
Zheng Journal of Inequalities and Applications        (2019) 2019:205 
https://doi.org/10.1186/s13660-019-2157-9

R E S E A R C H Open Access

The obstacle problem for non-coercive
equations with lower order term and L1-data
Jun Zheng1*

*Correspondence:
zhengjun2014@aliyun.com
1School of Mathematics, Southwest
Jiaotong University, Chengdu, China

Abstract
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1 Introduction
1.1 Problem setting and main result
Let Ω be a bounded domain in R

N (N ≥ 2), 1 < p < +∞, and θ ≥ 0. Given functions
g,ψ ∈ W 1,p(Ω) ∩ L∞(Ω) and data f ∈ L1(Ω), the aim of this paper is to study the obstacle
problem for nonlinear non-coercive elliptic equations with lower order term, governed by
the operator

Au = – div
a(x,∇u)

(1 + |u|)θ (p–1) + b|u|r–2u, (1)

where b > 0 is a constant, and a : Ω ×R
N →R

N is a Carathéodory function, satisfying the
following conditions:

a(x, ξ ) · ξ ≥ α|ξ |p, (2)
∣
∣a(x, ξ )

∣
∣ ≤ β

(

j(x) + |ξ |p–1), (3)
(

a(x, ξ ) – a(x,η)
)

(ξ – η) > 0, (4)

∣
∣a(x, ξ ) – a(x, ζ )

∣
∣ ≤ γ

⎧

⎨

⎩

|ξ – ζ |p–1, if 1 < p < 2,

(1 + |ξ | + |ζ |)p–2|ξ – ζ |, if p ≥ 2
(5)

for almost every x in Ω and for every ξ , η, ζ in R
N with ξ 	= η, where α,β ,γ > 0 are con-

stants, and j is a nonnegative function in Lp′ (Ω).
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If f has a fine regularity, e.g., f ∈ W –1,p′ (Ω), the obstacle problem corresponding to
(f ,ψ , g) can be formulated in terms of the inequality

∫

Ω

a(x,∇u)
(1 + |u|)θ (p–1) · ∇(u – v) dx +

∫

Ω

b|u|r–2u(u – v) dx

≤
∫

Ω

f (u – v) dx, ∀v ∈ Kg,ψ ∩ L∞(Ω), (6)

whenever 1 ≤ r < p and the convex subset

Kg,ψ =
{

v ∈ W 1,p(Ω); v – g ∈ W 1,p
0 (Ω), v ≥ ψ , a.e. in Ω

}

is nonempty. However, if f ∈ L1(Ω), (6) is not well-defined. Following [1, 3, 5, 19] etc.,
we are led to the more general definition of a solution to the obstacle problem, using the
truncation function

Ts(t) = max
{

–s, min{s, t}}, s, t ∈R.

Definition 1 An entropy solution of the obstacle problem associated with operator A
and functions (f ,ψ , g) with f ∈ L1(Ω) is a measurable function u such that u ≥ ψ a.e. in
Ω , a(x,∇u)

(1+|u|)θ (p–1) ∈ (L1(Ω))N , |u|r–1 ∈ L1(Ω), and, for every s > 0, Ts(u) – Ts(g) ∈ W 1,p
0 (Ω) and

∫

Ω

a(x,∇u)
(1 + |u|)θ (p–1) · ∇(

Ts(u – v)
)

dx +
∫

Ω

b|u|r–2uTs(u – v) dx

≤
∫

Ω

fTs(u – v) dx, ∀v ∈ Kg,ψ ∩ L∞(Ω). (7)

Observe that no global integrability condition is required on u nor on its gradient in
the definition. As pointed out in [3, 8], if Ts(u) ∈ W 1,p(Ω) for all s > 0, then there exists
a unique measurable vector field U : Ω → R

N such that ∇(Ts(u)) = χ{|u|<s}U a.e. in Ω ,
s > 0, which, in fact, coincides with the standard distributional gradient of ∇u whenever
u ∈ W 1,1(Ω).

Before stating the main result, we make some basic assumptions throughout this paper,
i.e., without special statements, we always assume that

2 –
1
N

< p < N , 1 ≤ r < p, 0 ≤ θ < min

{
N

N – 1
–

1
p – 1

,
p – r
p – 1

}

, b > 0,

and ψ , g ∈ W 1,p(Ω) ∩ L∞(Ω) with (ψ – g)+ ∈ W 1,p
0 (Ω) such that Kg,ψ 	= ∅. The following

theorem is the main result obtained in this paper.

