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1 Introduction and main results
The setting for this paper is the Euclidean n-space R

n. We use Sn–1 and V (K) to denote
the unit sphere and the n-dimensional volume of a body K , respectively. For the standard
unit ball B, we write V (B) = ωn.

If K is a nonempty compact convex set in R
n, then the support function of K , hK =

h(K , ·) : Rn →R, is defined by (see [1])

h(K , x) = max{x · y : y ∈ K}

for x ∈ R
n, where x · y is the standard inner product of x and y. If K is a compact convex

set with nonempty interiors in R
n, then K is called a convex body. Let Kn denote the set

of convex bodies in R
n.

The radial function ρK = ρ(K , ·) : Rn \ {0} → [0,∞) of a compact star-shaped (about the
origin) set K ⊂R

n is defined by (see [1])

ρ(K , x) = max{λ ≥ 0 : λx ∈ K}, x ∈R
n \ {0}.

If ρK is continuous, then K will be called a star body (about the origin). Let Sn
o denote the

subset of star bodies containing the origin in R
n. Two star bodies K and L are dilates (of

one another) if ρK (u)/ρL(u) is independent of u ∈ Sn–1.
The research of width-integrals has a long history. The width-integrals were first con-

sidered by Blaschke (see [2]) and were further researched by Hadwiger (see [3]). In 1975,
Lutwak [4] gave the ith width-integrals as follows:
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For K ∈Kn and any real i, the ith width-integrals Bi(K) of K are defined by

Bi(K) =
1
n

∫
Sn–1

b(K , u)n–i dS(u). (1.1)

Here b(K , u) denotes the half width of K in the direction u ∈ Sn–1 which is defined by
b(K , u) = 1

2 h(K , u) + 1
2 h(K , –u). If there exists a constant λ > 0 such that b(K , u) = λb(L, u)

for all u ∈ Sn–1, then K and L are said to have similar width. Further, Lutwak [4] estab-
lished the following Brunn–Minkowski inequality and cyclic inequality for the ith width-
integrals, respectively.

Theorem 1.A If K , L ∈Kn and real i < n – 1, then

Bi(K + L)
1

n–i ≤ Bi(K)
1

n–i + Bi(L)
1

n–i

with equality if and only if K and L have similar width. Here K + L denotes the Minkowski
sum of K and L.

Theorem 1.B If K ∈Kn and reals i, j, k satisfy i < j < k, then

Bj(K)k–i ≤ Bi(K)k–jBk(K)j–i

with equality if and only if K is of constant width.

Whereafter, Lutwak [5] showed that the mixed width-integral B(K1, . . . , Kn) of K1, . . . ,
Kn ∈Kn was defined by

B(K1, . . . , Kn) =
1
n

∫
Sn–1

b(K1, u) · · ·b(Kn, u) dS(u). (1.2)

In 2016, based on (1.2), Feng [6] introduced the general mixed width-integrals as follows:
For K1, . . . , Kn ∈ Kn and τ ∈ (–1, 1), the general mixed width-integral B(τ )(K1, . . . , Kn) of
K1, . . . , Kn is given by

B(τ )(K1, . . . , Kn) =
1
n

∫
Sn–1

b(τ )(K1, u) · · ·b(τ )(Kn, u) dS(u), (1.3)

where bτ (K , u) = f1(τ )h(K , u) + f2(τ )h(K , –u) and

f1(τ ) =
(1 + τ )2

2(1 + τ 2)
, f2(τ ) =

(1 – τ )2

2(1 + τ 2)
. (1.4)

Obviously,

f1(τ ) + f2(τ ) = 1;

f1(–τ ) = f2(τ ), f2(–τ ) = f1(τ ).
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Combined with (1.4), the case of τ = 0 in (1.3) is just (1.2). If there exists a constant λ > 0
such that bτ (K , u) = λbτ (L, u) for all u ∈ Sn–1, then we say convex bodies K and L have sim-
ilar general width. K and L have joint constant general width means that b(τ )(K , u)b(τ )(L, u)
is a constant for all u ∈ Sn–1.

Taking K1 = · · · = Kn–i = K , Kn–i+1 = · · · = Kn = B in (1.3) and allowing i to be any real, the
general ith width-integrals B(τ )

i (K) of K ∈Kn were given by (see [6])

B(τ )
i (K) =

1
n

∫
Sn–1

b(τ )(K , u)n–i dS(u). (1.5)

From (1.1), (1.4), and (1.5), we easily see that if τ = 0, then B(0)
i (K) = Bi(K).

