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Abstract
Fibonacci difference matrix was defined by Kara in his paper (Kara in J. Inequal. Appl.
2013:38 2013). Recently, Khan et al. (Adv. Differ. Equ. 2018:199, 2018) using the
Fibonacci difference matrix F̂ and ideal convergence defined the notion of cI0(F̂), c

I(F̂)
and lI∞(F̂). In this paper, we give the ideal convergence of Fibonacci difference
sequence space in intuitionistic fuzzy normed space with respect to fuzzy norm
(μ,ν). Moreover, we investigate some basic properties of the said spaces such as
linearity, hausdorffness.
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1 Introduction and preliminaries
Let ω, c, c0, l∞ denote sequence space, convergent, null and bounded sequences respec-
tively, with norm ‖x‖∞ = supk∈N |xk|. The idea of difference sequence spaces was defined
by Kizmaz as follows:

λ(�) =
{

x = (xn) ∈ ω : (xn – xn+1) ∈ λ
}

, for λ ∈ {l∞, c, c0}.

Recently, many authors have made a new approach to construct sequence spaces using
matrix domain [2, 3, 8, 10]. Lately, Kara [9] has investigated difference sequence space.

l∞(F̂) =
{

x = (xn) ∈ ω : sup
n∈N

∣∣∣∣
fn

fn+1
xn –

fn+1

fn
xn–1

∣∣∣∣ < ∞
}

,

which is derived from the Fibonacci difference matrix F̂ = ˆ(fnk) as follows:

ˆfnk =

⎧
⎪⎪⎨

⎪⎪⎩

– fn+1
fn k = n – 1,

fn
fn+1

k = n,

0 0 ≤ k < n – 1 or k > n,

where (fn), n ∈ N is the sequence of Fibonacci numbers given by the linear recurrence
relation as f0 = 1 = f1 and fn–1 + fn–2 = fn for n ≥ 2. Quite recently, Khan et al. [13] defined
the notion of I-convergent Fibonacci difference sequence spaces as cI

0(F̂), cI(F̂) and lI∞(F̂).
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Fibonacci numbers have various applications in the fields of arts, science and architecture.
For further details, refer to [4, 11].

Fuzzy logic was first introduced by Zadeh in 1965 [24] and it found its applications in
various fields like control theory, artificial intelligence, robotics. Later on many authors
[7, 16] investigated fuzzy topology to define fuzzy metric space. As a generalisation of
fuzzy sets, Atanassov [1] defined the view of intuitionistic fuzzy sets. Intuitionistic fuzzy
normed space [18] and 2-normed space [17] are the recent studies in fuzzy theory.

Kostyrko et al. [15] in 1999 generalised the idea of statistical convergence [6, 21] to ideal
convergence. Further this idea was investigated by Salat, Tripathy and Ziman [19, 20],
Tripathy and Hazarika [22, 23] and many others.

We recall certain definitions which will be useful in this paper.

Definition 1.1 ([21]) A sequence x = (xn) ∈ ω is statistically convergent to ξ ∈ R if for
every ε > 0 the set {n ∈ N : |xn – ξ | ≥ ε} has asymptotic density zero. We write st-lim x = ξ .
If ξ = 0, then x = (xn) is called st–null.

Definition 1.2 A sequence x = (xn) ∈ ω is called statistically Cauchy sequence if, for every
ε > 0, ∃ a number N = N(ε) such that

lim
n

1
n

∣∣{j ≤ n : |xj – xN | ≥ ε
}∣∣ = 0.

Definition 1.3 ([14]) An ideal means a family of sets I ⊂ P(X) satisfying the following
conditions:

(i) φ ∈ I ,
(ii) C ∪ D ∈ I for all C, D ∈ I ,

(iii) for each C ∈ I and D ⊂ C, we have D ∈ I .
An ideal is said to be non-trivial if I 
= 2X and admissible if {{x} : x ∈ X} ⊂ I .