Theorem 1 Let f ∈ L1(Ω). Then there exists at least one entropy solution u of the obstacle
problem associated with (f ,ψ , g). In addition, u depends continuously on f , i.e., if fn → f
in L1(Ω) and un is a solution to the obstacle problem associated with (fn,ψ , g), then

un → u in W 1,q(Ω),∀q ∈
⎧

⎨

⎩

( N(r–1)
N+r–1 , N(p–1)(1–θ )

N–1–θ (p–1) ), if 2N–1
N–1 ≤ r < p,

(1, N(p–1)(1–θ )
N–1–θ (p–1) ), if 1 ≤ r < min{ 2N–1

N–1 , p}.
(8)
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1.2 Some comments and remarks
Consider the Dirichlet boundary value problem having a form

⎧

⎨

⎩

– div |∇u|p–2∇u
(1+|u|)θ (p–1) + bu = f , in Ω ,

u = 0, on ∂Ω ,
(9)

with p > 1, θ ∈ (0, 1], b ≥ 0, f ∈ L1(Ω). The item – div |∇u|p–2∇u
(1+|u|)θ (p–1) may not be coercive when

u tends to infinity. Due to this fact, the classical methods used to prove the existence of a
solution for elliptic equations, e.g., [14], cannot be applied even if b = 0 and the data f is
regular. Moreover, |∇u|p–2∇u

(1+|u|)θ (p–1) , u and f are only in L1(Ω), not in W –1,p′ (Ω). All these char-
acteristics prevent us from employing the duality argument [17] or nonlinear monotone
operator theory [18] directly.

To overcome these difficulties, “cutting” the non-coercivity term and using the tech-
nique of approximation, a pseudomonotone and coercive differential operator on W 1,p

0 (Ω)
can be applied to establish a priori estimates on approximating solutions. As a result,
existence of solutions, or entropy solutions, can be obtained by taking limitation for
f ∈ Lm(Ω), m ≥ 1, and b > 0 due to the almost everywhere convergence of gradients of
the approximating solutions, see, e.g., [4, 6, 9–11, 15] (see also [1, 2, 7, 12, 13, 16] for
b = 0). However, there is little literature that considers regularities for entropy solutions of
obstacle problems governed by (1) and functions (f ,ψ , g) with f ∈ L1(Ω), except [19], in
which the authors considered the obstacle problem (7) with b = 0 and L1-data.

Motivated by the study on the non-coercive elliptic equations (9) and the problem con-
sidered in [19], in this paper, we consider the obstacle problem governed by (1) and func-
tions (f ,ψ , g) with f ∈ L1(Ω). By the truncation method used in [8] and [19], we prove the
existence of an entropy solution and show its continuous dependence on the L1-data in
W 1,q(Ω) with some q ∈ (1, p).

In the following, we give some remarks on our main result and inequalities that will be
needed in the proofs. Some notations are provided at the end of this subsection.

Remark 1
(i) 0 ≤ θ < min{ N

N–1 – 1
p–1 , p–r

p–1 } ⇒ r – 1 < (1 – θ )(p – 1) < N(p–1)(1–θ )
N–1–θ (p–1) . Therefore

Theorem 1 guarantees |u|r–1 ∈ L1(Ω), and the second integration in (7) makes
sense.

(ii) We will show that a(x,∇u)
(1+|u|)θ (p–1) ∈ (L1(Ω))N in Proposition 4. Therefore, the first

integration in (7) makes sense.
(iii) ( N(r–1)

N+r–1 , N(p–1)(1–θ )
N–1–θ (p–1) ) ⊂ (1, N(p–1)(1–θ )

N–1–θ (p–1) ) if 2N–1
N–1 ≤ r < p. Indeed,

θ < p–r
p–1 + p(r–1)

N(p–1) ⇔ N(p–1)(1–θ )
N–1–θ (p–1) > N(r–1)

N+r–1 , while 2N–1
N–1 ≤ r gives N(r–1)

N+r–1 ≥ 1. Thus un → u
in W 1,q(Ω) for all q ∈ (1, N(p–1)(1–θ )

N–1–θ (p–1) ).
(iv) r – 1 < Nq

N–q . Indeed, by 1 ≤ r < 2N–1
N–1 , there holds r – 1 < N

N–1 < Nq
N–q for any q > 1,

particularly, for q ∈ (1, N(p–1)(1–θ )
N–1–θ (p–1) ). For r ≥ 2N–1

N–1 , it suffices to note that
q > N(r–1)

N+r–1 ⇔ r – 1 < Nq
N–q .

(v) q < p. Indeed, 0 ≤ θ < N
N–1 – 1

p–1 < N–1
p–1 ⇒ N(p–1)(1–θ )

N–1–θ (p–1) < p.
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Remark 2 Checking proofs in this paper (e.g., setting r = 1), one may find that, for b = 0,
(8) holds with

un → u in W 1,q(Ω),∀q ∈
(

1,
N(p – 1)(1 – θ )
N – 1 – θ (p – 1)

)

, (10)

which is the same as [19, Theorem 1]. Thus, Theorem 1 can be seen as an extension of [19,
Theorem 1].

