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Abstract
This paper presents a new proof method about the paper (Yuan et al. in Appl. Math.
Model. 47:811–825, 2017). In the proof, the global convergence of the
Polak–Ribière–Polak algorithm is established without these two assumptions dTk gk < 0
and gk+1dk ≤ –σ1gTk dk which are needed in the above paper. This means that this
paper has the same results under weaker conditions. More dimension functions for
practical problems are tested to show the performance of the modified algorithm
and the normal algorithm. An application of the fact engineering model is done to
show the effectiveness of the given conjugate gradient algorithm.
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1 Introduction
Consider

min
{

f (x) | x ∈ �n}, (1.1)

where f : �n → � and f ∈ C2. The Polak–Ribière–Polak (PRP) conjugate gradient (CG)
method [16, 17] for (1.1) is designed by the following iterative formula:

xk+1 = xk + αkdk , k = 0, 1, 2, . . . ,

where xk is the kth iterative point, αk is a stepsize, and dk is the search direction defined
by

dk+1 =

⎧
⎨

⎩
–gk+1 + βPRP

k dk , if k ≥ 1

–gk+1, if k = 0,
(1.2)

where gk+1 = ∇f (xk+1) is the gradient of f (x) at point xk+1,βPRP
k ∈ � is a scalar defined by

βPRP
k =

gT
k+1(gk+1 – gk)

‖gk‖2 , (1.3)
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where gk = ∇f (xk) and ‖ · ‖ denotes the Euclidean norm. The theory analysis and the nu-
merical performance about the PRP method have been done by many scholars (see [2, 3,
17–19, 22] etc.), and many modified algorithms based on the normal PRP formula have
been proposed to make a great progress ([6, 8–13, 20, 21, 23–25, 27, 29, 30] etc.). The
well-known weak Wolfe–Powell (WWP) inexact line search for αk satisfies

f (xk + αkdk) ≤ fk + δαkgT
k dk (1.4)

and

g(xk + αkdk)T dk ≥ σ gT
k dk , (1.5)

where δ ∈ (0, 1/2) and σ ∈ (δ, 1). At present, the global convergence of the PRP CG algo-
rithm for nonconvex functions under the WWP line search is a well-known open problem
in optimization fields, and the counterexamples of [3, 18] tell us the reason. Motivated by
the idea of [3], a modified WWP line search technique is given by Yuan et al. [28] and it is
designed by

f (xk + αkdk) ≤ fk + δαkgT
k dk + αk min

[
–δ1gT

k dk , δ
αk

2
‖dk‖2

]
(1.6)

and

g(xk + αkdk)T dk ≥ σ gT
k dk + min

[
–δ1gT

k dk , δαk‖dk‖2], (1.7)

where δ ∈ (0, 1/2), δ1 ∈ (0, δ), and σ ∈ (δ, 1). Here we call it YWL line search. It is used
for not only the PRP method but also the BFGS quasi-Newton method (see [26, 28] in
detail). In the case min[–δ1g(xk)T dk , δαk‖dk‖2] = δαk‖dk‖2, the global convergence of the
PRP algorithm is established including the conditions dT

k gk < 0 and gk+1dk ≤ –σ1gT
k dk . This

paper will make a further study and obtain the global convergence similar to [28] without
the conditions dT

k gk < 0 and gk+1dk ≤ –σ1gT
k dk by another proof way. This paper has the

following features:
• The PRP algorithm for nonconvex functions with the YWL line search has the global

convergence.
• The global convergence is established under weaker conditions than those of the

paper [28].
• Larger scale dimension problems are tested to show the performance of the proposed

algorithm.
The next section states the algorithm and the global convergence of the presented algo-
rithm. Section 3 does the experiments including the normal unconstrained optimization
and an engineering problem. One conclusion is given in the last section.

2 PRP algorithm and global convergence
The PRP algorithm with the modified WWP line search for nonconvex functions is listed
as follows.
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Algorithm 1 (The PRP CG algorithm under the YWL line search rule)
Step 1: Choose an initial point x1 ∈ �n, ε ∈ (0, 1)δ ∈ (0, 1

2 ), δ1 ∈ (0, δ), σ ∈ (δ, 1). Set d1 =
–g1 = –∇f (x1), k := 1.

