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Abstract
Stochastic volatility models play an important role in finance modeling. Under a
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1 Introduction
Most of the existing literature on financial models assumes that the volatility of assets
is constant. However, this assumption ignores the return features of volatility clustering,
high peak, fat tails, and volatility mean reverting in real markets, which cannot be captured
by constant volatility models [1, 2]. To model the volatility smile effectively, one solution
is using the stochastic volatility under two cases: (1) the function of stochastic processes is
used to describe the volatility [3, 4], and (2) the additional Brownian motion is introduced
to describe the stochastic parts of stochastic volatility (SV) models. In this paper, we focus
on the second case.

Stochastic volatility models constituted of one stock have been introduced and inten-
sively investigated in the literature. Hull and White [5] first introduce an SV model called
the Heston model in which the market volatility follows a mean-reverting Cox–Ingersoll–
Ross process. Starting with Xu and Taylor [6], lots of studies show that two-component
volatility models outperform one-component ones in the option pricing literature (see
[7, 8]). Da Fonseca et al. [9] extend the Heston model to a multifactor specification for
the volatility process in a single asset framework. Wang et al. [10] extend the framework
of Siu et al. [11] and focus on currency options under a two-factor Markov-modulated
stochastic volatility jump-diffusion model. The theoretical development of the SV model
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is introduced in [12] by studying the following equations:

⎧
⎨

⎩

dS(t) = rS(t) dt +
√

v(t)S(t) dB1(t),

dv(t) = κ(θ – v(t)) dt + σ (v(t)) dB2(t),
(1.1)

where time variable t ∈ (0, T), B1(t) and B2(t) are mutually independent standard Brown-
ian motions, and r > 0 is the constant risk-free interest rate. Here v(t) is a mean-reverting
square-root process, whereas κ > 0 specifies the speed of adjustment of the volatility to-
ward its theoretical mean θ > 0. Note that σ > 0 is the second-order volatility, that is, the
volatility of volatility. The paper [12] also studies the existence and uniqueness of a strong
solution to (1.1). Certain Lp estimates of (1.1) are proved in [13].

However, all the existing SV models mentioned are based on the Brownian motion with
increments following the independent norm distribution. Many works argue that the re-
turns of risky assets have long-range dependence properties, which are expressed by the
increment of financial models. Using the Brownian motion to express the stochastic parts
without considering its dependency to the financial modeling may have some serious dis-
advantages [14]. Because of the self-similarity and long-range dependence properties, the
fractional Brownian motion becomes a suitable tool in mathematical finance. We refer the
readers to [14, 15] for the motivation and references concerning the study of the fractional
Brownian motion.

It is worth noting that the SV models shown in the above references constitute one stock.
Thus those SV models cannot be used to study vulnerable option shown in Sect. 5, because
the vulnerable option is constructed by two stocks.

In this paper, we use the mixed fractional Brownian motion (mfBm), which is a linear
combination of a Brownian motion and fractional Brownian motion, to drive the following
stock price systems constituted of two stocks:

⎧
⎨

⎩

dS1(t) = rS1(t) dt +
√

V1(t)S1(t)α1 dMH
1,1(t), S1(0) = s1,

dS2(t) = rS2(t) dt +
√

V2(t)S2(t)α2 dMH
1,2(t), S2(0) = s2,

(1.2)

where the variance processes {v1(t), t ≥ 0} and {v2(t), t ≥ 0} are driven by the fractional
Cox–Ingersoll–Ross model satisfying

⎧
⎨

⎩

dV1(t) = κ1(θ1 – V1(t)) dt + σ1
√|V1(t)|dMH

2,1(t), V1(0) = v1,

dV2(t) = κ2(θ2 – V2(t)) dt + σ2
√|V2(t)|dMH

2,2(t), V2(0) = v2,
(1.3)

dMH
1,1(t) · dMH

1,2(t) = dMH
2,1(t) · dMH

2,2(t) = ρ
(
dt2H + λ2 dt

)
. (1.4)

Here MH
1,1(t), MH

1,2(t), MH
2,1(t) and MH

2,2(t) are mfBm processes, which, together with relative
conclusions, will be defined in Sect. 2, and α is an elastic constant. We call this model a
mixed factional CEV model. It is not an easy task to show that the solutions to V1(t) and
V2(t) are positive when SV model is driven by mfBm processes. Thus we use |V1(t)| and
|V2(t)| in (1.3) instead of V1(t) and V2(t) as in the classical SV model.

In this work, we investigate the existence, uniqueness, and continuity of solutions to
the dynamic model (1.2)–(1.4). The existence and uniqueness are explained in Sect. 2.
In Sect. 3, we study the continuity of the solution to the dynamic model (1.2)–(1.4). In
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Sect. 4, we price the European option using the discrete type of (1.2)–(1.4) and Monte
Carlo simulations.

