣∣p] � E

[∣∣̂f lin
n (y) – Pj0 f (y)

∣∣p] +
∣∣Pj0 f (y) – f (y)

∣∣p. (20)

Then we need to estimate E[|̂f lin
n (y) – Pj0 f (y)|p] and |Pj0 f (y) – f (y)|p.

By (2) and (3) we get that

E
[∣∣̂f lin

n (y) – Pj0 f (y)
∣
∣p] = E

[∣∣
∣∣
∑

k∈Λ

(̂αj0,k – αj0,k)ϕj0,k(y)
∣∣
∣∣

p]
.

Using the Hölder inequality (1/p + 1/p′ = 1), we see that

E
[∣∣̂f lin

n (y) – Pj0 f (y)
∣∣p] ≤ E

[(∑

k∈Λ

|̂αj0,k – αj0,k|p
∣∣ϕj0,k(y)

∣∣
)(∑

k∈Λ

∣∣ϕj0,k(y)
∣∣
) p

p′ ]
.

Then it follows from Condition θ and Lemma 2.2 that

E
[∣∣̂f lin

n (y) – Pj0 f (y)
∣
∣p] �

∑

k∈Λ

E
[|̂αj0,k – αj0,k|p

]∣∣ϕj0,k(y)
∣
∣2

j0p
2p′ �

(
2j0

n

) p
2

. (21)

This, together with 2j0 ∼ n
1

2(s–1/r)+1 , shows that

E
[∣∣̂f lin

n (y) – Pj0 f (y)
∣∣p] � n– (s–1/r)p

2(s–1/r)+1 . (22)

Note that Bs
r,q(R) ⊆ Bs–1/r∞,∞(R) in the case s > 1/r. It should be pointed out that Bs–1/r∞,∞(R)

is also a Hölder space. Then by Lemma 1.2, f ∈ Bs
r,q(R), and 2j0 ∼ n

1
2(s–1/r)+1 we obtain that

∣∣Pj0 f (y) – f (y)
∣∣p � 2–j0(s–1/r)p � n– (s–1/r)p

2(s–1/r)+1 . (23)

Combining this with (20) and (22), we get

E
[∣∣̂f lin

n (y) – f (y)
∣∣p] � n– (s–1/r)p

2(s–1/r)+1 . �

Proof of (9) Using the definitions of f̂ lin
n (y) and f̂ non

n (y), we get that

E
[∣∣̂f non

n (y) – f (y)
∣
∣p]� W1 + W2 + G, (24)

where W1 := E[|̂f lin
n (y) – Pj0 f (y)|p], W2 := |Pj1+1f (y) – f (y)|p, and

G := E

[∣
∣∣
∣∣

j1∑

j=j0

∑

k∈Λj

(β̂j,kI{|β̂j,k |≥κtn} – βj,k)ψj,k(y)

∣
∣∣
∣∣

p]

.

It follows from (21), 2j0 ∼ n 1
2m+1 (m > s), and s > 1/r that

W1 �
(

2j0

n

) p
2 ∼ n– mp

2m+1 < n– (s–1/r)p
2(s–1/r)+1 . (25)
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On the other hand, by the same arguments as for (23), we can obtain that W2 � 2–j1(s–1/r)p.
This with the choice of 2j1 ∼ n

ln n shows

W2 � 2–j1(s–1/r)p ∼
(

ln n
n

)(s–1/r)p

<
(

ln n
n

) (s–1/r)p
2(s–1/r)+1

. (26)

Then the remaining task is to estimate G.
Using the classical technique in [6], we get that

G � (ln n)p–1(G1 + G2 + G3), (27)

where

G1 := E

[ j1∑

j=j0

(∑

k∈Λj

|β̂j,k – βj,k|I{|β̂j,k –βj,k |≥ κtn
2 }

∣∣ψj,k(y)
∣∣
)p

]

,

G2 := E

[ j1∑

j=j0

(∑

k∈Λj

|β̂j,k – βj,k|I{|βj,k |≥ κtn
2 }

∣∣ψj,k(y)
∣∣
)p

]

,

G3 :=
j1∑

j=j0

(∑

k∈Λj

|βj,k|I{|βj,k |≤2κtn}
∣∣ψj,k(y)

∣∣
)p

.

• An upper bound for G1. By the definition of β̂j,k , ω(y) ∼ 1, and Lemma 2.1, |β̂j,k|� 2j/2

and |β̂j,k – βj,k|� 2j/2. Furthermore, we obtain that

G1 � E

[ j1∑

j=j0

(∑

k∈Λj

2j/2I{|β̂j,k –βj,k |≥ κtn
2 }

∣
∣ψj,k(y)

∣
∣
)p

]

.

On the other hand, it follows from the Hölder inequality and Condition θ that

(∑

k∈Λj

I{|β̂j,k –βj,k |≥ κtn
2 }

∣
∣ψj,k(y)

∣
∣
)p

�
(∑

k∈Λj

I{|β̂j,k –βj,k |≥ κtn
2 }

∣∣ψj,k(y)
∣∣
)(∑

k∈Λj

∣∣ψj,k(y)
∣∣
) p

p′

�
(∑

k∈Λj

I{|β̂j,k –βj,k |≥ κtn
2 }

∣∣ψj,k(y)
∣∣
)

2
jp

2p′ .

