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1 Introduction
In this paper we consider the system of nonlinear Hadamard fractional differential equa-

tions involving coupled integral boundary conditions

DPu(t) +fi(t,u(®),v(t)) =0, l<t<e,

DPv(t) + fo(t, u(t),v(t)) =0, l<t<e,

u(l)=v(1)=u/(1) =v/(1) =0, (1.1)
u(e) = [} h(s)v(s)%,

v(e) = [{ g(s)uls)%,

where 8 € (2,3], D? is the Hadamard fractional derivative of fractional order 8, and fi
(i=1,2), h, g satisty the following conditions:

(H1) f; (i = 1,2) are nonnegative continuous functions on [1,e] x R* x R*,

(H2) h,g>0(£0) on [1,e] with [; (t)(log t)ﬁ‘l% - [{ g(®)(log t)ﬁ‘l% €(0,1).

Fractional-order differential equations is a rapidly developing area of research; we refer
the reader to [1-48] and the references therein. In [1-9], the authors used iterative tech-
niques to study existence and uniqueness of solutions for fractional boundary value prob-
lems. In [1] the authors studied positive solutions for the p-Laplacian fractional Riemann—
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Stieltjes integral boundary value problem

~D} (¢, (-D22)(t) = f (£, 2(t), D} (), t€(0,1),
D%z(0) = D¥*12(0) = D} z(0) = 0, (1.2)
Diz(1)=0,  D}z(1) = [, D}z(s) dA(s),

where DY, Df , Dr are the Riemann-Liouville fractional derivatives, and they not only
obtained existence and uniqueness of positive solutions for (1.2), but also constructed
an iteration sequence for the unique positive solution. In [10-32], the authors used fixed
point methods to study the existence of (positive) solutions fractional order equations.
In [10] Mawhin’s continuation theorem was used to study the following fractional order

boundary value problem at resonance:

Dix(t) =f(t,x(t),x'(¢)), tel0,T], 13)
x(0)=al)’x(2),  ®(T)=prIrx(E), 0<(,E<T, '

where D7 is the Caputo fractional derivative, I} Yisa Erdélyi—Kober type integral, and
PJP denotes the generalized Riemann-Liouville type integral boundary conditions. For
fractional differential systems, see [23—32]. In [23], using the Leray—Schauder alternative
and the Banach contraction principle, the authors studied existence and uniqueness of
solutions for the system of nonlinear Caputo type sequential fractional integro-differential

equations

(CD* + A°D* VYu(t) = f(t, u(®), v(t),°DP1v(t), 11 v(t)), te€(0,1),
(D + uDPNYu(t) = g(t, u(t),“DP>u(t), 1 u(t), v(t)), te (0,1),
u©)=w'(0)=u'(0)=0,  u(l)=fy uls)dHi(s) + [, v(s)dHs(s),
v(0) =v'(0) =v"(0) = 0, v(1) = fol u(s) dKy(s) + fol v(s) dK(s).

Hadamard fractional differential equations are also popular in the literature; see [33—48]
and the references therein. In [33], the authors used the Banach contraction principle, the
Leray—Schauder’s alternative, and Krasnoselskii’s fixed-point theorem to study the exis-
tence and uniqueness of solutions for the coupled system of nonlinear sequential Caputo
and Hadamard fractional differential equations with coupled separated boundary condi-

tions

CDPHDAK() = f(2,2(2),y(2), ¢ € la,b],
HD0CDP(t) = g(t,x(2), (1), t € [a,b],
a1x(a) + y“DP2y(a) =0,  Prx(b) + B,°DP2y(b) = 0,
azy(a) + a ' DT x(a) = 0, B3y(b) + B4 D1x(b) = 0,

(1.5)

where ¢D?i, H D4i are respectively the Caputo and Hadamard fractional derivatives. In [34]

the authors established positive solutions for the coupled Hadamard fractional integral
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boundary value problems

Du(t) + Mf(t, u(t),v(t)) =0, te(l,e),Ar>0,

DPv(t) + rg(t,u(t),v(t) =0, te(l,e),r>0,

u(1)=v"(1)=0, 0<j<n-2, (1.6)
ule) = p i vi9) %,

vie)=v [{ u(s)%,

where «, 8 € (n—1,n] and n > 3, D%, D are the Hadamard fractional derivatives and their
nonlinearities f, g satisfy the following conditions:

(H)yang1 There exists [0;,60:] C (1,e) such that liminf,_, .o minse(g, 6,) ]@ = +00 and
L. . tu,
liminf,_, ;oo Minzefp, 6,] M = +00;
or

fGuy)
v

= +00 and

(H)yangz There exists [61,60;] C (1,e) such that liminf,_, o ming, 6,
imi ; gtuy) _
liminf,,, ;00 Mingep; 6y) == = +00.