Step 2: If ‖gk‖ ≤ ε, stop.
Step 3: Compute the step size αk using the YWL line search rule (1.6) and (1.7).
Step 4: Let xk+1 = xk + αkdk .
Step 5: If ‖gk+1‖ ≤ ε, stop.
Step 6: Calculate the search direction

dk+1 = –gk+1 + βPRP
k dk . (2.1)

Step 7: Set k := k + 1, and go to Step 3.

The normal assumptions for the nonconvex functions are needed as follows.

Assumption i
(A) The defined level set L0 = {x | f (x) ≤ f (x0)} is bounded.
(B) Let f (x) be twice continuously differentiable and bounded below, and the gradient

function g(x) is Lipschitz continuous, namely there exists a constant L > 0 satisfying

∥∥g(x) – g(y)
∥∥ ≤ L‖x – y‖, x, y ∈ �n. (2.2)

Remark
(1) Define a case by Case i: min[–δ1g(xk)T dk , δαk‖dk‖2] = δαk‖dk‖2. This case means

that

–δ1g(xk)T dk ≥ δαk‖dk‖2 ≥ 0,

which can ensure that the modified WWP line search (1.6) and (1.7) is reasonable
(see Theorem 2.1 in [28]). Then Algorithm 1 is well defined.

(2) In [28], the global convergence of Algorithm 1 is established for Case i, and it needs
not only Assumption i conditions but also

dT
k gk < 0

and

gk+1dk ≤ –σ1gT
k dk .

In this paper, we will give another proof way only needing Assumption i.
(3) Assumptions i(A) and i(B) imply that there exists a constant G∗ > 0 such that

∥∥g(x)
∥∥ ≤ G∗, x ∈ L0. (2.3)

Lemma 2.1 Let Assumption i hold. If there exists a positive constant ε∗ such that

‖gk‖ ≥ ε∗, ∀k, (2.4)
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then we can deduce that there exists a constant D∗ satisfying

‖dk‖ ≤ ω∗, ∀k. (2.5)

Proof By (1.6), we get

f (xk + αkdk) ≤ fk + δαkgT
k dk + αk min

[
–δ1gT

k dk , δ
αk

2
‖dk‖2

]

≤ fk + δαkgT
k dk – αkδ1gT

k dk

= fk + (δ – δ1)αkgT
k dk ,

then the following inequality

–(δ – δ1)αkgT
k dk ≤ f (xk) – f (xk+1)

holds. Using Assumption i(A) and summing these inequalities from k = 0 to ∞, we have

δ

∞∑

k=0

[
–(δ – δ1)αkgT

k dk
]

< ∞. (2.6)

Using Step 6 of Algorithm 1 and setting sk = xk+1 – xk = αkdk , we have

‖dk+1‖ ≤ ‖gk+1‖ +
∣∣βPRP

k
∣∣‖dk‖

≤ ‖gk+1‖ +
‖gk+1‖‖gk+1 – gk‖

‖gk‖ ‖dk‖

≤ G∗ +
G∗L∗

‖gk‖ ‖sk‖‖dk‖

≤ G∗ +
G∗L∗

ε∗
‖sk‖‖dk‖, (2.7)

where the third inequality follows (2.2) and (2.3), and the last inequality follows (2.4). By
the definition of Case i, we get

dT
k gk ≤ –

δ

δ1
αk‖dk‖2.

Thus, by (2.6), we get

∞∑

k=0

‖sk‖2 =
∞∑

k=0

αk
(
αk‖dk‖2) ≤ δ1

δ(δ – δ1)

[

(δ – δ1)
∞∑

k=0

(
–αkgT

k dk
)
]

< ∞.

Then we have

‖sk‖ → 0, k → ∞.
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This implies that there exist a constant ε ∈ (0, 1) and a positive integer k0 ≥ 0 satisfy-
ing

G∗L∗‖sk‖
ε∗

≤ ε, ∀k ≥ k0. (2.8)

So, by (2.7), for all k > k0, we obtain

‖dk+1‖ ≤ G∗ + ε‖dk‖
≤ G∗(1 + ε + ε2 + · · · + εk–k0–1) + εk–k0‖dk0‖

≤ G∗

1 – ε
+ ‖dk0‖.

Let ω∗ = max{‖d1‖,‖d2‖, . . . ,‖dk0‖, Gb
1–ε

+ ‖dk0‖}. Therefore, we get

‖dk‖ ≤ ω∗, ∀k ≥ 0.