2 Preliminaries
The mixed fractional Brownian motion is a stochastic process with long memory and plays
an important role in the financial modeling. To better understand the rest of the paper,
we briefly review some basic concepts and properties of the mixed fractional Brownian
motion.

Let H be a constant belonging to (0, 1). A fractional Brownian motion (fBm) {BH(t), t ≥
0} with Hurst parameter H is a continuous and centered Gaussian process with covariance
[16]

R(t, s) = E
[
BH (t)BH(s)

]
=

1
2
(
t2H + s2H – |t – s|2H)

=
∫ t

0

∫ s

0
φ(r, u) du dr

for s, t > 0, where φ(r, u) = H(2H – 1)|r – u|2H–2. When H = 1
2 , the fBm becomes a standard

Brownian motion denoted by {B(t), t ≥ 0}. A mixed fractional Brownian motion (mfBm)
{MH (t), t ≥ 0} is a linear combination of a Brownian motion (Bm) and a fractional Brow-
nian motion, defined on a filtered probability space (Ω ,F ,Ft , P) by

MH (t) = λB(t) + BH (t),

where λ is a real constant, P is a physical probability measure, and {Ft , t ≥ 0} denotes the
P-completion of the filtration generated by (B(t), BH(t)). An mfBm {MH (t), t ≥ 0} has the
following properties [12, 13]

1. MH (0) = 0 and E[MH (t)] = 0 for any t ≥ 0.
2. MH (t) is a centered Gaussian process, not a Markovian one for all H ∈ (0, 1).
3. {MH (t), t ≥ 0} has homogeneous increments, that is, the increment

MH (t + s) – MH (s) has the same distribution as BH (t) for s, t ≥ 0.
4. The covariance of MH (t) and MH (s) is given by

E
[
MH (t)MH (s)

]
= λ2 · s ∧ t + R(t, s) for s, t > 0.

5. The increments of MH (t) are positively correlated if 0.5 < H < 1, uncorrelated if
H = 0.5, and negatively correlated if 0 < H < 0.5.

At the end of this section, we give some notations, function spaces, and conclusions to
prove our main results (for details, see [13–15]).

Let S(R) be the Schwartz space of rapidly decreasing smooth functions on R with norm

‖f ‖2
H =

∫

R

∫

R
f (s)f (t)φ(s, t) ds dt < ∞.

If we equip S(R) with the inner product

〈f , g〉H =
∫

R

∫

R
f (s)f (t)φ(s, t) ds dt < ∞,

then the completion of S(R), denoted by L2
H (R), becomes a separable Hilbert space.
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Recall that an mfBm is a linear combination of a Bm and fBm. The stochastic integral
with respect to a Bm has been studied by many references. We present the fractional
Wick–Itô–Skorokhod (fWIS) integral theory.

The stochastic integral with respect to fBm for deterministic functions is easily defined.

Lemma 2.1 If f , g belong to L2
H (R), then

∫

R f (s) dBH
s and

∫

R g(s) dBH
s are well-defined zero-

mean Gaussian random variables with variances ‖f ‖2
H and ‖g‖2

H , respectively, and

E
[∫

R
f (s) dBH

s

∫

R
g(s) dBH

s

]

= 〈f , g〉H .

Proof This lemma is verified in [16]. It can be directly proved by verifying it for simple
functions

∑n
i=1 aiI(ti ,ti+1] and then proceeding with a passage to the limit. �

Definition 2.1 Suppose Y : R → (S)∗H is a given function such that Y (t)♦W (H)(t) is dt-
integrable in (S)∗H . Then we define its fractional Wick–Itô–Skorokhod (fWIS) integral
∫

R Y (t) dBH
t by

∫

R
Y (t) dBH

t =
∫

R
Y (t)♦W (H)(t) dt.

In particular, the integral on an interval can be defined as
∫ T

0
Y (t) dBH

t =
∫

R
Y (t)I[0,T] dBH

t .

Here (S)∗H is the fractional Hida distribution space, and ♦ stands for the Wick product (for
details, see [16]).

Example 2.1 Suppose Y (t) is a step function Y (t) =
∑n

i=1 Fi(ω)I[ti ,ti+1)(t), where the random
variables Fi(ω) ∈ (S)∗H , and a partition π satisfies 0 = t0 < t1 < · · · < tn = T . Then

∫ T

0
Y (t) dBH

t =
n∑

i=1

Fi(ω)♦(
BH

ti+1
– BH

ti

)
.

Let Lp(PH ) = Lp be the space of all random variables F : Ω → R such that

‖F‖Lp(PH ) = E
[|F|p]1/p < ∞.