Definition 1.4 ([13]) A family of sets F ⊂ P(X) is called filter if and only if it satisfies the
following conditions:

(i) φ /∈F ,
(ii) C, D ∈F ⇒ C ∩ D ∈F ,

(iii) for each C ∈F with C ⊂ D, we have D ∈F .

Definition 1.5 ([15]) A sequence x = (xn) is called I-convergent to ξ ∈R if, for every ε > 0,
the set {n ∈ N : |xn – ξ | ≥ ε} ∈ I . We write I-lim x = ξ . If ξ = 0, then x = (xn) is said to be
I-null.

Definition 1.6 ([13]) A sequence x = (xn) is said to be I-Cauchy if for every ε > 0 ∃ a
number N = N(ε) such that the set {n ∈N : |xn – xN | ≥ ε} ∈ I .

Definition 1.7 ([14]) A sequence x = (xk) is convergent to ξ with respect to the intuition-
istic fuzzy norm (μ,ν) if for every ε, t > 0 ∃N ∈N with μ(xk –ξ , t) > 1 –ε and ν(xk –ξ , t) < ε

for all k ≥ N . We write (μ,ν) – lim x = ξ .

Definition 1.8 ([5]) Consider intuitionistic fuzzy normed space (IFNS) (X,μ,ν,∗,�).
A sequence x = (xk) is said to be Cauchy sequence with respect to norm (μ,ν) if, for each
ε > 0, t > 0, there exists N ∈N such that μ(xk – xl, t) > 1 –ε and ν(xk – xl) < ε for all k, l ≥ N .
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Definition 1.9 ([12]) Let (X,μ,ν,∗,�) be IFNS. A sequence x = (xk) ∈ ω is called I-
convergent to ξ with respect to the intuitionistic norm (μ,ν) if for every ε, t > 0 if the
set {k ∈N : μ(xk – ξ , t) ≤ 1 – ε or ν(xk – ξ , t) ≥ ε} ∈ I . We write I(μ,ν)- lim x = ξ .

Definition 1.10 ([13]) A sequence x = (xk) ∈ ω is said to be Fibonacci I-convergent to
ξ ∈R if, for every ε > 0, the set {k ∈N : |F̂k(x) – ξ | ≥ ε} ∈ I , where I is an admissible ideal.

Definition 1.11 ([13]) Consider an admissible ideal I . Sequence x = (xk) ∈ ω is Fibonacci
I-Cauchy if, for every ε > 0, ∃N = N(ε) such that {k ∈ N : |F̂k(x) – F̂N (x)| ≥ ε} ∈ I .

2 Intuitionistic fuzzy I-convergent Fibonacci difference sequence spaces
In the following section, we introduce a new type of sequence spaces whose F̂ transform
is I-convergent with respect to the intuitionistic norm (μ,ν). Further we prove certain
properties of these spaces such as hausdorfness, first countability. Throughout this paper,
I is an admissible ideal. We define

SI
0(μ,ν)(F̂) =

{
x = (xk) ∈ l∞ :

{
k ∈N : μ

(
F̂k(x), t

) ≤ 1 – ε or ν
(
F̂k(x), t

) ≥ ε
} ∈ I

}
,

SI
(μ,ν)(F̂) =

{
x = (xk) ∈ l∞ :

{
k ∈N : μ

(
F̂k(x) – l, t

) ≤ 1 – ε or ν
(
F̂k(x) – l, t

) ≥ ε
} ∈ I

}
.

We introduce an open ball with centre x and radius r with respect to t as follows:

Bx(r, t)(F̂) = {y = (yk) ∈ l∞ :
{

k ∈N : μ
(
F̂k(x) – F̂k(y), t

)
> 1 – r and ν

(
F̂k(x) – F̂k(y), t

)
< r

}
.