Notations ‖u‖p := ‖u‖Lp(Ω) is the norm of u in Lp(Ω), where 1 ≤ p ≤ ∞. ‖u‖1,p :=
‖u‖W 1,p(Ω) is the norm of u in W 1,p(Ω), where 1 < p < ∞. p′ := p

p–1 with 1 < p < ∞. {u > s} :=
{x ∈ Ω ; u(x) > s}. {u ≤ s} := Ω \ {u > s}. {u < s} := {x ∈ Ω ; u(x) < s}. {u ≥ s} := Ω \ {u < s}.
{u = s} := {x ∈ Ω ; u(x) = s}. {t ≤ u < s} := {u ≥ t} ∩ {u < s}. For a measurable set E in R

N ,
|E| := LN (E), where LN is the Lebesgue measure of RN . For a real-valued function u,
u+ = max{u, 0}, u– = (–u)+. Without special statements, positive integers are denoted by
n, h, k, k0, K . C is a positive constant, which may be different from each other.

2 Lemmas on entropy solutions
It is worthy to note that, for any smooth function fn, there exists at least one solution to the
obstacle problem (6). Indeed, one can proceed exactly as in [1, 11] to obtain W 1,p-solutions
due to assumptions (2)–(4) on a and r – 1 < p. These solutions, in particular, are also
entropy solutions. In this section, using the method of [8] and [19], we establish several
auxiliary results on convergence of sequences of entropy solutions when fn → f in L1(Ω).

Lemma 2 Let v0 ∈ Kg,ψ ∩ L∞(Ω), and let u be an entropy solution of the obstacle problem
associated with (f ,ψ , g). Then we have

∫

{|u|<t}
|∇u|p

(1 + |u|)θ (p–1) dx ≤ C
(

1 + tr), ∀t > 0,

where C is a positive constant depending only on α, β , p, r, b, ‖j‖p′ , ‖∇v0‖p, ‖v0‖∞, and
‖f ‖1.

Proof Take v0 as a test function in (7). For t large enough such that t – ‖v0‖∞ > 0, we get

∫

{|v0–u|<t}
a(x,∇u) · ∇u
(1 + |u|)θ (p–1) dx ≤

∫

{|v0–u|<t}
a(x,∇u) · ∇v0

(1 + |u|)θ (p–1) dx

+
∫

Ω

(

f – b|u|r–2u
)

Tt(u – v0) dx. (11)

We estimate each integration in the right-hand side of (11). It follows from (3) and Young’s
inequality with ε > 0 that

∫

{|v0–u|<t}
a(x,∇u) · ∇v0

(1 + |u|)θ (p–1) dx ≤
∫

{|v0–u|<t}
β(|j| + |∇u|p–1) · |∇v0|

(1 + |u|)θ (p–1) dx

≤
∫

{|v0–u|<t}
βε(|j|p′ + |∇u|p)

(1 + |u|)θ (p–1) dx

+
∫

{|v0–u|<t}
βC(ε)|∇v0|p
(1 + |u|)θ (p–1) dx
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≤ ε

∫

{|v0–u|<t}
|∇u|p

(1 + |u|)θ (p–1) dx

+ C
(‖j‖p′

p′ + ‖∇v0‖p
p
)

, (12)

–
∫

Ω

b|u|r–2uTt(u – v0) dx = –
∫

{|u–v0|≤t}
b|u|r–2uTt(u – v0) dx

–
∫

{|u–v0|>t}
b|u|r–2uTt(u – v0) dx. (13)

Note that on the set {|u – v0| ≤ t},

∣
∣|u|r–2uTt(u – v0)

∣
∣ ≤ t

∣
∣t + ‖v0‖∞

∣
∣
r–1 ≤ C

(

1 + tr), (14)

where C is a constant depending only on r, ‖v0‖∞.
On the set {|u – v0| > t}, we have |u| ≥ t – ‖v0‖∞ > 0, thus u and Tt(u – v0) have the same

sign. It follows

–
∫

{|u–v0|>t}
b|u|r–2uTt(u – v0) dx ≤ 0. (15)

Combining (13)–(15), we get

–
∫

Ω

b|u|r–2uTt(u – v0) dx ≤ C
(

1 + tr), (16)
∫

{|v0–u|<t}
|∇u|p

(1 + |u|)θ (p–1) dx ≤ C
(‖j‖p′

p′ + ‖∇v0‖p
p + t‖f ‖1 + 1 + tr)

≤ C
(

1 + tr). (17)

Replacing t with t + ‖v0‖∞ in (17) and noting that {|u| < t} ⊂ {|v0 – u| < t + ‖v0‖∞}, one
may obtain the desired result. �

In the rest of this section, let {un} be a sequence of entropy solutions of the obstacle
problem associated with (fn,ψ , g) and assume that

fn → f in L1(Ω) and ‖fn‖1 ≤ ‖f ‖1 + 1.

Lemma 3 There exists a measurable function u such that un → u in measure, and
Tk(un) ⇀ Tk(u) weakly in W 1,p(Ω) for any k > 0. Thus Tk(un) → Tk(u) strongly in Lp(Ω)
and a.e. in Ω .