Definition 2.2 Let g ∈ L2
H (R). The φ-derivative of a random variable F ∈ Lp(PH ) in the

direction of Φg is defined as

DΦgF(ω) = lim
δ→0

1
δ

{

F
(

ω + δ

∫ ·

0
(Φg)(u) du

)

– F(ω)
}

,

provided that the limit exists in Lp(PH ). Furthermore, if there is a process (Dφ
s F , s > 0) such

that

DΦgF =
∫

R
Dφ

s Fgs ds almost surely

for all g ∈ L2
H (R), then F is said to be φ-differentiable.
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Lemma 2.2 If g ∈ L2
H (R), F ∈ L2(PH ), and DΦgF ∈ L2(PH ), then

F♦
∫

R
gs dB(H)

s = F
∫

R
gs dB(H)

s – DΦgF .

3 Moment estimates
In this section, we prove moment estimates and continuity of the solution of the mixed
fractional CEV system (1.2)–(1.3) by extending the idea of [13] for a mixed stochastic
differential equation.

Lemma 3.1 If X obeys the normal distribution with zero mean, then for any constant p ≥ 1,
there exists a constant c1(p), depending only on p, such that

E
[|X|p] ≤ c1(p)E

[|X|]p. (3.1)

Proof Let X ∼ N(0,σ 2) and f (x) = 1√
2πσ 2 exp{– x2

2σ 2 }. If n ≥ 2 is an even number, then it is
easy to have

E
[|X|n] = 2

∫ +∞

0
xnf (x) dx =

2√
2πσ 2

∫ +∞

0
xn exp

{

–
x

2σ 2

}

dx.

Using t = x
2σ 2 , we have

E
[|X|n] = 2

∫ +∞

0
xnf (x) dx =

(
√

2)n

√
π

σ n
∫ +∞

0
t

n–1
2 exp{–t}dx.

Recall that Γ (n) =
∫ +∞

0 tn–1 exp{–t}dx, Thus we use Γ (n) = (n – 1)Γ (n – 1) and Γ (0.5) =√
π to arrive at

E
[|X|n] = 2

∫ +∞

0
xnf (x) dx =

(
√

2)n

√
π

σ nΓ

(
n + 1

2

)

= (n – 1)!σ n. (3.2)

Let p ≥ 1 be a positive constant. We define

n = min{m|p ≤ m, m is an even number}.

Using the Hölder inequality and combining (3.2), we obtain

E
[|X|p] ≤ E

[|X|n]
p
n = (n)!

p
n · σ p. (3.3)

Now we focus on E[|X|]. A change of variable for integral gives

E
[|X|] = 2

∫

R
xf (x) dx =

2√
2πσ

∫

R
x exp

{

–
x2

2σ 2

}

dx

=
1√

2πσ

∫

R
exp

{

–
x2

2σ 2

}

dx2.
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Letting t = x2

2σ 2 and using integration by substitution, we have

E
[|X|] =

√
2/π · σ

∫

R
exp{–t}dt = σ

√
2/π . (3.4)

Combining (3.2), (3.3), and (3.4), the lemma is proved. �

Lemma 3.2 If V1(t) is the solution of volatility equation (1.3), then for any p ≥ 2, we have

E
[∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣dBH

s

∣
∣
∣
∣

p]

≤ c2(p, H)Hp2p–1
∫ T

0
E
[∣
∣V1(t)

∣
∣p]dt+c3(p, H , T),

where c2(p, H) = 1
2 c1(p)Hp and c3(p, H , T) = 1

2p c(p)Hp2p–1(
∫ T

0 t2H–2 dt)p.

Proof For a partition π : 0 = t0 < t1 < · · · < tn = t, let

S
(√|V1|,π

)
=

n–1∑

i=0

√∣
∣V1(t)

∣
∣♦(

B(H)
ti+1 – B(H)

ti

)
. (3.5)

According to the WIS integral with respect to fBm, we have

∫ t

0

√∣
∣V1(s)

∣
∣dB(H)

s = lim|π |→0
S
(√|V1|,π

)
. (3.6)

Note that, for fixed ti, V1(ti) is a random variable. Using (3.37) in [15], we have

√∣
∣V1(ti)

∣
∣♦(

B(H)
ti+1 – B(H)

ti

)

=
√∣

∣V1(t)
∣
∣ ·

∫

R
I(ti ,ti+1] dB(H)

s – Dφ
Φg

√∣
∣V1(ti)

∣
∣

=
√∣

∣V1(t)
∣
∣ ·

∫

R
I(ti ,ti+1] dB(H)

s =
√∣

∣V1(t)
∣
∣ · (B(H)

ti+1 – B(H)
ti

)
. (3.7)

Substituting (3.7) into (3.5) and using the triangle and Hölder inequalities, we obtain

E
[∣
∣S

(√|V1|,π
)∣
∣
] ≤

n–1∑

i=0

E
[∣
∣
√∣

∣V1(t)
∣
∣ · (B(H)

ti+1 – B(H)
ti

)∣
∣
]

≤
n–1∑

i=0

√

E
[∣
∣V1(t)

∣
∣
] · E

[∣
∣B(H)

ti+1 – B(H)
ti

∣
∣2]. (3.8)

Letting |π | → 0 and combining (3.6) and (3.8), we obtain

E
[∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣dBH

s

∣
∣
∣
∣

]

≤
∫ T

0

√

E
[∣
∣V1(t)

∣
∣
]

dtH .