Motivated by the above, in this paper we study the existence of positive solutions for
the system of nonlinear Hadamard fractional differential equations (1.1) involving cou-
pled integral boundary conditions. We use appropriate nonnegative matrices to depict
the coupling behavior for our nonlinearities, and note that they can grow both superlin-
early and sublinearly. We remark here that our conditions for nonlinear terms are not as

restrictive as those in (H)yang1 and (H)yang2; see (H3)—(H6) in Sect. 3.

2 Preliminaries
In this section, we first provide some material for Hadamard fractional calculus; for details,
see the book [49].

Definition 2.1 The Hadamard derivative of fractional order ¢ for a function g : [1,00) —
R is defined as

1 a\" [t ds
Dig(t) = —— [ t— logt —logs)" 4 g(s)—, n-1 )
g(t) - (t t) /1 (logt —logs) g(s) . n <q<n

where # = [q] + 1; [g] denotes the integer part of the real number g and log(-) = log,(-).

Definition 2.2 The Hadamard fractional integral of order ¢ for a function g: [1,00) - R

is defined as
1 t
Ig(t) = — f (logt - logs)q_lg(s)é, q>0,
I'(q) Ji N

provided the integral exists.

In what follows, we calculate the Green’s functions associated with (1.1) and study some

properties of these Green’s functions.
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Lemma 2.3 (see [34, Lemma 2.3]) Let x,y € C[1,e]. Then the integral boundary value
problem

DPu(t) + x(t) = 0, DPv(t) +y(t) =0, te(le),
u(l) =v(1) = ’( )=v(1)=0,

. (2.1)
u(e) = fl V()
vie) = [} g(S)u(S)%,
can be transformed into the following Hammerstein type integral equations:
p-1
ut) = [} Gi(t, 6L + BETE [1 [ 600G (6,5 Fls) %
S e IO O, 02
VO = [} Gil6,9y(6) % + S [ [ h(0)Gi(t,9) L y(s)
+ SO [ [F 200G (6,9) ()
where
1 log#)?~1(1 —logs)?! — (logt —logs)?™!, 1<s<t<e,
Gultos) = (log#)”~*(1 —logs)”™" — (log £ — logs) Ss<t= 2.3)
I'(B) | logt)?~1(1 - logs)?, 1<t<s<eg

here, dg, dg, dy are three positive constants defined in the proof.

Proof From Lemma 2.3 of [34] we have

% /lt(logt - logs)’s’lx(s)%,

u(t) = c11(log )’ + c1p(log 1)’ 2 + ey (log 1) > — r(

1 t
W(O) = en(log P! + expllog P + eallog B ® — —— / (logt — log)*1y(9) %=,
@ ), s

where ¢y, ¢; € R,i=1,2,3. Note that (1) = v(1) = /(1) = v/(1) = 0 implies c19, €13, €22, €23 =
0. Then we have

‘ d
u(t) = e (log )P~ — %ﬁ) 1 (logt—logs)ﬂ’lx(s)?s,

W(t) = en(log £ - %ﬂ) / (log - log (9 %

Using the conditions u(e) = f1 v(s) , v(e) = fl g(s) u(s , we obtain

1 € d.
w1 /1 (1-1og9)" (9

:C2l/ieh(t)(10gt)ﬂ_l% - %m/;eh(t)ﬂt(logt—logs)ﬁ 1 (S)éﬂ

1 € d
Co1 — T,B) / (1- logs)ﬂ’ly(s)?s

dt 1 d
=c11/ g(t)(logt)’g 17 T/ g(t)/ (logt—logs)ﬁ lx(s)—SYt

Page 4 of 18
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This implies that

C11
1

1 — [{ h(t)(log t)f1 4
- [{g(®O)(loge)P 14

21

[ré - [{(1~logs)* lx(s)—— 5 [ h(e) [} (log £ — logs)P1y(s) % &
1‘2,3) f1 —logs) )P 1

t
? ﬁﬁ fl (logt —logs)?~! ()ﬂiS%]‘
Let dgp = 1 - ffh(t)(logt)ﬂ—I% ) ffg(t)(logt)ﬁ_l%, dy = [*h(E)loge)12:
fl (t)(logt)P~ ldt . Then

,dg:

t
cn|_ 1 1 Ji n(e)(log )P~ &
1| dgn ffg(t)(log t)fH% 1

F fl flt (logt —logs)?1y(s
T )f1 logS)ﬂ 1J’(S) v

)ds dt
st
- fl g(®) fl (logt —logs)?~ 1x(s)d—”l—] '
Consequently, we have

_ (logg)P™* ¢ PR
u(t) = don T (B) /1 (1-1logs) x(s):
(log )P t ds dt
- h@) | ( logs)?™
dn T ) ()/l(ogt 0g )" y(s)—