In 2006, motivated by Lutwak’s ith width-integrals and together with the notion of radial
function, Li, Yuan, and Leng [7] gave the ith chord-integrals as follows: For K ∈ Sn

o and i
is any real, the ith chord-integrals Ci(K) of K are defined by

Ci(K) =
1
n

∫
Sn–1

c(K , u)n–i dS(u). (1.6)

Here c(K , u) denotes the half chord of K in the direction u and c(K , u) = 1
2ρ(K , u) +

1
2ρ(K , –u). If there exists a constant λ > 0 such that c(K , u) = λc(L, u) for all u ∈ Sn–1, then
we say that K and L have similar chord.

For the ith chord-integrals, the authors [7] proved the following Brunn–Minkowski in-
equality and cyclic inequality.

Theorem 1.C For K , L ∈ Sn
o and real i �= n. If i < n – 1, then

Ci(K +̃ L)
1

n–i ≤ Ci(K)
1

n–i + Ci(L)
1

n–i ;

if i > n – 1, then

Ci(K +̃ L)
1

n–i ≥ Ci(K)
1

n–i + Ci(L)
1

n–i .

In each inequality, equality holds if and only if K and L are dilates. Here K +̃ L denotes the
radial sum of K and L.

Theorem 1.D If K ∈ Sn
o and reals i, j, k satisfy i < j < k, then

Cj(K)k–i ≤ Ci(K)k–jCk(K)j–i,

with equality if and only if K is of constant chord.

The mixed chord-integrals of star bodies were defined by Lu (see [8]): For K1, . . . , Kn ∈
Sn

o , the mixed chord-integrals C(K1, . . . , Kn) of K1, . . . , Kn are defined by

C(K1, . . . , Kn) =
1
n

∫
Sn–1

c(K1, u) · · · c(Kn, u) dS(u).
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Recently, Feng and Wang [9] gave the general mixed chord-integrals C(τ )(K1, . . . , Kn) of
K1, . . . , Kn ∈ Sn

o defined by

C(τ )(K1, . . . , Kn) =
1
n

∫
Sn–1

c(τ )(K1, u) · · · c(τ )(Kn, u) dS(u), (1.7)

where c(τ )(K , u) = f1(τ )ρ(K , u) + f2(τ )ρ(K , –u) and functions f1(τ ), f2(τ ) satisfy (1.4). By
(1.4), let τ = 0 in (1.7), this is just Lu’s mixed chord-integrals C(K1, . . . , Kn). Star bodies K
and L are said to have similar general chord mean that there exist constants λ,μ > 0 such
that λc(τ )(K , u) = μc(τ )(L, u) for all u ∈ Sn–1. If the product c(τ )(K , u)c(τ )(L, u) is constant for
all u ∈ Sn–1, then they are said to have joint constant general chord.

Taking K1 = · · · = Kn–i = K and Kn–i+1 = · · · = Kn = B in (1.7) and allowing i to be any real,
the general ith chord-integral C(τ )

i (K) of K ∈ Sn
o was given by (see [9])

C(τ )
i (K) =

1
n

∫
Sn–1

c(τ )(K , u)n–i dS(u). (1.8)

Obviously, (1.4), (1.6), and (1.8) give C(0)
i (K) = Ci(K).

In this paper, based on Theorems 1.A–1.B and Theorems 1.C–1.D, we respectively es-
tablish two cyclic Brunn–Minkowski inequalities for general ith width-integrals and gen-
eral ith chord-integrals by using Zhao’s ideas (see [10] and [11]). Our works bring the cyclic
inequality and Brunn–Minkowski inequality together. Our main results can be stated as
follows.

Theorem 1.1 Let K , L ∈ Kn, τ ∈ (–1, 1), and i, j, k all be reals. If j < n – 1 and i ≤ j < k,
then

B(τ )
j (K + L)

k–i
n–j ≤ B(τ )

i (K)
k–j
n–j B(τ )

k (K)
j–i
n–j + B(τ )

i (L)
k–j
n–j B(τ )

k (L)
j–i
n–j (1.9)

with equality if and only if K and L have similar general width. If n – 1 < j < n and j ≤ i < k
or j > n and i ≤ j < k, then inequality (1.9) is reversed.

Theorem 1.2 Let K , L ∈ Sn
o , τ ∈ (–1, 1), and i, j, k all be reals. If j < n – 1 and i ≤ j < k, then

C(τ )
j (K +̃ L)

k–i
n–j ≤ C(τ )

i (K)
k–j
n–j C(τ )

k (K)
j–i
n–j + C(τ )

i (L)
k–j
n–j C(τ )

k (L)
j–i
n–j (1.10)

with equality if and only if K and L have similar general chord. If n – 1 < j < n and j ≤ i < k
or j > n and i ≤ j < k, then inequality (1.10) is reversed.