Using Lemma 3.1, we arrive at

E
[∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣dBH

s

∣
∣
∣
∣

p]
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≤ c1(p)E
[∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣dBH

s

∣
∣
∣
∣

]p

≤ c1(p)
(∫ T

0

√

E
[∣
∣V1(t)

∣
∣
]

dtH
)p

. (3.9)

Using the Hölder inequality twice, we have

E
[∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣dBH

s

∣
∣
∣
∣

p]

≤ c1(p)Hp
(∫ T

0

1
2

E
[∣
∣V1(t)

∣
∣
]

+
1
2

t2H–2 dt
)p

≤ 1
2p c1(p)Hp

(∫ T

0
E
[∣
∣V1(t)

∣
∣
]

dt+
∫ T

0
t2H–2 dt

)p

.

Using the inequality (a + b)p ≤ 2p–1(ap + bp), we get

E
[∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣dBH

s

∣
∣
∣
∣

p]

≤ 1
2p c1(p)Hp2p–1

((∫ T

0
E
[∣
∣V1(t)

∣
∣
]

dt
)p

+
(∫ T

0
t2H–2 dt

)p)

. (3.10)

Recalling that H ∈ (0.5, 1), we have 2H – 2 ∈ (–1, 0). This implies that the integral
∫ T

0 t2H–2 dt is convergent. Hence the lemma is proved applying the Hölder inequality to
(3.10). �

Theorem 3.1 Let T > 0 be fixed. For p ≥ 2, there are constants c4 and c5, depending on λ,
p, σi, κi, H , vi, T , such that

E
[

sup
t∈[0,T]

∣
∣Vi(t)

∣
∣p

]
≤ ci+3, i = 1, 2.

Proof Here we only prove the case i = 1. Since for any t ∈ [0, T],

V1(t) = v1 +
∫ t

0
κ1

(
θ1 – V1(s)

)
ds + σ1

∫ t

0

√∣
∣V1(s)

∣
∣dMH

2,1(s),

using the Young inequality, we have for any p ≥ 2 that

∣
∣V1(t)

∣
∣p ≤ 3p–1(|v1|p + A1 + A2

)
, (3.11)

where A1 = κ
p
1 |∫ t

0 θ – V1(s) ds|p, A2 = σ
p
1 |∫ t

0

√|V1(s)|dMH
2,1(s)|p.

Now, we compute E[A1] and E[A2]. For the second term A1 in (3.11), using the Hölder
and Young inequalities, we have

E[A1] ≤ 2p–1κ
p
1 θpT + 2p–1κ

p
1

∣
∣
∣
∣

∫ t

0
V1(s) ds

∣
∣
∣
∣

p

≤ 2p–1κ
p
1 θpT + 2p–1κ

p
1 Tp–1

∫ t

0
E
[∣
∣V1(s)

∣
∣p]ds. (3.12)

Noting that MH
t = λB(t) + BH(t) and applying the inequality (a + b)n ≤ 2n–1(an + bn) to A2,

we have

A2 ≤ 2p–1σ
p
1 λpA3 + 2p–1λpσ

p
1 A4, (3.13)
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where A3 = |∫ t
0

√|V1(s)|dB(s)|p and A4 = |∫ t
0

√|V1(s)|dBH (s)|p. Applying the B-D-G in-
equality [13, 15] to E[A3] and using the inequality x ≤ 1 + x2, we have

E[A3] ≤
∣
∣
∣
∣

∫ t

0
E
[∣
∣V1(s)

∣
∣
]

ds
∣
∣
∣
∣

p/2

≤
∣
∣
∣
∣

∫ t

0
E
[∣
∣V1(s)

∣
∣
]

ds
∣
∣
∣
∣

p

+ 1.

Using the Hölder inequality, we obtain

E[A3] ≤
∫ t

0
E
[∣
∣V1(s)

∣
∣p]ds + 1. (3.14)

Substituting (3.14) and Lemma 3.2 into (3.13), we have

E[A2] ≤ c6(λ, p,σ , T , H)
∫ t

0
E
[∣
∣V1(s)

∣
∣p]ds + c7(λ, p,σ1, H , T), (3.15)

where

c6(λ, p,σ , T , H) = 2p–1λpσ
p
1 + 2p–1λpσ

p
1 Hpc2(p, H),

c7(λ, p,σ1, H , T) = 2p–1σ
p
1 λp+2p–1λpσ

p
1 c3(p, H , T).