The proof is complete. �

Theorem 2.1 Let the conditions of the above lemma hold. Then the following relation

lim
k→∞

inf‖gk‖ = 0 (2.9)

holds.

Proof Suppose that (2.9) does not hold, we can deduce that there exists a constant ε∗ > 0
such that

‖gk‖ ≥ ε∗, ∀k.

Using Lemma 2.1, we get (2.5). By a way similar to (2.6) and using the case –δ1g(xk)T dk ≥
δαk‖dk‖2, we have

δ – δ1

δ1
δ‖αkdk‖2 ≤ –

δ – δ1

δ1
δ1αkdT

k gk

= –(δ – δ1)αkgT
k dk

→ 0, k → ∞,

which generates

‖αkdk‖2 → 0, k → ∞. (2.10)

Then we discuss the above relation by the following cases.
Case 1: ‖dk‖ → 0, k → ∞. By (3.1), (2.3), (2.2), and (2.10), we have

0 ≤ ‖gk+1‖
=

∥∥–dk+1 + βPRP
k dk

∥∥
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≤ ‖dk+1‖ +
‖gk+1‖‖gk+1 – gk‖

‖gk‖ ‖dk‖

≤ ‖dk+1‖ +
G∗L‖αkdk‖

ε∗
‖dk‖

→ 0, k → ∞.

Then we get (2.9).
Case 2: αk → 0, k → ∞. By (1.7), Remark (1), and the Taylor formula, we get

gT
k dk + O

(‖αkdk‖2) = g(xk + αkdk)T dk

≥ σdT
k gk + min

[
–δ1gT

k dk , δαk‖dk‖2]

≥ σdT
k gk .

Combining with the case –δ1g(xk)T dk ≥ δαk‖dk‖2 leads to

O
(‖αkdk‖2) ≥ –(1 – σ )dT

k gk

≥ δ(1 – σ )
δ1

αk‖dk‖2.

So we have

O(αk) ≥ δ(1 – σ )
δ1

.

This contracts the case αk → 0 (k → ∞). Then we also obtain (2.9). All in all, we always
have (2.9). The proof is complete. �

3 Numerical results
In this section, we do the numerical experiments of the given algorithm and the normal
PRP algorithm for large scale unconstrained optimization problems and these problems
are the same of the paper [28] which are from [1, 7] with the given initial points and are
listed in Table 1, where the same results are not given anymore. Furthermore we also do
an experiment about the fact engineering problem model by the given algorithm. Now we
test them and give the results as follows.

3.1 Normal unconstrained optimization problems
To clearly show the normal PRP algorithm, its detailed steps are presented as follows.

Table 1 Tested problems

No. Problem No. Problem Character

1 Extended Penalty Function 9 EDENSCH Function (CUTE) These sixteen tested
functions come
from practical
problems such as
the academic
problems or
engineer problems.

2 Extended Cliff Function 10 STAIRCASE S1 Function
3 Extended Hiebert Function 11 LIARWHD Function (CUTE)
4 A Quadratic Function QF2 Function 12 DIXON3DQ Function (CUTE)
5 Extended EP1 Function 13 FLETCHCR Function (CUTE)
6 Extended Tridiagonal-2 Function 14 COSINE Function (CUTE)
7 ARWHEAD Function (CUTE) 15 BIGGSB1 Function (CUTE)
8 EG2 Function (CUTE) 16 Scaled Quadratic SQ1 Function
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Algorithm 2 (The normal PRP CG algorithm)
Step 1: Choose an initial point x1 ∈ �n, ε ∈ (0, 1)δ ∈ (0, 1

2 ), σ ∈ (δ, 1). Set d1 = –g1 =
–∇f (x1), k := 1.

Step 2: If ‖gk‖ ≤ ε, stop.
Step 3: Compute the step size αk using the WWP line search rule (1.4) and (1.5).
Step 4: Let xk+1 = xk + αkdk .
Step 5: If ‖gk+1‖ ≤ ε, stop.
Step 6: Calculate the search direction

dk+1 = –gk+1 + βPRP
k dk . (3.1)

Step 7: Set k := k + 1, and go to Step 3.

The following Himmeblau stop rule and all parameters are the same to those of the paper
[28].