Proof Let s, t, and ε be positive numbers. One may verify that, for every m, n ≥ 1,

LN({|un – um| > s
}) ≤LN({|un| > t

})

+ LN({|um| > t
})

+ LN({∣
∣Tk(un) – Tk(um)

∣
∣ > s

})

, (18)

and

LN({|un| > t
})

=
1
tp

∫

{|un|>t}
tp dx ≤ 1

tp

∫

Ω

∣
∣Tt(un)

∣
∣
p dx. (19)
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Due to v0 = g + (ψ – g)+ ∈ Kg,ψ ∩ L∞(Ω), by Lemma 2, one has

∫

Ω

∣
∣∇Tt(un)

∣
∣
p dx =

∫

{|un|<t}
|∇un|p dx ≤ C(1 + t)θ (p–1)(1 + tr). (20)

Note that Tt(un) – Tt(g) ∈ W 1,p
0 (Ω). By (19), (20), and Poincaré’s inequality, for every t >

‖g‖∞ and for some positive constant C independent of n and t, there holds

LN({|un| > t
}) ≤ 1

tp

∫

Ω

∣
∣Tt(un)

∣
∣
p dx

≤ 2p–1

tp

∫

Ω

∣
∣Tt(un) – Tt(g)

∣
∣
p dx +

2p–1

tp ‖g‖p
p

≤ C
tp

∫

Ω

∣
∣∇Tt(un) – ∇Tt(g)

∣
∣
p dx +

2p–1

tp ‖g‖p
p

≤ C
tp

∫

Ω

∣
∣∇Tt(un)

∣
∣
p dx +

C
tp ‖g‖p

1,p

≤ C(1 + tr+θ (p–1))
tp .

Since 0 ≤ θ < p–r
p–1 , there exists tε > 0 such that

LN({|un| > t
})

<
ε

3
, ∀t ≥ tε ,∀n ≥ 1. (21)

Now we have as in (19)

LN({∣
∣Ttε (un) – Ttε (um)

∣
∣ > s

})

=
1
sp

∫

{|Ttε (un)–Ttε (um)|>s}
sp dx

≤ 1
sp

∫

Ω

∣
∣Ttε (un) – Ttε (um)

∣
∣
p dx. (22)

Using (20) and the fact that Tt(un) – Tt(g) ∈ W 1,p
0 (Ω) again, we see that {Ttε (un)} is a

bounded sequence in W 1,p(Ω). Thus, up to a subsequence, {Ttε (un)} converges strongly
in Lp(Ω). Taking into account (22), there exists n0 = n0(tε , s) ≥ 1 such that

LN({∣
∣Ttε (un) – Ttε (um)

∣
∣ > s

})

<
ε

3
, ∀n, m ≥ n0. (23)

Combining (18), (21), and (23), we obtain

LN({|un – um| > s
})

< ε, ∀n, m ≥ n0.

Hence {un} is a Cauchy sequence in measure, and therefore there exists a measurable func-
tion u such that un → u in measure. The remainder of the lemma is a consequence of the
fact that {Tk(un)} is a bounded sequence in W 1,p(Ω). �

Proposition 4 There exist a subsequence of {un} and a measurable function u such that,
for each q given in (8), we have

un → u strongly in W 1,q(Ω).
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Furthermore, if 0 ≤ θ < min{ 1
N–p+1 , N

N–1 – 1
p–1 , p–r

p–1 }, then

a(x,∇un)
(1 + |un|)θ (p–1) → a(x,∇u)

(1 + |u|)θ (p–1) strongly in
(

L1(Ω)
)N .

To prove Proposition 4, we need two preliminary lemmas.

Lemma 5 There exist a subsequence of {un} and a measurable function u such that, for
each q given in (8), we have un ⇀ u weakly in W 1,q(Ω), and un → u strongly in Lq(Ω).

Proof Let k > 0 and n ≥ 1. Define Dk = {|un| ≤ k} and Bk = {k ≤ |un| < k + 1}. Using
Lemma 2 with v0 = g + (ψ – g)+, we get

∫

Dk

|∇un|p
(1 + |un|)θ (p–1) dx ≤ C

(

1 + kr), (24)

where C is a positive constant depending only on α, β , b, p, r, ‖j‖p′ , ‖f ‖1, ‖∇v0‖p, and
‖v0‖∞.

Using the function Tk(un) for k > {‖g‖∞,‖ψ‖∞}, as a test function for the problem as-
sociated with (fn,ψ , g), we obtain

∫

Ω

a(x,∇un) · ∇(T1(un – Tk(un)))
(1 + |un|)θ (p–1) dx +

∫

Ω

b|un|r–2unT1
(

un – Tk(un)
)

dx

≤
∫

Ω

fnT1
(

un – Tk(un)
)

dx,

which and (2) give

∫

Bk

α|∇un|p
(1 + |un|)θ (p–1) dx +

∫

Ω

b|un|r–2unT1
(

un – Tk(un)
)

dx ≤ ‖fn‖1 ≤ ‖f ‖1 + 1.

Note that on the set {|un| ≥ k + 1}, un and T1(un – Tk(un)) have the same sign. Then

∫

Ω

|un|r–2unT1
(

un – Tk(un)
)

dx =
∫

Dk

|un|r–2unT1
(

un – Tk(un)
)

dx

+
∫

Bk

|un|r–2unT1
(

un – Tk(un)
)

dx

+
∫

{|un|≥k+1}
|un|r–2unT1

(

un – Tk(un)
)

dx

≥
∫

Bk

|un|r–2unT1
(

un – Tk(un)
)

dx.