Substituting (3.12) and (3.15) into (3.11) and letting

c8 = 3p–1|v1|p + 6p–1κ
p
1 θpT + 3p–1c7(λ, p,σ1, H , T),

c9 = 6p–1κ
p
1 Tp–1 + 3p–1c6(λ, p,σ1, T , H),

we obtain

E
[∣
∣V1(t)

∣
∣p] ≤ c8 + c9

∫ t

0
E
[∣
∣V1(s)

∣
∣p)

]
ds. (3.16)

Hence the theorem follows from the Gronwall inequality. �

Lemma 3.3 The claim of Theorem 3.1 still holds if p ∈ (0, 2).

Proof If 1 ≤ p < 2, then applying the Cauchy inequality to V1(t) in Theorem 3.1, we have

E
[∣
∣V1(t)

∣
∣p] ≤ E

[∣
∣V1(t)

∣
∣2p] 1

2 ≤
[

sup
t∈[0,T]

E
[∣
∣V1(t)

∣
∣2p]

] 1
2 .

Noting that 2p ≥ 2 and using (3.9), we obtain

E
[∣
∣V1(t)

∣
∣p] ≤ √

C4(λ, p,σ1, θ1,κ1, H , v1, T).

Because t ∈ [0, T] is arbitrary, (3.9) is proved for 1 ≤ p < 2.
For 0 < p < 1, note that

∣
∣V1(t)

∣
∣p =

∣
∣V1(t)

∣
∣pI{|V1(t)|≥1} +

∣
∣v1(t)

∣
∣pI{|V1(t)|<1}
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≤ ∣
∣V1(t)

∣
∣p+1I{|V1(t)|≥1} +

∣
∣V1(t)

∣
∣pI{|V1(t)|<1}.

Further we have

∣
∣V1(t)

∣
∣p ≤ ∣

∣V1(t)
∣
∣p+1I{|V1(t)|≥1} + 1 ≤ ∣

∣V1(t)
∣
∣p+1 + 1.

Hence it follows that, in the case 1 < p < 2,

sup
t∈[0,T]

E
[∣
∣V1(t)

∣
∣p] ≤ √

c4(λ, p,σ1, θ1,κ1, H , v1, T) + 1.

Thus the proof of the lemma is completed. �

Lemma 3.4 The stock price equation of the CEV model has a unique solution. For any
positive constant p, we have

sup
t∈[0,T]

E
[∣
∣Si(t)

∣
∣p] ≤ c10(r,λ, p,σi, H , θi,κi, vi, si, T), i = 1, 2. (3.17)

Proof A similar proof of the existence and uniqueness of stock price equation can be found
in [14]; (3.17) can be obtained by following the proof of Lemma 3.1. �

4 Continuous dependence
In this section, we discuss the continuity of the stock price equation of the CEV model.

Theorem 4.1 The stock price process of the CEV model {Si(t), t ≥ 0} is continuous in t,
i = 1, 2.

Proof We only prove the case i = 1. Note that, for any 0 ≤ s < t ≤ T ,

S1(t) – S1(s) =
∫ t

s
rS1(τ ) dτ +

∫ t

s

√∣
∣v1(τ )

∣
∣S1(τ )α1 dMH

1,1(τ ).

Using the inequality (a + b)p ≤ 2p–1(ap + bp), we obtain

∣
∣S(t) – S(s)

∣
∣p ≤ 2p–1A5 + 2p–1A6, (4.1)

where A5 = |∫ t
s rS1(τ ) dτ |p, A6 = |∫ t

s

√|v1(τ )|S1(τ )α1 dMH
1,1(τ )|p. Let p > 0, q > 0, 1

p + 1
q = 1.

Using the Hölder inequality, since p
q = p – 1, we have

∣
∣
∣
∣

∫ t

s
S1(τ ) dτ

∣
∣
∣
∣

p

≤ (t – s)
p
q

∫ t

s

∣
∣S1(τ )

∣
∣p dτ ≤ (t – s)p–1

∫ t

s

∣
∣S1(τ )

∣
∣p dτ . (4.2)

Inequalities (3.17) and (4.2) imply that

E[A5] ≤ rpc10(r,λ, p,σ1, H , θ1,κ1, v1, s1, T) · |t – s|p. (4.3)

Now we pay attention to E[A6]. By the inequality (a + b)p ≤ 2p–1(ap + bp) we have

A6 ≤ 2p–1
∣
∣
∣
∣

∫ t

s

√∣
∣v1(τ )

∣
∣S1(τ )α1 dB1,1(τ )

∣
∣
∣
∣

p



Dong Journal of Inequalities and Applications        (2019) 2019:211 Page 10 of 17

+ 2p–1
∣
∣
∣
∣

∫ t

s

√∣
∣v1(τ )

∣
∣S1(τ )α1 dBH

1,1(τ )
∣
∣
∣
∣

p

. (4.4)

Using the B-D-G inequality [12] and the Hölder inequality and choosing 2
p + 1

q = 1, p > 0,
q > 0, we have

E
[∣
∣
∣
∣

∫ t

s

√∣
∣v1(τ )

∣
∣S1(τ )α1 dB1,1(τ )

∣
∣
∣
∣

p]

≤
∣
∣
∣
∣

∫ t

s
E
[∣
∣v1(s)

∣
∣ · ∣∣S(τ )

∣
∣2α1]dτ

∣
∣
∣
∣

p/2

≤
(∫ t

s
E
[∣
∣v1(τ )

∣
∣2q]dτ

) 1
2 p–1 ∫ t

s
E
[∣
∣S(τ )

∣
∣α1p]dτ .