Stop rules: If |f (xk)| > e1, let stop1 = |f (xk )–f (xk+1)|
|f (xk )| , or stop1 = |f (xk) – f (xk+1)|. If the condi-

tions ‖g(x)‖ < ε or stop1 < e2 hold, the program stops, where e1 = e2 = 10–5, ε = 10–6.
Parameters: δ = 0.1, δ1 = 0.05, σ = 0.9.
Dimension: 30,000, 60,000, and 120,000 variables.
Experiments: All the programs were written in MATLAB 7.10 and run on a PC with a

1.80 GHz CPU and 4.00 GB of memory running the Windows 7 operating system.
Other cases: The program is also stopped if the number of iterations is greater than 1200.

The step size αk in the line search is accepted if the search number is greater than 10.
The columns of Table 2 have the following meanings:

No.: the number of tested problems. Dim: the dimension of tested problem.
Cputime: the CPU time in seconds. NI: the iteration number.
NFG: the total number both of the gradient value and the function value.

Numerical results of Table 2 show that both of these two algorithms have a good ef-
ficiency for these practical problems. The iteration number, the number of the function
value and the gradient value, and the CPU time will increase with the dimension becom-
ing large for most of the problems. However, the CPU time does not become bigger but
smaller, such as problems 4, 13, and 14 for Algorithm 2 and problems 1 and 16 for Al-
gorithm 1; the reason may lie in the system of computer. The numerical results indicate
that Algorithm 1 is competitive to Algorithm 2 especially for the CPU time for most of
the tested problems. To directly show the performance of these two algorithms, the tool
of Dolan and Moré [4] is used, and Figs. 1–3 show the profiles of them relative to NI,
NFG, and Cputime, respectively. These three figures have the similar trend, then we only
analyze Fig. 3 about the CPU time. Figure 3 shows that Algorithm 1 is better than Algo-
rithm 2, Algorithm 1 goes beyond Algorithm 2 about 11%, and Algorithm 1 has perfect
robustness comparing with Algorithm 2. In a word, Algorithm 1 provides noticeable ad-
vantages.

3.2 Fact engineering problem of the Muskingum model
The subsection studies an application of the presented algorithm for a fact engineering
problem, namely the well-known hydrologic engineering application problem often called
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Table 2 The numerical results of Algorithm 1 and Algorithm 2

Nr. Dim Algorithm 1 Algorithm 2

NI NFG Cputime NI NFG Cputime

1 30,000 2 5 0.0624 168 527 3.681624
60,000 2 5 0.124801 173 544 7.86245
120,000 2 5 0.109201 180 567 16.083703

2 30,000 21 161 1.981213 97 310 4.851631
60,000 21 161 3.962425 100 319 9.703262
120,000 21 161 7.456848 104 331 18.579719

3 30,000 2 5 0.0001 4 24 0.078
60,000 2 5 0.0624 4 24 0.249602
120,000 2 5 0.124801 4 24 0.374402

4 30,000 2 14 0.0624 2 6 0.0624
60,000 2 14 0.124801 2 6 0.0001
120,000 2 14 0.187201 2 6 0.0624

5 30,000 2 15 0.124801 12 35 0.436803
60,000 2 15 0.280802 15 44 1.060807
120,000 2 15 0.390002 20 59 2.730017

6 30,000 3 27 0.187201 9 28 0.249602
60,000 43 128 2.745618 4 16 0.249602
120,000 56 167 6.910844 4 16 0.390003

7 30,000 3 17 0.124801 34 101 0.826805
60,000 3 17 0.156001 34 101 1.59121
120,000 3 17 0.436803 34 101 3.229221

8 30,000 4 20 0.234002 6 50 0.624004
60,000 4 20 0.624004 6 51 1.185608
120,000 4 20 1.029607 6 50 2.012413

9 30,000 1097 3290 184.237181 28 85 4.555229
60,000 1439 4316 387.475284 28 85 7.316447
120,000 1500 4499 559.403986 28 85 10.218066

10 30,000 2 5 0.0624 1500 4504 27.690178
60,000 2 5 0.124801 1500 4504 55.567556
120,000 2 5 0.124801 1500 4504 112.757523

11 30,000 96 287 3.260421 3 19 0.124801
60,000 86 257 5.896838 3 19 0.234002
120,000 86 257 11.668875 6 25 0.811205