K t
dh(logt)ﬁ‘lf . ds
+ 1—logs)?Ly(s)—=

D) 1( gs) y()s
~ dy(logt)f!

t ds dt
_ B-1 -
ot ® ) g(t)/ (logt —logs)" " x(s)

st
AT / (log - logs)"” 1x(s)—
i S:f;)(ﬁﬁ; . h(t)(logt)”‘lf /1 (1_10gs)ﬁ—1y(3)%
) S;f;)(ﬁﬁ) | /ltﬂogt—logs)ﬁ 1y(s>—s?
logt)ﬂ 1

FAAT)) / (l—logs)ﬁ1 (s)—
2
dh(logt)ﬂ !

ds dt
_ B-1 it
o) (t)/(logt togs)* ()%

B- e
F(ﬁ)/ (logt —logs)?~ 1x() &, Logh 1/1 (1—10gs)5‘1x(s)%

1 A1
- (01%(?3) / @1 —logs)ﬂ_lx(s)f

Nt U PV R
- /1 Gttt + G [ /1 ¢ogn* % /1 (1 - log ) ()

- f e(0) f (log - log ) x(5) % ””]
1 1

S)—T
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logt p-1 -1
) [/ h(t)(log 2 / (1-logs) y(s)

/ (t) / (logt — log ) 1y(s) =

ds dy(logt)f! padt [€ PRENS
,/1G1(t s)x(s)? 7dg,h1_'(/3) [/1 g(t)(logt) 7f1(1—logs) x(s)?

—/eg(t)/e(logt—logs)f"lx(s)ﬂ é]
1 s

t s

(log t)ﬂfl e 41 At e o s
’ denl"(B) [/ h(t)log) _/ (1-logs) y(s)?

f (o) / (logt ~ log)y(s) ”ls}

e é alhlogtﬁl ds
/ Gt ] + R / / dOG (52 x(s)

ds dt:|

. (logt)f1
ghr(ﬂ)

/ WG, s)—y( )—

Similarly, we also obtain that

ds

- pa_ L[ b1
(0 = en(logt)* ™ - s [ (oge - logs)' )

I L Y RN
+F(,B)/1(10gt) (1-logs) y(s)s

L B1(1 oo f-loy S
5 /1 (Iog2)" (1~ log ) 5(9)"

- [ ity - 1 [ ozt -0 o)
% ] (1 -Tog /59 %
_ SZ%; C f (g logs) () = &
. “:fl?ﬂﬂ; f (1-Tog /59
(;;’f;)f : / f (og ¢ ~1ogs)x(9) 2%
- eGl(t,S)y(S);+%[ [ oo - / (1-log /"y %

—feh(t)/t(logt—logs)f"ly(s)éﬂ}
1 1

st
logt” " [* prdt (€ RPN
' hr(ﬁ)[/ g(O)log )™=~ /1 (1-1ogs)* (9

/ ®) / (log £ — log s~ lx(s)d””]
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e ds  dy(logt)*!
_ / Gl(t,s)y(s)?s dglog )™ / / HOGy (&, s)—y(s)—

ghF(,B)
1 B-1
(of;)w) | | sosieao
This completes the proof. d

From Lemma 2.3, we note (1.1) is equivalent to the Hammerstein type integral equations

() = [} Gr(6,5)i 5,9, vs)
+ BB [¥ [ 206 (9L s, 4(s), v(s) £
S;’itﬁ’ I 3 n®G (6,925, u(s), ) L,
() = [} Gi(t, )fa(s, u(s), v(s)) %
di,“f,f“‘ Ji I HOG1 (6,5 % s, us), v(s) %
+ R ¢ 1 800G (69) i s, u(5) v(s) .

(2.4)

Lemma 2.4 The function G1(t,s) satisfies the following inequalities:
(I1) ﬁﬁ)(log £)#-1(1 —logt)logs(1 —logs)f~! < G,(t,s) < % logs(1 —logs)?~! for
t,se€[l,e],
(I12) ﬁ(log £)#-1(1 —logt)logs(1 —logs)f~! < G,(t,s) < %(logt)ﬁ‘l(l —logt) for
t,se€[1,e].

Proof We note a result from [14]. Let 8 € (n — 1, n] with n € N, n > 3. Then the function

1 |- -(z-0FfY, 0<l<z<],
Gz, ) = ——
rB) |61 -pF, 0<z<l<l,
has the following properties:
(R1) G(z,)=G(A -1,1-2)forz[e]0,1];
(R2) I'(B)k(z)q(l) < G(z,]) < (B - 1)q(l) for z,1 € [0,1];

(R3) I'(B)k(z)q(l) < G(z,1) < (B - 1)k(z) for z,1 € [0, 1], where k(z) = %,
1(1-pp-1

9() = 5
Now, we turn our attention to G;. If log ¢, logs are regarded as z, /, then from (R2), (R3)

we have

I"(B)k(log t)q(logs) < G(logt,logs) < (B - 1)g(logs),
I’ (B)k(logt)g(logs) < G(logt,logs) < (B — 1)k(logt), fort,se[1,e].