Thus we have
∫

Bk

α|∇un|p
(1 + |un|)θ (p–1) dx+ ≤ ‖f ‖1 + 1 –

∫

Bk

b|un|r–2unT1
(

un – Tk(un)
)

dx

≤ ‖f ‖1 + 1 +
∫

Bk

b|un|r–1 dx
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≤ C
(

1 +
(∫

Bk

|un|q∗
dx

) r–1
q∗

|Bk|1– r–1
q∗

)

, (25)

where q is given in (8) and q∗ = Nq
N–q .

Let s = qθ (p–1)
p . Note that q < p and ps

p–q < q∗. For ∀k > 0, we estimate
∫

Bk
|∇un|q dx as

follows:

∫

Bk

|∇un|q dx =
∫

Bk

|∇un|q
(1 + |un|)s · (1 + |un|

)s dx

≤
(∫

Bk

|∇un|p
(1 + |un|)θ (p–1) dx

) q
p
(∫

Bk

(

1 + |un|
) ps

p–q dx
) p–q

p

≤ C
(∫

Bk

|∇un|p
(1 + |un|)θ (p–1) dx

) q
p
(

|Bk|
p–q

p +
(∫

Bk

|un|
ps

p–q dx
) p–q

p
)

≤ C
(∫

Bk

|∇un|p
(1 + |un|)θ (p–1) dx

) q
p
(

|Bk|
p–q

p +
(∫

Bk

|un|q∗
dx

) s
q∗

|Bk|
p–q

p – s
q∗

)

≤ C
(

|Bk|
p–q

p + |Bk|
p–q

p – s
q∗

(∫

Bk

|un|q∗
dx

) s
q∗

+ |Bk|1–p1

(∫

Bk

|un|q∗
dx

)p1

+ |Bk|1–p2

(∫

Bk

|un|q∗
dx

)p2)

by (25)

= C
(

|Bk|
p–q

p + |Bk|
p–q

p – s
q∗

(∫

Bk

|un|q∗
dx

) s
q∗

+ |Bk|1–p1–C1 |Bk|C1

(∫

Bk

|un|q∗
dx

)p1

+ |Bk|1–p2–C2 |Bk|C2

(∫

Bk

|un|q∗
dx

)p2)

,

where p1 = q
p

r–1
q∗ , p2 = s

q∗ + q
p

r–1
q∗ , C1 and C2 are positive constants to be chosen later.

Note that θ < p–r
p–1 , it follows

θ (p – 1)
p

+
r – 1

p
<

p – 1
p

< 1 –
1
N

= 1 –
1
q

+
1
q∗ .

Thus

θq(p – 1)
p

+
q(r – 1)

p
+ 1 < q +

q
q∗ ⇔ s +

q(r – 1)
p

+ 1 < q +
q
q∗

⇔ p2 +
1 – p2

q∗ + 1
<

q
q∗ .

Note that p1 < p2 < 1. Then, for i = 1, 2, we always have

pi +
1 – pi

q∗ + 1
<

q
q∗ < 1.
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From this, we may find positive Ci (i = 1, 2) such that

pi +
1 – pi

q∗ + 1
< pi + Ci <

q
q∗ < 1, i = 1, 2. (26)

It follows

1 – pi

q∗ + 1
< Ci ⇔ 1 – pi – Ci < Ciq∗, i = 1, 2,

which implies

Ciαiq∗ =
Ciq∗

1 – pi – Ci
> 1, i = 1, 2, (27)

with αi = 1
1–pi–Ci

> 1, i = 1, 2. Let βi = 1
pi+Ci

> 1, i = 1, 2. Then we have 1
αi

+ 1
βi

= 1 (i = 1, 2).
Since |Bk| ≤ 1

kq∗
∫

Bk
|un|q∗ dx, |Bk|1–p1–C1 ≤ |Ω|1–p1–C1 , and |Bk|1–p2–C2 ≤ |Ω|1–p2–C2 , we

have, for k ≥ k0 ≥ 1,

∫

Bk

|∇un|q dx ≤ C

kq∗( p–q
p – s

q∗ )

(∫

Bk

|un|q∗
dx

) p–q
p

+
C

kq∗C1

(∫

Bk

|un|q∗
dx

)p1+C1

+
C

kq∗C2

(∫

Bk

|un|q∗
dx

)p2+C2

.