Remark 1.1 Let i = j in Theorem 1.1 and Theorem 1.2, we may obtain the following
Brunn–Minkowski inequalities for general ith width-integrals and general ith chord-
integrals, respectively.

Corollary 1.1 Let K , L ∈Kn, real i �= n, and τ ∈ (–1, 1). If i < n – 1, then

B(τ )
i (K + L)

1
n–i ≤ B(τ )

i (K)
1

n–i + B(τ )
i (L)

1
n–i (1.11)

with equality if and only if K and L have similar general width. If i > n – 1, then inequality
(1.11) is reversed.
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Corollary 1.2 Let K , L ∈ Sn
o , real i �= n, and τ ∈ (–1, 1). If i < n – 1, then

C(τ )
i (K +̃ L)

1
n–i ≤ C(τ )

i (K)
1

n–i + C(τ )
i (L)

1
n–i

with equality holds if and only if K and L have similar general chord. If i > n – 1, then the
above inequality is reversed.

Obviously, if τ = 0, then inequality (1.11) yields Theorem 1.A, Corollary 1.2 gives The-
orem 1.C, respectively.

Remark 1.2 If K and L are nonempty compact convex sets, then Theorem 1.1 also is true.
From this, take L = {o} in Theorem 1.1. Since K + {o} = K and notice that Bτ

i ({o}) = 0, thus
by inequality (1.9) we have the following.

Corollary 1.3 If K ∈Kn, τ ∈ (–1, 1), and i < j < k, then

B(τ )
j (K)k–i ≤ B(τ )

i (K)k–jB(τ )
k (K)j–i

with equality if and only if K is of constant width.

Because of {o} ∈ Sn
o , hence let L = {o} in Theorem 1.2, we may obtain the following.

Corollary 1.4 If K ∈ Sn
o , τ ∈ (–1, 1), and i < j < k, then

C(τ )
j (K)k–i ≤ C(τ )

i (K)k–jC(τ )
k (K)j–i

with equality if and only if K is of constant chord.

If τ = 0, then Corollary 1.3 and Corollary 1.4 respectively give Theorem 1.B and Theo-
rem 1.D.

Our works belong to the asymmetric Brunn–Minkowski theory, which has its starting
point in the theory of valuations in connection with isoperimetric and analytic inequali-
ties. As an important research object in convex geometry, asymmetric Brunn–Minkowski
theory has gotten rich development, readers can refer to [12–19].

2 Preliminaries
For nonempty compact convex bodies K and L, λ,μ ≥ 0 (not both zero), the Minkowski
combination λK + μL of K and L is defined by (see [1])

h(λK + μL, ·) = λh(K , ·) + μh(L, ·), (2.1)

where “+” and “λK” are called Minkowski addition and Minkowski scalar multiplication,
respectively. When λ = μ = 1, the K + L is called Minkowski sum.

For K , L ∈ Sn
o , λ,μ ≥ 0 (not both zero), the radial combination λ ◦ K +̃ μ ◦ L of K , L is

given by (see [1, 20])

ρ(λ ◦ K +̃ μ ◦ L, ·) = λρ(K , ·) + μρ(L, ·), (2.2)
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where “+̃” and “λ ◦ K” are radial addition and radial scalar multiplication, respectively.
When λ = μ = 1, the K +̃ L is radial sum of K and L.

3 Proofs of theorems
In this part, we give the proofs of Theorem 1.1 and Theorem 1.2. First, we give the follow-
ing lemmas.

Lemma 3.1 Let f ∈ Lp(E), g ∈ Lq(E), real number p, q �= 0, and 1
p + 1

q = 1, if p > 1, then

(∫
E

∣∣f (x)
∣∣p dx

) 1
p
(∫

E

∣∣g(x)
∣∣q dx

) 1
q

≥
∫

E

∣∣f (x)g(x)
∣∣dx (3.1)

with equality if and only if there exists constants c1 and c2 such that c1|f (x)|p = c2|g(x)|q.
The inequality is reversed if p < 0 or 0 < p < 1. Here Lp(E) denotes all function sets defined
on a measurable set E in Lp spaces.

Lemma 3.2 Let f , g ∈ Lp(E), if real number p �= 0 and p > 1, then

(∫
E

∣∣f (x)
∣∣p dx

) 1
p

+
(∫

E

∣∣g(x)
∣∣p dx

) 1
p

≥
(∫

E

∣∣f (x) + g(x)
∣∣p

) 1
p

dx (3.2)

with equality if and only if there exists constants c1 and c2 such that c1|f (x)|p = c2|g(x)|q.
The inequality is reversed if p < 0 or 0 < p < 1.