12 30,000 11 122 0.530403 1500 4505 25.272162
60,000 11 122 0.873606 1500 4505 49.748719
120,000 11 122 1.747211 1500 4505 101.587851

13 30,000 2 14 0.327602 4 21 0.561604
60,000 2 14 0.592804 3 8 0.390003
120,000 2 14 1.029607 3 8 0.608404

14 30,000 108 323 6.879644 19 164 6.146439
60,000 149 446 18.454918 10 75 1.965613
120,000 206 617 41.153064 12 93 4.258827

15 30,000 11 122 0.452403 1500 4503 24.460957
60,000 11 122 0.936006 1500 4503 51.667531
120,000 11 122 1.778411 1500 4503 99.232236

16 30,000 2 5 0.0624 1500 4517 63.88241
60,000 2 5 0.0156 1500 4517 123.443591
120,000 2 5 0.0624 1500 4517 212.16136



Li et al. Journal of Inequalities and Applications        (2019) 2019:195 Page 9 of 13

Figure 1 Performance profiles of Algorithm 1 and
Algorithm 2 (NI)

Figure 2 Performance profiles of Algorithm 1 and
Algorithm 2 (NFG)

Figure 3 Performance profiles of Algorithm 1 and
Algorithm 2 (Cputimes)

the parameter estimation problem of the nonlinear Muskingum model. The Muskingum
model has the following definition.

Muskingum model [14]: The parameter estimation of the model is designed by

min f (x1, x2, x3) =
n–1∑

i=1

((
1 –

	t
6

)
x1

(
x2Ii+1 + (1 – x2)Qi+1

)x3

–
(

1 –
	t
6

)
x1

(
x2Ii + (1 – x2)Qi

)x3 –
	t
2

(Ii – Qi)

+
	t
2

(
1 –

	t
3

)
(Ii+1 – Qi+1)

)2

,
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Table 3 Results of these algorithms

Algorithms x1 x2 x3

BFGS [5] 10.8156 0.9826 1.0219
HIWO [14] 13.2813 0.8001 0.9933
Algorithm 1 11.1884 1.0034 0.9993

Figure 4 Performance of data in 1960

where x1 is the storage time constant, x2 is the weighting factor, and x3 is an additional
parameter; at time ti (i = 1, 2, . . . , n), n denotes the total time number, 	t is the time step,
Ii and Qi are the observed inflow discharge and observed outflow discharge, respectively.
The Muskingum model, as a hydrologic routing method, is a popular model for flood
routing, whose storage depends on the water inflow and outflow. This subsection uses
actual observed data of the flood run-off process between Chenggouwan and Linqing of
Nanyunhe in the 8 Haihe Basin, Tianjin, China, where 	t = 12(h). The detailed Ii and Qi

of the data of 1960, 1961, and 1964 can be found in [15]. In the numerical experiments,
we set the initial point x = [0, 1, 1]T . The tested results are listed in Table 3.

Figures 4–6 are the data curves of 1960, 1961, and 1964 about the observed flows and
computed flows by Algorithm 1 for estimating the parameters of the nonlinear Musk-
ingum model, which shows that the given algorithm has good approximation for these
data and Algorithm 1 is effective for the nonlinear Muskingum model. The results of Ta-
ble 3 and Figs. 4–6 tell us at least two conclusions: (1) Algorithm 1 can be successfully used
for solving the nonlinear Muskingum model because of its good approximation; (2) the
points x1, x2, and x3 obtained by Algorithm 1 are different from the BFGS method and the
HIWO method, which shows that the Muskingum model may be have several optimum
approximated points.

4 Conclusion
This paper studies the proof method and proposes a simple proof technique to get the
global convergence of the known algorithm in the paper [28]. The following conclusions
are obtained by this paper:
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Figure 5 Performance of data in 1961

Figure 6 Performance of data in 1964

(1) This paper gives a new proof method for the paper [28] and gets the same result
under weaker conditions. This new proof technique is more simple than those of the
paper [28].

(2) More larger-scale dimension problems are done comparing with [28] to show that
the given algorithm is competitive to the normal algorithm. The nonlinear
Muskingum model coming from the fact engineering problem is done by the given
algorithm to estimate its parameters, which demonstrates that Algorithm 1 is very
successful.

(3) One interesting question and work is whether there exist some other proof methods
to get the global convergence of Algorithm 1, which is one of the works of ours in
the future.
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