Summing up from k = k0 to k = K and using Hölder’s inequality, one has

K
∑

k=k0

∫

Bk

|∇un|q dx ≤ C

( K
∑

k=k0

1

kq∗( p–q
p – s

q∗ ) p
q

) q
p

·
( K

∑

k=k0

∫

Bk

|un|q∗
dx

) p–q
p

+ C

( K
∑

k=k0

1
kq∗C1α1

) 1
α1

·
( K

∑

k=k0

(∫

Bk

|un|q∗ dx
)β1(p1+C1)

) 1
β1

+ C

( K
∑

k=k0

1
kq∗C2α2

) 1
α2

·
( K

∑

k=k0

(∫

Bk

|un|q∗
dx

)β2(p2+C2)
) 1

β2

= C

( K
∑

k=k0

1

kq∗( p–q
p – s

q∗ ) p
q

) q
p

·
( K

∑

k=k0

∫

Bk

|un|q∗
dx

) p–q
p

+ C

( K
∑

k=k0

1
kq∗C1α1

) 1
α1

·
( K

∑

k=k0

∫

Bk

|un|q∗
dx

)p1+C1

+ C

( K
∑

k=k0

1
kq∗C2α2

) 1
α2

·
( K

∑

k=k0

∫

Bk

|un|q∗ dx

)p2+C2

. (28)

Note that

∫

{|un|≤K}
|∇un|q dx =

∫

Dk0

|∇un|q dx +
K

∑

k=k0

∫

Bk

|∇un|q dx. (29)
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To estimate the first integral in the right-hand side of (29), we compute by using Hölder’s
inequality and (24), obtaining

∫

Dk0

|∇un|q dx ≤
(∫

Dk0

|∇un|p
(1 + |un|)θ (p–1) dx

) q
p
(∫

Dk0

(

1 + |un|
) ps

p–q dx
) p–q

p

≤ C, (30)

where C depends only on α, β , b, p, θ , ‖j‖p′ , ‖f ‖1, ‖∇v0‖p, ‖v0‖∞, and k0.
Note that

∑K
k=k0

1

k
q∗( p–q

p – s
q∗ ) p

q
and

∑K
k=k0

1
kq∗Ciαi

converge as K → ∞ due to the fact that

q∗( p–q
p – s

q∗ ) p
q > 1 and q∗Ciαi > 1 by (27), respectively. Combining (28)–(30), we get for k0

large enough

∫

{|un|≤K}
|∇un|q dx ≤ C + C

(∫

{|un|≤K}
|un|q∗

dx
) p–q

p

+ C
(∫

{|un|≤K}
|un|q∗

dx
)p1+C1

+ C
(∫

{|un|≤K}
|un|q∗

dx
)p2+C2

. (31)

Since p > q, TK (un) ∈ W 1,q(Ω), TK (g) = g ∈ W 1,q(Ω) for K > ‖g‖∞. Hence TK (un) – g ∈
W 1,q

0 (Ω). Using the Sobolev embedding W 1,q
0 (Ω) ⊂ Lq∗ (Ω) and Poincaré’s inequality, we

obtain

∥
∥TK (un)

∥
∥

q
q∗ ≤ 2q–1(∥∥TK (un) – g

∥
∥

q
q∗ + ‖g‖q

q∗
)

≤ C
(∥
∥∇(

TK (un) – g
)∥
∥

q
q + ‖g‖q

q∗
)

≤ C
(∥
∥∇TK (un)

∥
∥

q
q + ‖∇g‖q

q + ‖g‖q
q∗

)

≤ C
(

1 +
∫

{|un|≤K}
|∇un|q dx

)

. (32)

Using the fact that

∫

{|un|≤K}
|un|q∗

dx ≤
∫

{|un|≤K}

∣
∣TK (un)

∣
∣
q∗

dx ≤ ∥
∥TK (un)

∥
∥

q∗
q∗ , (33)

we obtain from (31)–(32)

∫

{|un|≤K}
|∇un|q dx ≤ C + C

(

1 +
∫

{|un|≤K}
|∇un|q dx

) q∗
q

p–q
p

+ C
(

1 +
∫

{|un|≤K}
|∇un|q dx

)(p1+C1) q∗
q

+ C
(

1 +
∫

{|un|≤K}
|∇un|q dx

)(p2+C2) q∗
q

. (34)
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Note that p < N ⇔ q∗
q

p–q
p < 1 and (pi + Ci) q∗

q < 1 by (26). It follows from (34) that, for
k0 large enough,

∫

{|un|≤K} |∇un|q dx is bounded independently of n and K . Using (32) and
(33), we deduce that

∫

{|un|≤K} |un|q∗ dx is also bounded independently of n and K . Letting
K → ∞, we deduce that ‖∇un‖q and ‖un‖q∗ are uniformly bounded independently of n.
Particularly, un is bounded in W 1,q(Ω). Therefore, there exist a subsequence of {un} and a
function v ∈ W 1,q(Ω) such that un ⇀ v weakly in W 1,q(Ω), un → v strongly in Lq(Ω) and
a.e. in Ω . By Lemma 3, un → u in measure in Ω , we conclude that u = v and u ∈ W 1,q(Ω).�

Lemma 6 There exist a subsequence of {un} and a measurable function u such that ∇un

converges almost everywhere in Ω to ∇u.