Proof of Theorem 1.1 If j < n – 1, i.e., n – j > 1, then from (1.5), (2.1), and (3.2), we have

B(τ )
j (K + L)

1
n–j =

[
1
n

∫
Sn–1

b(τ )(K + L, u)n–j dS(u)
] 1

n–j

=
[

1
n

∫
Sn–1

(
f1(τ )h(K + L, u) + f2(τ )h(K + L, –u)

)n–j dS(u)
] 1

n–j

=
[

1
n

∫
Sn–1

(
f1(τ )h(K , u) + f1(τ )h(L, u)

+ f2(τ )h(K , –u) + f2(τ )h(L, –u)
)n–j dS(u)

] 1
n–j

=
[

1
n

∫
Sn–1

(
b(τ )(K , u) + b(τ )(L, u)

)n–j dS(u)
] 1

n–j

=
[

1
n

∫
Sn–1

(
b(τ )(K , u)

(k–j)(n–i)
(k–i)(n–j) b(τ )(K , u)

(j–i)(n–k)
(k–i)(n–j)

+ b(τ )(L, u)
(k–j)(n–i)
(k–i)(n–j) b(τ )(L, u)

(j–i)(n–k)
(k–i)(n–j)

)n–j dS(u)
] 1

n–j

≤
[

1
n

∫
Sn–1

b(τ )(K , u)
(k–j)(n–i)

k–i b(τ )(K , u)
(j–i)(n–k)

k–i dS(u)
] 1

n–j

+
[

1
n

∫
Sn–1

b(τ )(L, u)
(k–j)(n–i)

k–i b(τ )(L, u)
(j–i)(n–k)

k–i dS(u)
] 1

n–j
. (3.3)
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In the inequality on the right above, notice that i < j < k means k–i
k–j > 1, thus by (3.1) we

obtain

1
n

∫
Sn–1

b(τ )(K , u)
(k–j)(n–i)

k–i b(τ )(K , u)
(j–i)(n–k)

k–i dS(u)

≤
[

1
n

∫
Sn–1

(
b(τ )(K , u)

(k–j)(n–i)
k–i

) k–i
k–j dS(u)

] k–j
k–i

×
[

1
n

∫
Sn–1

(
b(τ )(K , u)

(j–i)(n–k)
k–i

) k–i
j–i dS(u)

] j–i
k–i

= B(τ )
i (K)

k–j
k–i B(τ )

k (K)
j–i
k–i . (3.4)

From this, for j < n – 1, we can get the following inequality by (3.4):

[
1
n

∫
Sn–1

b(τ )(K , u)
(k–j)(n–i)

k–i b(τ )(K , u)
(j–i)(n–k)

k–i dS(u)
] 1

n–j

≤ B(τ )
i (K)

k–j
(k–i)(n–j) B(τ )

k (K)
j–i

(k–i)(n–j) . (3.5)

Similarly,

[
1
n

∫
Sn–1

b(τ )(L, u)
(k–j)(n–i)

k–i b(τ )(L, u)
(j–i)(n–k)

k–i dS(u)
] 1

n–j

≤ B(τ )
i (L)

k–j
(k–i)(n–j) B(τ )

k (L)
j–i

(k–i)(n–j) . (3.6)

Hence, by (3.3), (3.5), and (3.6) we have

B(τ )
j (K + L)

1
n–j ≤ B(τ )

i (K)
k–j

(k–i)(n–j) B(τ )
k (K)

j–i
(k–i)(n–j) + B(τ )

i (L)
k–j

(k–i)(n–j) B(τ )
k (L)

j–i
(k–i)(n–j) .

This yields inequality (1.9).
If n – 1 < j < n, then 0 < n – j < 1, this gives (3.3) is reversed. But j < i < k means 0 < k–i

k–j < 1,
thus (3.4) is reversed. Hence inequality (3.5) is reversed. Similarly, inequality (3.6) is also
reversed. From this, we know that inequality (1.9) is reversed.

If j > n, then n – j < 0 implies that (3.3) is reversed. But by n – j < 0 and (3.4), we see
inequality (3.5) is reversed (inequality (3.6) is also reversed). These yield that inequality
(1.9) is reversed.