Remark 2.1
(i) For p1, p2 ∈ (0, 1) such that p1 > p2, there exist p3, p4 ∈ (0, 1) with p1 ∗ p3 ≥ p2 and

p1 ≥ p4 � p2.
(ii) For p5 ∈ (0, 1), there exist p6, p7 ∈ (0, 1) such that p6 ∗ p6 ≥ p5 and p7 � p7 ≤ p5.

Theorem 2.1 The spaces SI
0(μ,ν)(F̂) and SI

(μ,ν)(F̂) are vector spaces over R.

Proof Let us show the result for SI
(μ,ν)(F̂) and the proof for another space will follow on

the similar lines. Let x = (xk) and y = (yk) ∈ SI
(μ,ν)(F̂). Then by definition there exist ξ1 and

ξ2, and for every ε, t > 0, we have

A =
{

k ∈N : μ
(

F̂k(x) – ξ1,
t

2|α|
)

≤ 1 – ε or ν

(
F̂k(x) – ξ1,

t
2|α|

)
≥ ε

}
∈,

B =
{

k ∈N : μ
(

F̂k(y) – ξ2,
t

2|β|
)

≤ 1 – ε or ν

(
F̂k(y) – ξ2,

t
2|β|

)
≥ ε

}
∈ I,

where α and β are scalars.

Ac =
{

k ∈N : μ
(

F̂k(x) – ξ1,
t

2|α|
)

> 1 – ε or ν

(
F̂k(x) – ξ1,

t
2|α|

)
< ε

}
∈F (I),

Bc =
{

k ∈N : μ
(

F̂k(y) – ξ2,
t

2|β|
)

> 1 – ε or ν

(
F̂k(y) – ξ2,

t
2|β|

)
< ε

}
∈F (I).



Khan et al. Journal of Inequalities and Applications        (2019) 2019:202 Page 4 of 7

Define E = A ∪ B so that E ∈ I . Thus Ec ∈F (I) and therefore is non-empty. We will show

Ec ⊂ {
k ∈ N : μ

(
αF̂k(x) + βF̂k(y) – (αξ1 + βξ2), t

)
> 1 – ε or

ν
(
αF̂k(x) + βF̂k(y) – (αξ1 + βξ2), t

)
< ε

}
.

Let n ∈ Ec. Then

μ

(
F̂n(x) – ξ1,

t
2|α|

)
> 1 – ε or ν

(
F̂n(x) – ξ1,

t
2|α|

)
< ε,

μ

(
F̂n(y) – ξ2,

t
2|β|

)
> 1 – ε or ν

(
F̂n(y) – ξ2,

t
2|β|

)
< ε.

Consider

μ
(
αF̂n(x) + βF̂n(x) – (αξ1 + βξ2), t

)

≥ μ

(
αF̂n(x) – αξ1,

t
2

)
∗ μ

(
βF̂n(y) – βξ2,

t
2

)

= μ

(
F̂n(x) – ξ1,

t
2|α|

)
∗ μ

(
F̂n(y) – ξ2,

t
|β|

)

> (1 – ε) ∗ (1 – ε) = 1 – ε

and

ν
(
αF̂n(y) + βF̂n(y) – (αξ1 + βξ2)

)

≤ ν

(
αF̂n(x) – αξ1,

t
2

)
� ν

(
βF̂n(y) – βξ2,

t
2

)

= ν

(
F̂n(x) – ξ1,

t
2|α|

)
� ν

(
F̂n(y) – ξ2,

t
2|β|

)

< ε � ε = ε.

Thus Ec ⊂ {k ∈N : μ(αF̂k(x) +βF̂k(y) – (αξ1 +βξ2), t) > 1 – ε or ν(αF̂k(x) +βF̂k(y) – (αξ1 +
βξ2), t) < ε}. Ec ∈F (I), therefore by definition of filter, the set on the right-hand side of the
above equation belongs to F (I) so that its complement belongs to I . This implies (αx +
βy) ∈ SI

(μ,ν)(F̂). Hence SI
(μ,ν)(F̂) is a vector space over R. �

Theorem 2.2 Every open ball Bx(r, t)(F̂) is an open set in SI
(μ,ν)(F̂).