Combining Theorem 3.1 and (3.17), we obtain

E
[∣
∣
∣
∣

∫ t

s

√∣
∣v1(τ )

∣
∣S1(τ )α1 dB1,1(τ )

∣
∣
∣
∣

p]

≤ c11(r,λ, p,σ1, H , θ1,κ1, v1, s1, T) · |t – s| 1
2 p. (4.5)

Following the similar proof of Lemma 3.1 and using the Hölder inequality, we have

E
[∣
∣
∣
∣

∫ t

s

√∣
∣v1(τ )

∣
∣S1(τ )α1 dBH

1,1(τ )
∣
∣
∣
∣

p]

≤ 1
2p c1(p)Hp2p–1

∫ t

s
E
[∣
∣V1(t)

∣
∣p/2∣∣S1(τ )

∣
∣α1p]dt + c3(p, H)

(
t2H–1 – s2H–1)

≤ 1
2p c1(p)Hp2p–1

∫ t

s

√

E
[∣
∣V1(t)

∣
∣p]E

[∣
∣S1(τ )

∣
∣2α1p]dt

+ c3(p, H)
(
t2H–1 – s2H–1).

We use (3.10) and (3.17) to obtain

E
[∣
∣
∣
∣

∫ t

s

√∣
∣v1(τ )

∣
∣S1(τ )α1 dBH

1,1(τ )
∣
∣
∣
∣

p]

≤ c12(p, H)(t – s) + c13(p, H)
(
t2H–1 – s2H–1). (4.6)

Substituting (4.5) and (4.6) into (4.4) and combing (4.1), (4.3), and (4.4), we get

E
[∣
∣S(t) – S(s)

∣
∣4]

≤ c12(p, H)(t – s) + c13(p, H)
(
t2H–1 – s2H–1)

+ c11(r,λ, p,σ1, H , θ1,κ1, v1, s1, T) · |t – s| 1
2 p

+ c10(r,λ, p,σ1, H , θ1,κ1, v1, s1, T) · |t – s|p. (4.7)

Therefore the theorem is proved. �

Let T0 be a constant belonging to (0, T). Let Si(t, si) be the solution of Si(t) in (1.2) with
Si(T0) = si, i = 1, 2. Now we consider the continuity of Si(t, si) with respect to si, i = 1, 2.
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Lemma 4.1 For any fixed t ∈ [T0, T], we have

E
[

sup
0≤t≤T

∣
∣Si(t, s1) – Si(t, s2)

∣
∣2

]
≤ c13|s1 – s2|2, (4.8)

where c13 is a constant depending on T and T0, i = 1, 2.

Proof We only prove the case i = 1. Let s2 = s1 + �s and 0 ≤ t ≤ T . Then we have

S1(t, s1) – S1(t, s2) = �s + r
∫ t

0
S1(s, s1) – S1(t, s2) ds

+
∫ t

0

√∣
∣V1(s)

∣
∣
[
S1(s, s1) – S1(s, s2)

]
dM(H)

1,1 (s).

Thus it follows that

∣
∣S1(t, s1) – S1(t, s2)

∣
∣2

≤ 3|�s|2 + 3r2
∣
∣
∣
∣

∫ t

0
S1(s, s1) – S1(s, s2) ds

∣
∣
∣
∣

2

+ 3
∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣
[
S1(s, s1) – S1(s, s2)

]
dM(H)

1,1 (s)
∣
∣
∣
∣

2

. (4.9)

Using the inequality (a + b)2 ≤ 2(a2 + b2), we have

∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣
[
S1(s, s1) – S1(s, s2)

]
dM(H)

1,1 (s)
∣
∣
∣
∣

2

≤ 2A7 + 2λ2A8, (4.10)

where

A7 =
∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣
[
S1(s, s1) – S1(s, s2)

]
dB1,1(s)

∣
∣
∣
∣

2

,

A8 =
∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣
[
S1(s, s1) – S1(s, s2)

]
dM(H)

1,1 (s)
∣
∣
∣
∣

2

.

The Burkholder–Davis–Gundy and Hölder inequalities lead to

E[A7] =
∣
∣
∣
∣

∫ t

0

√∣
∣V1(s)

∣
∣
[
S1(s, s1) – S1(s, s2)

]
dB1(s)

∣
∣
∣
∣

2

≤
∫ t

0
E
[√∣

∣V1(s)
∣
∣
(
S1(s, s1) – S1(s, s2)

)]2 ds

≤
∫ t

0
E
[∣
∣V1(s)

∣
∣
]2E

[∣
∣S1(s, s1) – S1(s, s2)

∣
∣2]ds.