For i = j, by (3.3) (or its reverse) we easily get inequality (1.9) (or its reverse).
According to the equality conditions of inequalities (3.1) and (3.2), we see that equality

holds in (1.9) (or its reverse) if and only if K and L have similar general width. �

Proof of Theorem 1.2 For j < n – 1 and i ≤ j < k, since n – j > 1, thus by (1.8), (2.2), and (3.2)
we get

C(τ )
j (K +̃ L)

1
n–j =

[
1
n

∫
Sn–1

c(τ )(K +̃ L, u)n–j dS(u)
] 1

n–j

=
[

1
n

∫
Sn–1

(
f1(τ )ρ(K +̃ L, u) + f2(τ )ρ(K +̃ L, –u)

)n–j dS(u)
] 1

n–j
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=
[

1
n

∫
Sn–1

(
f1(τ )ρ(K , u) + f1(τ )ρ(L, u)

+ f2(τ )ρ(K , –u) + f2(τ )ρ(L, –u)
)n–j dS(u)

] 1
n–j

=
[

1
n

∫
Sn–1

(
c(τ )(K , u) + c(τ )(L, u)

)n–j dS(u)
] 1

n–j

=
[

1
n

∫
Sn–1

(
c(τ )(K , u)

(k–j)(n–i)
(k–i)(n–j) c(τ )(K , u)

(j–i)(n–k)
(k–i)(n–j)

+ c(τ )(L, u)
(k–j)(n–i)
(k–i)(n–j) c(τ )(L, u)

(j–i)(n–k)
(k–i)(n–j)

)n–j dS(u)
] 1

n–j

≤
[

1
n

∫
Sn–1

c(τ )(K , u)
(k–j)(n–i)

k–i c(τ )(K , u)
(j–i)(n–k)

k–i dS(u)
] 1

n–j

+
[

1
n

∫
Sn–1

c(τ )(L, u)
(k–j)(n–i)

k–i c(τ )(L, u)
(j–i)(n–k)

k–i dS(u)
] 1

n–j
. (3.7)

On the right-hand side of the above inequality, when i < j < k, i.e., k–i
k–j > 1, by (3.1) we

have

1
n

∫
Sn–1

c(τ )(K , u)
(k–j)(n–i)

k–i c(τ )(K , u)
(j–i)(n–k)

k–i dS(u)

≤
[

1
n

∫
Sn–1

(
c(τ )(K , u)

(k–j)(n–i)
k–i

) k–i
k–j dS(u)

] k–j
k–i

×
[

1
n

∫
Sn–1

(
c(τ )(K , u)

(j–i)(n–k)
k–i

) k–i
j–i dS(u)

] j–i
k–i

= C(τ )
i (K)

k–j
k–i C(τ )

k (K)
j–i
k–i . (3.8)

Hence, for j < n – 1,

[
1
n

∫
Sn–1

c(τ )(K , u)
(k–j)(n–i)

k–i c(τ )(K , u)
(j–i)(n–k)

k–i dS(u)
] 1

n–j

≤ C(τ )
i (K)

k–j
(k–i)(n–j) C(τ )

k (K)
j–i

(k–i)(n–j) . (3.9)

Similarly,

[
1
n

∫
Sn–1

c(τ )(L, u)
(k–j)(n–i)

k–i c(τ )(L, u)
(j–i)(n–k)

k–i dS(u)
] 1

n–j

≤ C(τ )
i (L)

k–j
(k–i)(n–j) C(τ )

k (L)
j–i

(k–i)(n–j) . (3.10)

According to (3.7), (3.9), and (3.10), we see that

C(τ )
j (K +̃ L)

1
n–j ≤ C(τ )

i (K)
k–j

(k–i)(n–j) C(τ )
k (K)

j–i
(k–i)(n–j) + C(τ )

i (L)
k–j

(k–i)(n–j) C(τ )
k (L)

j–i
(k–i)(n–j) .

This gives inequality (1.10).
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For n – 1 < j < n and j ≤ i < k, we easily obtain that (3.7) and (3.8) are reversed, thus
inequalities (3.9) and (3.10) both are reversed. So, we can get that inequality (1.10) is re-
versed.

For j > n and i ≤ j < k, we know that inequality (3.7) is reversed, notice that inequality
(3.8) still holds, thus by (3.8) and n – j < 0, inequality (3.9) is reversed. Similarly, inequality
(3.10) is also reversed. Therefore, inequality (1.10) is reversed.

When i = j, by (3.7) (or its reverse) we easily get inequality (1.10) (or its reverse).
The equality conditions of Lemma 3.1 and Lemma 3.2 show that equality holds in (1.10)

(or its reverse) if and only if K and L have similar general chord. �
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