Thus (I1), (I2) hold. This completes the proof. O
Let u(t) = log t(1-logt)P~1 for t e [1,e].
B2L(B)

Lemma 2.5 Let x; =
hold:

By K2 = r’(g;:z)’ Then, for any s € [1, e], the following inequalities

€ d
canls) < /1 Gilt IO < ans), (2.5)
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This is a direct result from Lemma 2.4(I1), so we omit its proof.

Let E:= C[1,e], ||| := maxieq,q |u(2)|, P:={u € E: u(t) > 0,Vt € [1,e]}. Then (£, | - ||) is
a real Banach space and P is a cone on E. From Lemma 2.3 and (2.4), we define operators
A;: P x P— P as follows:

Ar(w,v)(t) = [} Gi(t,s)fi(s, uls), V(s))%
+ e 1} 206 e ), v %

;Oitr fl f1 h(£)Gi (¢, S)dtfz (s, u(s), V(s))ds

(2.6)
As(u,v)(8) = [} Gi(t, $)fa(s, u(s), v(s)) L
+ d;“‘;g;)z) 2 [ hOGL(E, 5) 2 fo(s, uls), v(s)) &
;’i;ﬂ =2 I g0G (654 s, uls), vis)) 2,
and
A, v)(t) = (A1(u,v), A2 (u,v))(t)  for £ € [1,e]. (2.7)

Note A; : P x P— P, A: P x P — P x P are completely continuous operators and (u, v)
solves (1.1) if and only if (u,v) is a fixed point of the operator A.

(log )P-1 (1-log¢)

Lemma 2.6 Let Py={z€ P:z(t) > A1

E,and A;(P x P) C Py,i=1,2.

lzll, ¥t € [1,€l}. Then Py is also a cone on

Proof We only prove A;(P x P) C Py. From Lemma 2.4(I1), for ¢ € [1, e], we have

A1(u,v)(t) —/ G (¢, s)fl(s, (s), v(s))

d(logt)P™ £)p-1
ghF(/S)

(logt)#-1
Of;) ﬂ)/ f h()Gi(t,s) fz(s,u(s V(s))—
g

< /1 e i(_; logs(1 - logs)"'fi(s, ”(S)’V(S))?S

/ / g(t)Gi(t, s)—fl (s, us), v(s))

o / / 2OGi(1,9) fl(s,u(s) v(s))
g

dt ds
' mfl /1 h(t)Gl(t’S)sz(S:H(S),V(s))?,

and
Al = ./13 = t)ﬁ:((;)_ 80 logs(1 —logs)” £ (s, u(s), v(s))?
dy(log £)~1(1 - logt)
+ ghF(ﬁ / / gt)Gi(¢,s) f1(s, u(s), V(s))

(log £)f~1(1 - log t)
dg,h F(ﬂ)

//h(t)Gl(t,s)?fz(s,u(s),v(s))é
1 J1 S
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Note that 8 — 1 > 1, so we have

ﬂ_ —
Ay (u,v)(t) > (log?) '31511 log £)

HAl(u, V)” for u,ve P,t € [1,e].

This completes the proof. 0

Lemma 2.7 (see [50]) Let E be a real Banach space and P be a cone on E. Suppose that
2 C E is a bounded open set and that A : 2 N P — P is a continuous compact operator. If
there exists wy € P\{0} such that

w—-Aw #Awy, YA>0,0€d2NP,
then i(A, 2 N P, P) = 0, where i denotes the fixed point index on P.

Lemma 2.8 (see [50]) Let E be a real Banach space and P be a cone on E. Suppose that
2 C E is a bounded open set with 0 € 2 and that A : 2 N P — P is a continuous compact
operator. If

w—rAw#£0,Y2 € [0,1],0 € 32 N P,
theni(A,2NP,P)=1.

3 Main results
Let

B[ gt o dt
©r fflg,hl“(2;3+1)/1 8(®)(log#)™ (1 ~log£)—,

I R Y
“ dg,hF(2ﬂ+1)f1 h(#)(log )™ (1 - log?) =

BBV qode BN [t de
ST darep+) ), g0~ K= G T @h+ D )h (o~

Now we list our assumptions for the nonlinearities f; (i = 1,2).
(H3) There are ai;,b1; >0 (i = 1,2) and /1,1, > 0 such that

ai (k1 + k3dp) + arky < 1, b1y (k1 + dgicy) + b1ikz < 1,

det bu(kr + k3dp) + bioka  an(ky + k3dy) + aroka — 1 >0
biy(ky +dgics) + briks =1 aia(ky + dgka) + ayiks ’

(fl(t,x,y)) > (aux +huy- ll) , Y(t,xy) €[le] x RY x R*.