Proof Define A(x, u, ξ ) = a(x,ξ )
(1+|u|)θ (p–1) (for the sake of simplicity, we omit the dependence

of A(x, u, ξ ) on x). Let h > 0, k > max{‖g‖∞,‖ψ‖∞}, and n ≥ h + k. Take Tk(u) as a test
function for (7), obtaining

I7(n, k, h) ≤
∫

Ω

fnTh
(

un – Tk(u)
)

dx +
∫

Ω

b|un|r–2unTh
(

un – Tk(u)
)

dx,

where

I7(n, k, h) =
∫

Ω

A(un,∇un) · ∇Th
(

un – Tk(u)
)

dx.

Note that r – 1 < q∗, and
∫

Ω
|un|q∗ dx is uniformly bounded (see the proof of Lemma 5),

thus |un| converges strongly in L1(Ω). Therefore we have

lim
n→∞

∫

Ω

|un|r–2unTh
(

un – Tk(u)
)

dx =
∫

Ω

|u|r–2uTh
(

u – Tk(u)
)

dx.

Then, using the strong convergence of fn in L1(Ω), one has

lim
n→∞ I7(n, k, h) ≤

∫

Ω

–fTh
(

u – Tk(u)
)

dx +
∫

Ω

b|u|r–2uTh
(

u – Tk(u)
)

dx.

It follows

lim
k→∞

lim
n→∞ I7(n, k, h) ≤ 0.

Thanks to Lemma 3 and Lemma 5, we can proceed exactly as [19, Lemma 6] to conclude
that, up to subsequence, ∇un → ∇u a.e. �

Proof of Proposition 4 We shall prove that ∇un converges strongly to ∇u in Lq(Ω) for
each q being given by (8). To do that,we will apply Vitali’s theorem, using the fact that by
Lemma 5, ∇un is bounded in Lq(Ω) for each q given by (8). So let s ∈ (q, N(p–1)(1–θ )

N–1–θ (p–1) ) and
E ⊂ Ω be a measurable set. Then we have by Hölder’s inequality

∫

E
|∇un|q dx ≤

(∫

E
|∇un|r dx

) q
s
· |E| s–q

s ≤ C|E| s–q
s → 0
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uniformly in n, as |E| → 0. From this and from Lemma 6, we deduce that ∇un converges
strongly to ∇u in Lq(Ω).

Now assume that 0 ≤ θ < min{ 1
N–p+1 , N

N–1 – 1
p–1 , p–r

p–1 }. Note that since ∇un converges to
∇u a.e. in Ω , to prove the convergence

a(x,∇un)
(1 + |un|)θ (p–1) → a(x,∇u)

(1 + |u|)θ (p–1) strongly in
(

L1(Ω)
)N ,

it suffices, thanks to Vitali’s theorem, to show that, for every measurable subset E ⊂ Ω ,
∫

E | a(x,∇un)
(1+|un|)θ (p–1) |dx converges to 0 uniformly in n, as |E| → 0. Note that p – 1 < N(p–1)(1–θ )

N–1–θ (p–1) )
by assumptions. For any q ∈ (p – 1, N(p–1)(1–θ )

N–1–θ (p–1) ), we deduce by Hölder’s inequality

∫

E

∣
∣
∣
∣

a(x,∇un)
(1 + |un|)θ (p–1)

∣
∣
∣
∣
dx ≤ β

∫

E

(

j + |∇un|p–1)dx

≤ β‖j‖p′ |E| 1
p + β

(∫

E
|∇un|q dx

) p–1
q

|E| q–p+1
q

→0 uniformly in n as |E| → 0. �

Lemma 7 There exists a subsequence of {un} such that, for all k > 0,

a(x,∇Tk(un))
(1 + |Tk(un)|)θ (p–1) → a(x,∇Tk(u))

(1 + |Tk(u)|)θ (p–1) strongly in
(

L1(Ω)
)N .

Proof See the proof of [19, Lemma 7]. �

3 Proof of the main result
Now we have gathered all the lemmas needed to prove the existence of an entropy solu-
tion to the obstacle problem associated with (f ,ψ , g). In this part, let fn be a sequence of
smooth functions converging strongly to f in L1(Ω), with ‖fn‖1 ≤ ‖f ‖1 +1. We consider the
sequence of approximated obstacle problems associated with (fn,ψ , g). The proof can be
proceeded in the same way as in [8] and [19]. We provide details for readers’ convenience.

Proof of Theorem 1 Let v ∈ Kg,ψ ∩L∞(Ω). Taking v as a test function in (7) associated with
(fn,ψ , g), we get

∫

Ω

a(x,∇un)
(1 + |un|)θ (p–1) · ∇(

Tt(un – v)
)

dx +
∫

Ω

b|un|r–2unTt(un – v) dx

≤
∫

Ω

fnTt(un – v) dx.