Then using Condition θ and Lemma 2.3, we derive that

G1 � E

[ j1∑

j=j0

2jp/2
(∑

k∈Λj

I{|β̂j,k –βj,k |≥ κtn
2 }

∣∣ψj,k(y)
∣∣
)

2
jp

2p′
]

�
j1∑

j=j0

2
j
2 (p+ p

p′ ) ∑

k∈Λj

∣∣ψj,k(y)
∣∣E[I{|β̂j,k –βj,k |≥ κtn

2 }] �
j1∑

j=j0

2j(p–λ). (28)
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Clearly, there exists κ > 1 such that λ > p + mp in Lemma 2.3. Then G1 �
∑j1

j=j0 2j(p–λ) �
∑j1

j=j0 2–jmp. This with the choice of 2j0 ∼ n 1
2m+1 (m > s) shows that

G1 �
j1∑

j=j0

2–jmp � 2–j0mp ∼ n– mp
2m+1 < n– (s–1/r)p

2(s–1/r)+1 . (29)

• An upper bound for G2. Taking 2j∗ ∼ n
1

2(s–1/r)+1 , we get that 2j0 < 2j∗ < 2j1 . It is easy to
see that

G21 := E

[ j∗∑

j=j0

(∑

k∈Λj

|β̂j,k – βj,k|I{|βj,k |≥ κtn
2 }

∣
∣ψj,k(y)

∣
∣
)p

]

�
j∗∑

j=j0

E

[(∑

k∈Λj

|β̂j,k – βj,k|
∣
∣ψj,k(y)

∣
∣
)p]

.

Similarly to the arguments of (21), we get

G21 �
j∗∑

j=j0

(
2j

n

) p
2
�

(
2j∗

n

) p
2 ∼ n– (s–1/r)p

2(s–1/r)+1 (30)

by Lemma 2.2 and 2j∗ ∼ n
1

2(s–1/r)+1 .
On the other hand,

G22 := E

[ j1∑

j=j∗+1

(∑

k∈Λj

|β̂j,k – βj,k|I{|βj,k |≥ κtn
2 }

∣∣ψj,k(y)
∣∣
)p

]

� E

[ j1∑

j=j∗+1

(∑

k∈Λj

|β̂j,k – βj,k|
∣
∣∣∣
βj,k

κtn

∣
∣∣∣
∣∣ψj,k(y)

∣∣
)p

]

.

Using the Hölder inequality and Lemma 2.2, we have

G22 � E

[ j1∑

j=j∗+1

(
1
tn

)p(∑

k∈Λj

|β̂j,k – βj,k|p
∣∣βj,kψj,k(y)

∣∣
)(∑

k∈Λj

∣∣βj,kψj,k(y)
∣∣
) p

p′
]

�
j1∑

j=j∗+1

(
1
tn

)p

n– p
2

(∑

k∈Λj

∣∣βj,kψj,k(y)
∣∣
)p

.

When s > 1/r, Bs
r,q(R) ⊆ Bs–1/r∞,∞(R). Clearly, Bs–1/r∞,∞(R) is a Hölder space. Then we can derive

that
∑

k∈Λj
|βj,kψj,k(y)|� 2–j(s–1/r) as in [11]. Hence it follows from the choice of 2j∗ that

G22 �
j1∑

j=j∗+1

2–j(s–1/r)p � 2–j∗(s–1/r)p ∼ n– (s–1/r)p
2(s–1/r)+1 . (31)

Therefore we have

G2 = G21 + G22 � n– (s–1/r)p
2(s–1/r)+1 . (32)
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• An upper bound for G3. Clearly, we can obtain that

G31 :=
j∗∑

j=j0

(∑

k∈Λj

|βj,k|I{|βj,k |≤2κtn}
∣∣ψj,k(y)

∣∣
)p

�
j∗∑

j=j0

(∑

k∈Λj

tn
∣∣ψj,k(y)

∣∣
)p

�
j∗∑

j=j0

(
ln n
n

) p
2

2jp/2 �
(

ln n
n

) p
2

2j∗p/2 � (ln n)p/2n– (s–1/r)p
2(s–1/r)+1 . (33)

In addition, it follows from the Hölder inequality (1/r + 1/r′ = 1), Condition θ , and Lemma
1.2 that

G32 :=
j1∑

j=j∗+1

(∑

k∈Λj

|βj,k|I{|βj,k |≤2κtn}
∣∣ψj,k(y)

∣∣
)p

�
j1∑

j=j∗+1

(∑

k∈Λj

|βj,k|
∣∣ψj,k(y)

∣∣
)p

�
j1∑

j=j∗+1

(∑

k∈Λj

|βj,k|r
) p

r
(∑

k∈Λj

∣∣ψj,k(y)
∣∣r′

) p
r′
�

j1∑

j=j∗+1

2–j(s–1/r)p.

This with 2j∗ ∼ n
1

2(s–1/r)+1 shows that

G32 �
j1∑

j=j∗+1

2–j(s–1/r)p � 2–j∗(s–1/r)p ∼ n– (s–1/r)p
2(s–1/r)+1 . (34)

Therefore

G3 = G31 + G32 � (ln n)p/2n– (s–1/r)p
2(s–1/r)+1 . (35)

By (27), (29), (32), and (35) we have G � (ln n)
3p
2 n– (s–1/r)p

2(s–1/r)+1 . Then it is easy to see from
(24), (25), and (26) that

E
[∣∣̂f non

n (y) – f (y)
∣
∣p]� (ln n)

3p
2 n– (s–1/r)p

2(s–1/r)+1 .

This ends the proof. �
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