We use Theorem 3.1 to obtain

E[A7] ≤ c14(λ,σ ,κi, H , vi, T)
∫ t

0
E
[∣
∣S1(s, s1) – S1(s, s2)

∣
∣2]ds. (4.11)
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Similarly to the proof of (3.9), we have that

E[A8] ≤ c1

∫ t

T0

√

E
[∣
∣V1(s)

∣
∣ · ∣∣S1(s, s1) – S1(s, s2)

∣
∣2]dsH

≤ c1

∫ t

T0

sH–1
√

E
[∣
∣V1(s)

∣
∣ · ∣∣S1(s, s1) – S1(s, s2)

∣
∣2]ds

≤ c1TH–1
0

∫ t

T0

√

E
[∣
∣V1(s)

∣
∣ · ∣∣S1(s, s1) – S1(s, s2)

∣
∣2]ds.

Using Theorem 3.1, we have

E[A8] ≤ c1TH–1
0 c14

∫ t

T0

√

E
[∣
∣V1(s)

∣
∣ · ∣∣S1(s, s1) – S1(s, s2)

∣
∣2]ds. (4.12)

Now we pay attention to E[A8]. The Hölder inequality implies that

E
[∣
∣
∣
∣

∫ t

0
S1(s, s1) – S1(s, s2) ds

∣
∣
∣
∣

2]

≤
∫ t

0
E
[∣
∣S1(s, s1) – S1(s, s2)

∣
∣2]ds. (4.13)

Therefore it follows from (4.9)–(4.13) that

∣
∣S1(t, s1) – S1(t, s2)

∣
∣2

≤ 3|�s|2 +
(
3r2 + 3c14 + 3c1TH–1

0 c14
)
∫ t

0
E
[∣
∣S1(s, s1) – S1(s, s2)

∣
∣2]ds.

Then Gronwall’s inequality implies that

E
[

sup
0≤t≤T1

∣
∣S1(t, s1) – S1(t, s2)

∣
∣2

]

≤ 3|�s|2 exp
{

c15(t – T0)
} ≤ 3|�s|2 exp{c15T}.

This inequality is true for any t ∈ [T0, T]. Hence we have

E
[

sup
0≤t≤T

∣
∣S1(t, s1) – S1(t, s2)

∣
∣2

]
≤ 3|�s|2 exp{c15T} = c16|s1 – s2|2. �

5 Vulnerable option pricing
In this section, we investigate the European vulnerable options under the stochastic
volatility model (1.2)–(1.4). Let T denote the expiration time of a vulnerable call option
with payoff given by

F
(
S1(T), S2(T)

)
= max

{
S1(T) – K , 0

}
(

IS2(T)>D∗ +
1 – α

D
IS2(T)≤D∗

)

. (5.1)

Here, K is the strike price of the option. S2(T) is less than the amount D∗, which corre-
sponds to the amount of claims D outstanding at execution time T . Once default events
occur at execution time T , the recovery is (1–α)

D S2(T), where α represents the deadweight
costs related to the bankruptcy or reorganization.
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Under the risk neutral measure Q, the value of the vulnerable call option at current time
t is defined by

c
(
t, S1(t), S2(t)

)
= exp

{
–r(T – t)

}
Et

[
F
(
S1(T), S2(T)

)]
. (5.2)

Now we are going to describe the time discretization of the SDE (1.2)–(1.3) over the
time interval [0, T], which is divided into N time steps, with

�t = (T – t)/N and tn = n�t, n = 0, 1, 2, . . . , N . (5.3)

Let {S(1)
n }, {S(2)

n }, {v(1)
n }, and {v(2)

n } be approximations of {S1(t)}, {S2(t)}, {v1(t)}, and {v2(t)}
at time level tn, respectively. The volatility processes {v1(t)} and {v2(t)} in (1.3) are written
in the integral form as

v(i)
t+�t = v(i)

t +
∫ t+�t

t
κi

(
θi – vi(s)

)
ds + σi

∫ t+�t

t

√
vi(t) dMH

2,i(t), i = 1, 2. (5.4)

Using the left-point rule of the Euler discretization, the integrals can be approximated as
follows;

∫ t+�t

t
κi

(
θi – vi(s)

)
ds ≈ κi

(
θi – v(i)

t
)
�t, (5.5)

∫ t+�t

t

√
vi(t) dMH

2,1(t) ≈
√

v(i)
t

(
MH

2,i(t + �t) – MH
2,i(t)

)
. (5.6)

Substituting (5.5) and (5.6) into (5.4), the discretization of (1.3)–(1.4) produces

v(i)
t+�t = v(i)

t + κi
(
θi – v(i)

t
)
�t + σi

√

v(i)
t

(
MH

2,i(t + �t) – MH
2,i(t)