Since {|un – v| < t} ⊂ {|un| < s} with s = t + ‖v‖∞, the previous inequality can be written as

∫

Ω

χn∇ATs(un) · ∇v dx ≥
∫

Ω

–fnTt(un – v) dx +
∫

Ω

b|un|r–2unTt(un – v) dx

+
∫

Ω

χn∇ATs(un) · ∇Ts(un) dx, (35)
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where χn = χ{|un–v|<t} and ∇Au = a(x,∇u)
(1+|u|)θ (p–1) . It is clear that χn ⇀ χ weakly* in L∞(Ω). More-

over, χn converges a.e. to χ{|u–v|<t} in Ω \ {|u – v| = t}. It follows that

χ =

⎧

⎨

⎩

1, in {|u – v| < t},
0, in {|u – v| > t}.

Note that we have LN ({|u – v| = t}) = 0 for a.e. t ∈ (0,∞). So there exists a measurable set
O ⊂ (0,∞) such that LN ({|u – v| = t}) = 0 for all t ∈ (0,∞) \ O. Assume that t ∈ (0,∞) \
O. Then χn converges weakly* in L∞(Ω) and a.e. in Ω to χ = χ{|u–v|<t}. Since ∇Ts(un)
converges a.e. to ∇Ts(u) in Ω (Proposition 4), we obtain by Fatou’s lemma

lim inf
n→∞

∫

Ω

χn∇ATs(un) · ∇Ts(un) dx ≥
∫

Ω

χ∇ATs(u) · ∇Ts(u) dx. (36)

Using the strong convergence of ∇ATs(un) to ∇ATs(u) in L1(Ω) (Lemma 7) and the weak*
convergence of χn to χ in L∞(Ω), we obtain

lim
n→∞

∫

Ω

χn∇ATs(un) · ∇v dx =
∫

Ω

χ∇ATs(u) · ∇v dx. (37)

Moreover, due to the strong convergence of fn to f and |un|r–2un to |u|r–2u (by r –1 < q∗ and
the boundedness of ‖un‖q∗ ) in L1(Ω), and the weak* convergence of Tt(un – v) to Tt(u – v)
in L∞(Ω), by passing to the limit in (35) and taking into account (36)–(37), we obtain

∫

Ω

χ∇ATs(u) · ∇v dx –
∫

Ω

χ∇ATs(u) · ∇Ts(u) dx ≥
∫

Ω

–fTt(u – v) dx

+
∫

Ω

b|u|r–2uTt(u – v) dx,

which can be written as
∫

{|v–u|≤t}
χ∇ATs(u) · (∇v – ∇u) dx ≥

∫

Ω

–fTt(u – v) dx

+
∫

Ω

b|u|r–2uTt(u – v) dx,

or since χ = χ{|u–v|<t} and ∇(Tt(u – v)) = χ{|u–v|<t}∇(u – v)

∫

Ω

∇Au · ∇Tt(u – v) dx +
∫

Ω

b|u|r–2uTt(u – v) dx

≤
∫

Ω

fTt(u – v) dx,∀t ∈ (0,∞) \O.

For t ∈ O, we know that there exists a sequence {tk} of numbers in (0,∞) \ O such that
tk → t due to |O| = 0. Therefore, we have

∫

Ω

∇Au · ∇Ttk (u – v) dx +
∫

Ω

b|u|r–2uTtk (u – v) dx ≤
∫

Ω

fTtk (u – v) dx. (38)
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Since ∇(u – v) = 0 a.e. in {|u – v| = t}, the left-hand side of (38) can be written as
∫

Ω

∇Au · ∇Ttk (u – v) dx =
∫

Ω\{|u–v|=t}
χ{|u–v|<tk}∇Au · ∇(u – v) dx.

The sequence χ{|u–v|<tk} converges to χ{|u–v|<t} a.e. in Ω \ {|u – v| = t} and therefore con-
verges weakly* in L∞(Ω \ {|u – v| = t}). We obtain

lim
k→∞

∫

Ω

∇Au · ∇Ttk (u – v) dx =
∫

Ω\{|u–v|=t}
χ{|u–v|<t}∇Au · ∇(u – v) dx

=
∫

Ω

χ{|u–v|<t}∇Au · ∇(u – v) dx

=
∫

Ω

∇Au · ∇Tt(u – v) dx. (39)

For the right-hand side of (38), we have
∣
∣
∣
∣

∫

Ω

fTtk (u – v) dx –
∫

Ω

fTt(u – v) dx
∣
∣
∣
∣
≤ |tk – t| · ‖f ‖1 → 0 as k → ∞. (40)

Similarly, we have
∣
∣
∣
∣

∫

Ω

|u|r–2uTtk (u – v) dx –
∫

Ω

|u|r–2uTt(u – v) dx
∣
∣
∣
∣
≤ |tk – t| · ∥∥|u|r–1∥∥

1

→ 0 as k → ∞. (41)

It follows from (38)–(41) that we have the inequality
∫

Ω

∇Au · ∇Tt(u – v) dx +
∫

Ω

b|u|r–2uTt(u – v) dx

≤
∫

Ω

fTt(u – v) dx, ∀t ∈ (0,∞).

Hence, u is an entropy solution of the obstacle problem associated with (f ,ψ , g). The de-
pendence of the entropy solution on the data f ∈ L1(Ω) is guaranteed by Proposition 4. �
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