5(t,%,y) arx+ by -1
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(H4) There are ay;, by; > 0 (i = 1,2) and r; > 0 such that

(k2 + Ksdp)an + kednn < 1, ()2 + dgKé)bZZ +ksby < 1,

det 1 — (k2 + K5dp)an — Kean — (K + ks5dp)ba1 — kebar 50
—(2 + dgKé)ﬂzz — K5d21 1— (ko + dgK6)b22 —ks5by ’

(f(t’x’y)) < (“21’” bzly), V(t,%,9) € [Le] x [0,r1] x [0,71].

(8, %,9) anx + byy

(H5) There are as;, b3; > 0 (i = 1,2) and r, > 0 such that

az1 (k1 + k3dp) + azkg < 1, by (k1 + dgkcy) + b31kz < 1,

det ba1(k1 + k3dp) + basks  azi(ky + k3dy) + azaks — 1 >0
by (k1 +dgica) + baikz =1 az(ky + dgka) + aziks ’

b b b

fbx)) o (anx b} g e el x [0,r2] x [0,7).
H(t%,y) anx + by

(H6) There are aq;, by; >0 (i = 1,2) and I3, /4 > 0 such that

(k2 + Ksdp)ag + keda < 1, (k2 + dgic6)bag + K5bgy < 1,

det 1— (kg + ks5dp)am — keasy  —(ka + K5dp)bar — kebao >0
—(K2 + dgis)any —Kksasr 1 — (kg + dgk)bay — ksba ’

(vj;l(t,x,y)> < <a41x+ byy + l3> . V(ty) € [le] x R x R,

2(t,%,y) apx +byy + 14
Let B, :={u € E: | u|| < p} for p >0 in the sequel.

Theorem 3.1 Suppose that (H1)—(H4) hold. Then (1.1) has a positive solution.

Proof Let S; = {(u4,v) € P x P: (u,v) = A(u,v) + A¢1,91), VA > 0}, where ¢; is a fixed ele-

ment in Py. We claim that S; is a bounded set in P x P. Note if there exists (u,v) € S; such

that

u(t) = A1 (u, v)(£) + A1 (8), v(t) = Ax(u, v)(t) + A1 (t) fort e [l,e],

then this, together with Lemma 2.6, implies that

u,v e Py.

From (3.1) we have

u(t) > Ay (u,v)(2), v(t) > As(u,v)(t) forte[l,e].

Page 10 of 18
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From the definitions of A; (i = 1,2), multiplying by 1(¢) and integrating from 1 to e, Lem-
mas 2.4 and 2.5 enable us to obtain

[{ u@n()%
v
S oy G (8,8 s, ), v(s)) %
+ dZ“Zgﬁ If L g0)Gi(t, ) Lfi (s, uls), v(s) %

(logt) ﬁ 1

e i OGS ) Ehas u(s), vis) )
INIGIN Gl(t )fa(s, u(s), v(s)) £

";“f; I I3 WG (,9) % (s, u(s), v(s) %

+ R I} [ e G(6.9) dffl(s u(s), v(s)) L) &
o [ Vex + resddh) I @A u@), ()% + ka [ @)t u(t), v(1) %
T (k1 + dga) [ n@f (& u®), V()L + k3 [ w(e)fi (& u(t), v(E) 2

v

(3.4)

Combining this with (H3), we have

f1e u(t)u(2) %
fle V(t)ﬂ(t)%
(i1 + kesdp) [} 1(E) (@) + biv(e) — )%
+Ka fle M(t)(ﬂuu(t) + buv(t) — lz)%

’ 3.5
(ic1 + dgk) [{ 1(€)(arau(t) + biav(t) - b) % (3.5)
+K3 fle w(@®) (@ u(t) + biv(t) - [1)%

and
d
b1 (k1 + k3dy) + biaka ari(ky + k3dp) + ainky — fl 7
d
blg(lq + dgl(4) + bnl(g -1 6112(/(1 + dgK4) + d11K3 /1 M(t 7
e d (k1 +k3dp)ly +rals
_ [ (Uer +zdn)ly + kals) INZGEAY ( ;(,3;12) 1
- e dt | =\ (ki+dgka)la+k3h | *
(1 + dgK4)12 + K3ll)f1 I'L(t)T W
Solving this matrix inequality, we have
( aia(k1+dgkg)+aiks 1—ﬂ11(K1+K3dh)+ﬂ12K4) (k1 +x3dp) 1 +rals
fl t - 1-b1a (k1 +dgka)+b11k3 b1 (k1+Kk3d)y)+b12ks T2
f M(t dt - d b11(k1+k3dy)+b12ks a1 (k1 +k3dy)+aiaka—1 (k1 +dgra)lp+k3ly
1 t et(b12(K1+dgk4)+b11K3—l ﬂ12(K1+dgK4)+a11K3 ) F(ﬁ+2)