)
, (5.7)

v(i)
0 = vi, i = 1, 2. Following the similar proof of (5.7), the Euler discretization of the stock

price Si(t) is

S(i)
t+�t = S(i)

t + rS(i)
t �t +

√

v(i)
t

(
S(i)

t
)α1(MH

1,1(t + �t) – MH
1,1(t)

)
, (5.8)

S(i)
0 = Si, i = 1, 2. The call price of a vulnerable option from this simulated asset price path

is then computed using the formula of discounted payoff

exp
{

–r(T – t)
}

F
(
S(1),k

N , S(2),k
N

)
, (5.9)

where {S(1),k
j , j = 1, 2, . . . , N} and {S(2),k

j , j = 1, 2, . . . , N} are the kth simulations of {S1(τ ), τ ∈
[t, T]} and {S2(τ ), τ ∈ [t, T]}, respectively. This completes a one-sample iteration of Monte
Carlo simulation for vulnerable call option. After running the simulation (5.7)–(5.9) suf-
ficiently many times, the expected value is obtained by computing the sample mean of
estimates to (5.2). Let M denote the total number of simulation runs. The call value of
vulnerable option is computed by

ĉM,N
(
t, S1(t), S2(t)

)
= exp

{
–r(T – t)

} 1
M

M∑

k=1

F
(
S(1),k

N , S(2),k
N

)
. (5.10)
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Table 1 Parameters used for simulation

Current price of asset s1 100 Correlation ρ 0.5
Current price of asset s2 100 Volatility of volatility σ1 0.3
Interest rate r 0.04 Volatility of volatility σ2 0.1
Current volatility v1 0.3 Mean reversion κ1 3
Current volatility v2 0.1 Mean reversion κ2 1
Elastic constant α1 0.1 Long-run mean θ1 0.3
Elastic constant α2 0.1 Long-run mean θ2 0.1
Hurst parameter H 0.7 Coefficient ofmfBm λ 0.5

Figure 1 Vulnerable call option of different values of M and N

In the following section, we present some simulation results to examine how the parame-
ters of the mixed fractional CEV model affect the valuation of the vulnerable call option.
All our numerical results have been performed with the parameters in Table 1.

Example 1 If κ1 = κ2 = 0, σ1 = σ2 = 0, v2(0) = 0, and H = 0.5, then we have v1(t) = 0.05 and
v2(t) = 0. The value of the vulnerable call at current time t has the closed form

c(t, s1, s2)

= s1N2
(
d+(T – t, s1/K) +

√
v1(T – t), d–(T – t, s2/D) + ρ

√
v1(T – t),ρ

)

– K exp
{

–r(T – t)
}

N2
(
d+(T – t, s1/K), d–(T – t, s2/D),ρ1

)

+
(1 – α)

D
s2 exp

{
(r + ρ

√
v1v2)(T – t)

}
N2(d1, d2,ρ)

+
(1 – α)s2K

D
N2(d3, –d4,ρ), (5.11)

where N2 is the bivariate normal cumulative distribution function, and

d+(t, s1) =
ln s1 + (r + 0.5v1)t√

v1t
, d–(t, s2) =

ln s2 + (r + 0.5v2)t√
v2t

,
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Figure 2 Vulnerable call option of different values of K and s1

Figure 3 Vulnerable call option for different values of D and s2

d1 = d+(T – t, s1/K) +
√

v1(T – t) + ρ
√

v2(T – t),

d2 = d–(T – t, s2/D) – ρ
√

v1(T – t) –
√

v2(T – t),

d3 = d+(T – t, s1/K) + ρ
√

v2(T – t), d4 = d–(T – t, s2/D) +
√

v2(T – t).

Here we compare the value of the vulnerable call using the scheme (5.7)–(5.10) with
the explicit one obtained by (5.11). Figure 1 shows the price of the vulnerable call option
with various values of M and N . In the figure, ĉM,N (t, S1(t), S2(t)) converges to c(t, s1, s2)
as (M, N) → (∞,∞). We also show the properties of option prices in Fig. 2, which shows
accurate approximations for large numbers M (i.e., M = 20,000) and how the prices of
vulnerable call change with respect to the asset price s1 and strike price K .

The next example shows the effect of the volatility equation on the vulnerable call.
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Figure 4 Vulnerable call option for different values of ρ1 and s2

Example 2 In this example, we consider the valuation of the vulnerable call option under
the mixed fractional CEV model (1.2)–(1.3). Let M = 2,000,000 and N = 20,000. Figure 3
shows the valuation of the vulnerable call option for five amounts of claims D = 10, D = 50,
D = 90, and D = 130 with different s2. In Fig. 3, we observe that the option price has a
decreasing trend of the D and an increasing trend of the s2. Figure 4 shows the valuation
of the vulnerable call option with respect to correlation ρ1 and s2.
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