Proof We have defined open ball as follows:

Bx(r, t)(F̂) = {y = (yk) ∈ l∞ :
{

k ∈N : μ
(
F̂k(x) – F̂k(y), t

)
> 1 – r and ν

(
F̂k(x) – F̂k(y), t

)
< r

}
.

Let z = (zk) ∈ Bx(r, t)(F̂) so that μ(F̂k(x) – F̂k(z), t) > 1 – r and ν(F̂k(x) – F̂k(z), t) < r. Then
there exists t0 ∈ (0, t) with μ(F̂k(x) – F̂k(z), t0) > 1 – r and ν(F̂k(x) – F̂k(z), t0) < r. Put p0 =
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μ(F̂k(x) – F̂k(z), t0), so we have p0 > 1 – r, there exists s ∈ (0, 1) such that p0 > 1 – s > 1 – r.
Using Remark 2.1(i), given p0 > 1 – s, we can find p1, p2 ∈ (0, 1) with p0 ∗ p1 > 1 – s and
(1 – p0) � (1 – p2) < s. Put p3 = max(p1, p2). We will prove Bz(1 – p3, t – t0)(F̂) ⊂ Bx(r, t)(F̂).
Let w = (wk) ∈ Bz(1 – p3, t – t0)(F̂). Hence

μ
(
F̂k(x) – F̂k(w), t

) ≥ μ
(
F̂k(x) – F̂k(z), t0

) ∗ μ
(
F̂k(z) – F̂k(w), t – t0

)

> (p0 ∗ p3) ≥ (p0 ∗ p1) > 1 – s > 1 – r,

and

ν
(
F̂k(x) – F̂k(w), t

) ≤ ν
(
F̂k(x) – F̂k(z), t0

) � ν
(
F̂k(z) – F̂k(w), t – t0

)

< (1 – p0)) � (1 – p3) ≤ (1 – p0) � (1 – p2) < r.

Hence w ∈ Bx(r, t)(F̂) and therefore Bz(1 – p3, t – t0)(F̂) ⊂ Bx(r, t)(F̂). �

Remark 2.2 Let SI
(μ,ν)(F̂ be IFNS. Define τ I

(μ,ν)(F̂) = {A ⊂ SI
(μ,ν)(F̂): for given x ∈ A, we can

find t > 0 and 0 < r < 1 such that Bx(r, t)(F̂) ⊂ A}. Then τ I
(μ,ν)(F̂) is a topology on SI

(μ,ν)(F̂).

Remark 2.3 Since {Bx( 1
n , 1

n )(F̂) : n ∈ N} is a local base at x, the topology τ I
(μ,ν)(F̂) is first

countable.

Theorem 2.3 The spaces SI
(μ,ν)(F̂) and SI

0(μ,ν)(F̂) are Hausdorff.

Proof Let x, y ∈ SI
(μ,ν)(F̂) with x and y to be different. Then 0 < μ(F̂k(x) – F̂(y), t) < 1 and

0 < ν(F̂(x) – F̂k(y), t) < 1. Put μ(F̂k(x) – F̂k(y), t) = p1 and ν(F̂k(x) – F̂k(y), t) = p2 and r =
max(p1, 1 – p2). Using Remark (2.1(ii)) for p0 ∈ (r, 1), we can find p3, p4 ∈ (0, 1) such that
p3 ∗ p3 ≥ p0 and (1 – p4) � (1 – p4) ≤ 1 – p0. Put p5 = max(p3, p4). Clearly Bx(1 – p5, t