Hence, there exist M; > 0, M5 > 0 such that

fle t dt < Ml
[ ut) M,

Note (3.2), and we find

My (B-1)(2B+2)
ity _ FI ()
lull) ~ My(B-1)I"(28+2) | *
B2I(B)
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This proves that S; is bounded in P x P. As a result, if we choose R; > {ry, My (B-DI(25+2)

B2I(B) ’
W} (r1 is defined by (H4)), then we have
(u,v) # A(u,v) + M1, 1), for (u,v) € 9Bg, N (P x P),YA > 0.
From Lemma 2.7 we have
i(A,Bg, N (P x P),P x P) =0. (3.6)
Next we claim that
(u,v) # 1Ay, v), for (u,v) € 0B, N (P x P),Yr €[0,1], (3.7)

where ry is defined by (H4). Suppose (3.7) is not true. Then there exist («, v) € 9B,, N (P x P)
and A € [0,1] such that (&, v) = LA(u, v), which implies that

u(t) < Ai1(u,v)(2), v(t) <Ax(u,v)(t) forte[l,e]. (3.8)

Multiplying by w(¢) and integrating from 1 to e, Lemmas 2.4 and 2.5 enable us to obtain

(/‘fuum(t)%)
[voune
S @O Gt $)fi (s, u(s), v(s) &
+ R [} [} 8OG (65 L (), V)L
i“i?ﬁ = IS S h0)G(5) L fas, 1(s), (s) L) %
J{ 1O Grlers)falsyu(s) Vo)
+%%f JE [E W(6)Ga (8, 5) 2L fo (s, u(s), v(s) &
L0020 e 3G () s, (), () )

gl (B)

IA

_ (k2 +wesdi) [T @A (6 (), V) F + k6 [} 1(O)fa(tu(2), v(e) 4 3.9)
(12 + dgice) [} 11(E)fo(t 1), (D)) + ks [} 1a(E)fy (& 1(8), V()% | .
Substituting (H4) into this matrix inequality, we obtain
S uOue)
Lvou®e
(2 + ksd) [} 1(e)aziua(t) + b v(t) L + kg [ M(t) anu(t) + byv(t)) L
(k2 + dgk) [{ w(t)(@nu(t) + buv(e) % + ks [} 11(t)(@21u(t) + barv() L )
(3.10)

Consequently, we get

(1— (z + ksdp)an — Ksazs  ~(z + Ksdp)bon s ) ( I u(t)u(t)df) - (o)
<(,)-

—(K2 + dgike)an —ksaz 1 —(ka + dgke)bys — Ksby fl Ot

Page 12 0f 18



Jiang et al. Journal of Inequalities and Applications (2019) 2019:204 Page 13 0f 18

Therefore, (H4) implies that

. dt (1—(I<2+dgl<6)b22—1<5b21 (k2 +K5dp)b21 +K6b22 )(0)
(fl ”(t)ﬂ(t)T) < (ex+dgke)az+xsany 1-(ka+xsdp)azi—keaz/\0/ 0
e dt | — 1—(ky+k5dy)as1 —keazy —(ko+ksdy)ba1—keb: - .
v ()4 2+ksdp)az —keazs —(k2+ksdp)bai—keb2 0
fl Bne) ¢ d t( ~(ka+dgke)asy—ksazn 1*(K2+dg/f6)b22*’€5b21)

Hence,

€ d € d
/1 w00 =0, /1 WO =0

Note that p(t) £ 0 for ¢ € [1, €], so u(t) = v(t) =0, t € [1, e], which implies that ||u|| = ||v|| =
0, contradicting (u,v) € dB,; N (P x P). As aresult, (3.7) holds. From Lemma 2.8 we have

i(A,B,, N (P x P),P x P) =1. (3.11)
From (3.6) and (3.11) we have

i(A, (B, \B,,) N (P x P),P x P)

=i(A,Bg, N (P x P),P x P) —i(A,B,, N (P x P),Px P)=0-1=-1.

Therefore the operator A has at least one fixed point on (B, \B,,) N (P x P). Equivalently,
(1.1) has at least one positive solution. This completes the proof. g

Theorem 3.2 Suppose that (H1)-(H2), (H5)—(H6) hold. Then (1.1) has a positive solution.

Proof We use similar methods as in Theorem 3.1 to prove this theorem. We first claim
that

(M, V) #A(M, V) + A(‘PZ: (pZ)r for (ur V) € aBrz N (P X P),V)\ = 0, (312)

where ¢, € P is a given element. Suppose the claim is not true. Then there exist (&,v) €
9B, N (P x P) and A > 0 such that (u,v) = A(u,v) + (g2, ¢2), which implies that

u(t) > A1 (u,v)(¢), v(t) > Ay(u,v)(t) forte[l,e].
Similar to (3.4), (3.5), from (H5) we obtain
[ ut)n)%
[ vty %

- (k1 + K3dp) ff w(t)(aszu(t) + b3y v(t) % + Ky fle w(E)(azu(t) + bszv(t))%
= \ (k1 +dyka) [ () (@zu(t) + bsov(O) L + k3 [ w(t)(@siu(t) + by v(E) L )

and

( b31(kc1 + k3dp) + baaka  aszi(k1 + k3dp) + asaks — 1) <er V(t)ll«(t)%) - (0>
= O .

b3y (k1 + dgics) + b31kz — 1 az (k1 + dgks) + azik3 fle M(t)M(t)%
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Thus u(t) = v(t) =0 for t € [1,e], and ||u| = ||v]| = 0, which contradicts (u,v) € 0B,, N
(P x P). Consequently, (3.12) holds, and from Lemma 2.7 we have

i(A,B,, N (P x P),P x P) =0. (3.13)

Let Sy = {(u,v) € P x P: (u,v) = LA(u,v),VA € [0,1]}. Now we prove that S, is bounded
in P x P. Note if there exists (u,v) € S,, then

u(t) < Ay(u,v)(2), v(t) < Ay(u,v)(t) forte[l,el,

and similar to (3.9), (3.10), and by (H6) we have

(ff u(t)u(n%)

IRIGIIGE:

(ica + ksdp) [} 14(6)(@a1na(t) + bav(e) + 5) %
+ K f} 1(E)(aaoua(t) + baav(t) + lg) &

(ics + dyks) [ w(t)(@au(t) + bapv(t) + 14) %
+ ks [} 1(E)(aanua(t) + barv(e) + 13) %

<

Thus

(1 — (k2 + ksdp)as —keasy  —(k2 + ks5dp)bar — Kebao ) <er M(ﬂﬂ(ﬂ%)

—(ka + dgig)asy —ksas 1 - (ka + dgkig)bap — ksbar ) \ V(t)ﬂ(t)%

(ko +rsdy)l3+Kela
< < r'(B+2) )
— \ (ka+dgre)ly+rsis |

r(B+2)

Solving this matrix inequality, we have

. N (1—(K2+dgK6)b42—Ksb41 (ko +K5dy)bar +Kebas ) (ko +x5dp)l3+i6la
<f1 u(t)ﬂ(t)T) < (k2+dgie)asytrsasr  1-(ko+ksdp)as) —Keas T'(B+2)
e dt | — 1-(ky +k5dy)as —keasy —(ko+ks5dy)ba1—keb. (ka+dgke)latrsls | *
v (r) e 2+K5dp)as —keasy —(kg+ksdy)bal—kebaz
fl ( )M( ) t d t( —(K2+dg1{6)a42—/(5a41 l—(l(2+dgl(6)b42—l(5b41) r(g+2)

Hence, there exist M3 > 0, My > 0 such that

[{u@u®F _ (Ms
[veu@®2 ] —\my )’

Note that (#,v) € S,, and from Lemma 2.6, we find u«, v € Py. Thus, we obtain

M3(B-1)I"(2B+2)
llaell) _ BT (B)
vl ] — My(B-1)I(2B+2) | *
B2I(B)
This proves that S, is bounded in P x P. As a result, if we take R, > {ry,

A%W} (r, is defined by (H5)), we conclude that

M3(B-1)I"(2B+2)
BT (B) ’

(u,v) #1A(u,v), for (u,v) € 0B, N (P x P),YA € [0,1]. (3.14)
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From Lemma 2.8 we have
i(A,Bg, N (P x P),P x P) =1. (3.15)
From (3.13) and (3.15) we have

i(A, (Br,\By,) N (P x P),P x P)

=i(A,Bg, N (P x P),P x P) —i(A,B,, N(Px P),PxP)=1-0=1.

Therefore the operator A has at least one fixed point on (B, \B,,) N (P x P). Equivalently,

(1.1) has at least one positive solution. This completes the proof. d

Example 3.3 Let B =2.5, h(t) = g(t) = logt for t € [1 e]. Then dj, = dy = ff(log t)ﬂ% = %,
dgp=1- [ h(t)(log )P~ ldt - [{ g®)(log )P~ 1‘” =1- 2 = 2. This implies that (H2) holds.
Next, we calculate «; (i = 1, 2,3,4,5,6) as follows.