2 )(F̂) ∩
By(1 – p5, t

2 )(F̂) = φ. Let on the contrary z ∈ Bx(1 – p5, t
2 )(F̂) ∩ By(1 – p5, t

2 )(F̂). Then we
have

p1 = μ
(
F̂k(x) – F̂k(y), t

) ≥ μ

(
F̂k(x) – F̂k(z),

t
2

)
∗ μ

(
F̂k(z) – F̂k(y),

t
2

)

≥ p5 ∗ p5 ≥ p3 ∗ p3 > p0 > p1

and

p2 = ν
(
F̂k(x) – F̂y, t

) ≤ ν

(
F̂k(x) – F̂k(z),

t
2

)
� ν

(
F̂k(z) – F̂k(y),

t
2

)

≤ (1 – p5) � (1 – p5) ≤ (1 – p4) � (1 – p4) ≤ 1 – p0 < p2,

which is a contradiction. Therefore SI
(μ,ν)(F̂) is a Hausdorff space. The proof for SI

0(μ,ν)(F̂)
follows similarly. �

Theorem 2.4 Let SI
(μ,ν)(F̂) be IFNS and τ I

(μ,ν)(F̂) be a topology on SI
μ,ν)(F̂). A sequence (xk) ∈

SI
(μ,ν)(F̂) converges to ξ iff μ(F̂k(x) – ξ , t) → 1 and ν(F̂k(x) – ξ , t) → 0 as k → ∞.
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Proof Suppose xk → ξ , then given 0 < r < 1 there exists k0 ∈ N such that (xk) ∈ Bx(r, t)(F̂)
for all k ≥ k0 given t > 0. Hence, we have 1 – μ(F̂k(x) – ξ , t) < r and ν(F̂k(x) – ξ , t) < r.
Therefore μ(F̂k(x) – ξ , t) → 1 and ν(F̂k(x) – ξ , t) → 0 as k → ∞.

Conversely, if μ(F̂k(x) – ξ , t) → 1 and ν(F̂k(x) – ξ , t) → 0 as k → ∞ holds for each t > 0.
For 0 < r < 1, there exists k0 ∈ N such that 1 – μ(F̂k(x) – ξ , t) < r and ν(F̂k(x) – ξ , t) < r for
all k ≥ k0, which implies μ(F̂k(x) – ξ , t) > 1 – r and ν(F̂k(x) – ξ , t) < r. Thus xk ∈ Bx(r, t)(F̂)
for all k ≥ k0 and hence xk → ξ . �

3 Conclusion
In the present article, we have defined a new kind of sequence spaces SI

0(μ,ν)(F̂) and SI
(μ,ν)(F̂)

using Fibonacci difference matrix F̂ . We studied certain elementary properties and topo-
logical properties like linearity, first countability, hausdorfness. These results will give new
approach to deal with the problems in science and engineering. The present article is a
useful tool to define ideal convergence of generalised Fibonacci difference sequence in
intuitionistic fuzzy normed space given by

c0
(
F̂(r, s)

)
=

{
x = (xk) ∈ ω : lim

n→∞

(
r

fn

fn+1
xn + s

fn+1

fn
xn–1

)
= 0

}
,

c
(
F̂(r, s)

)
=

{
x = (xk) ∈ ω : lim

n→∞

(
r

fn

fn+1
xn + s

fn+1

fn
xn–1

)
= l

}
,

where F̂(r, s) = {fnk(r, s)} is a double generalised matrix defined as follows:

fnk(r, s) =

⎧
⎪⎪⎨

⎪⎪⎩

s fn+1
fn , k = n – 1,

r fn
fn+1

, k = n,

0, 0 ≤ k < n – 1 or k > n

k, n ∈ N and r, s ∈ R \ {0}. We can study the topological properties of these spaces which
will provide a better method to deal with vagueness and inexactness occurring in vari-
ous fields of science, engineering and economics. Moreover, this theory can be helpful in
dealing with problems in population dynamics, quantum particle physics particularly in
connections with string and ε∞ theory of El-Naschie.
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