K1 = Frp) _251r2s5 ~ 0.01154,
2B +2) r@7)

po1 15 0129
Ko = = ~ 0. )
*TTB+2) @5

€ dt
K3 = K4 = (logt)(log Hf1a - log t)T

B
dghr(zﬂ + 1) /

dt
= (logt)**(1 - 1o t—~000144
45F6)/ gt)*(1-logt)

o B(B-1) ¢ t 25X15 _N
Ks_Ké_d—g,hF(2ﬁ+1)/1 (logt)— = F(6) /(1 gt) ~0.017.

Case 1. Let ag = 10, aijp = 600, bll =630, blg =7, a = 3, ay = 4, b21 =3, bzg =2. Then
we have

6l11(K1 + K3dh) + d12K4 = 10 x 0.012 + 600 x 0.00144 < 1,
bia(k1 + dgks) + briks =7 x 0.012 + 630 x 0.00144 < 1,
(k2 + ksdp)an + keary =0.134 x 3+0.017 x 4< 1,

(K2 + dgK6)l’)22 + K5b21 =0.134 x2+0.017 x 3 < 1,

bu(Kl + Kgdh) + b12K4 du(Kl + Kgdh) + d12K4 — 1 7.57 -0.016 0
— >0,
blz(Kl + dgK4) + b11K3 -1 6112(/(1 + dgl(4) + d11K3 -0.009 7.21
and
- (K2 + Kgdh)(lm — Ked2) —(K2 + K5dh)b21 — K6b22 0.53 -0.436 50
—(Kz + dgK6)tl22 — Ks5d21 1- (K2 + dgK6)b22 - K5b21 - -0.587 0.681 ’
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Let fi(t,x,y) = (10x + 630y)", fo(t,x,y) = (600x + 7y)*2 for t € [1,¢], x,y € R*, y1,y2 > 1.
Then we have

S .fl(tx x)y) .. (IOx + 630_)/)}/1
liminf ————— = inf ——MM~° - ,
aj1x+bi1y—+00 d11X + bny 10x+630y—+00  10x + 630)/

uniformly on ¢ € [1, €],

folt,x,y) (600x + 7y)?2

liminf ——— = Iliminf ——=— =+00, uniformlyonte[1,¢],
appxtbioy—>+00 d1oX + bigy  600x+7y—>+o0  600x + 7y
t,x, . 10x + 630y)" .
lim sup M = limsup ¥ =0, uniformlyonte[1,¢],

a1 x+by1y—07* anx + bZly 3x+3y—0* 3x + 3)’

and

. _f2(t1 x1y) . (60096 + 7y))/2
limsuyp ——— = limsup ——— =

0, uniformlyont € [1,e].
axx+byy—0* apX + b22y 4x+2y—0* dx + 2y

As a result, (H3)—(H4) hold.
Case 2. Let as) = 8, asy) = 620, bgl =630, b32 =7, as = 3, agy = 4, b41 = 3, b42 =2. Then
we have
az1 (k1 + k3dy) + asyks = 8 x 0.012 + 620 x 0.00144 < 1,
bgz(l(l + dgK4) + bgll(g =7 x0.012 + 630 x 0.00144 < 1,
(K2 + K5dh)(l41 + KeAygo = 0.134 x3+0.017 x4<1,

(Kz + dgK6)b42 + K5b41 =0.134 x2+0.017 x 3 < 1,

bgl(Kl + Kgdh) + b32K4 tl31(K1 + Kgdh) + asakg — 1 _ 7.57 -0.0112
bgz(lq + dgK4) + ]931/(3 -1 ﬂgz(Kl + dgK4) + d31K3 - -0.009 7.45 ’
and
1- (K2 + Kgdh)(Lu — KeA42 —(K2 + K5dh)b41 - K6b42 _ 0.53 -0.436 50
—(Kz + dgK6)tl42 — K5a441 1- (K2 + dgK6)b42 - K5b41 - -0.587 0.681 ’

Let fi(¢,x,7) = (8x + 630y)?3, fo(t,x,y) = (620x + 7y)"* for t € [1,e], x,y € R*, y3, 74 € (0, 1).
Then we have

(8x + 630y)”3 ~

t’ i .
liminf M = liminf =+00, uniformlyonte([l,e],

az1x+b31y—>0* dz X + b3y 8x+630y—>0+  8x + 630y
t,x, L. 620x + 7y)"4
fiming LG e (0200 7"
azx+b3y—0* dspx + bspy  620x+7y—0t  620x + 7y

t,x, . 8x + 630y)"3
lim sup M = limsup J =0, uniformlyonte[1,¢],

agx+bg1y—+oo0 A41X + b41y 3x+3y—> +00 3x+ 3y

=+00, uniformlyonte(l,e],

and

t,x, . 620x + 7y)"*
fimsup  L2EFY g G20
agx+bgpy—>+oo A42X + by dxi2y—sto0 A+ 2y

(=]

, uniformlyont e [1,e].

As a result, (H5)—(H6) hold.
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