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Abstract
By using generalized Montgomery identity and Green functions we proved several
identities which assist in developing connections with Steffensen’s inequality. Under
the assumptions of n-convexity and n-concavity many inequalities, which generalize
Steffensen’s inequality, inequalities from (Fahad et al. in J. Math. Inequal. 9:481–487,
2015; Pečarić in Southeast Asian Bull. Math. 13:89–91, 1989; Rabier in Proc. Am. Math.
Soc. 140:665–675, 2012), and their reverse, have been proved. Generalization of some
inequalities (and their reverse) which are related to Hardy-type inequality (Fahad et al.
in J. Math. Inequal. 9:481–487, 2015) have also been proved. New bounds of Ostrowski
and Grüss type inequalities have been developed. Moreover, we formulate
generalized Steffensen-type linear functionals and prove their monotonicity for the
generalized class of (n + 1)-convex functions at a point. At the end, we present some
applications of our study to the theory of exponentially convex functions.
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1 Introduction
The key in the solutions of many problems in mathematics is somehow related to an in-
equality or an equivalent notion. Mathematical inequalities are also being used in other
branches of science, for example, contributions in physics and chemistry can be seen in
[9] and [10], respectively. Integral inequalities such as Hardy’s inequality, Steffensen’s in-
equality, and Ostrowski’s inequality have been topics of interest of many mathematicians
since their pronouncement. Several generalizations of these inequalities have been proved
for convex functions, beta m-convex functions, n-convex functions, and other classes of
functions, for example, see [4, 7, 12, 16], and [17]. Steffensen’s inequality was proved in
[18]: if ψ , f : [c, d] → R, with ψ being a decreasing function and function f having range
in [0, 1], then

∫ d

c
ψ(z)f (z) dt ≤

∫ c+θ

c
ψ(z) dz, where θ =

∫ d

c
f (z) dz. (1)

A massive literature body dealing with several variants and improvements of (1) can be
seen in [14, 16] and the references therein. Pečarić [13] gave a nice generalization of (1) as
follows.
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Theorem 1 For two increasing functions ψ on an interval J and f on [c, d] with {c, d, f (c),
f (d)} ⊆ J and f differentiable, we have

(i) If f (t) ≤ t, then

∫ f (d)

f (c)
ψ(z) dz ≤

∫ d

c
ψ(z)f ′(z) dz. (2)

(ii) If f (t) ≥ t, then (2) holds in reverse direction.

Remark 1 We can consider f to be absolute continuous instead of differentiable function
and the suppositions of Theorem 1 can also be weakened. In fact, for an increasing func-
tion ψ , the function Ψ (x) =

∫ x
c ψ(z) dz is well defined and satisfies Ψ ′ = ψ at all except the

set of points with measure zero. One can substitute x = f (z) in (2) (see [6, Corollary 20.5])
provided that f is an absolutely continuous increasing function; consequently,

Ψ
(
f (d)

)
– Ψ

(
f (c)

)
=

∫ f (d)

f (c)
ψ(x) dx =

∫ d

c
ψ

(
f (z)

)
f ′(z) dz ≤

∫ d

c
ψ(z)f ′(z) dz, (3)

where the last inequality holds when f (z) ≤ z.

Another generalization has been established by Rabier [17].

Theorem 2 Let ψ be continuous and convex on [0,∞) with ψ(0) = 0. If h is non-negative
and bounded almost everywhere on (0, b) with ‖h‖∞ ≤ 1, then hψ ′ is integrable on (0, b)
and

ψ

(∫ b

0
h(t) dt

)
≤

∫ b

0
h(t)ψ ′(t) dt. (4)

In [4], substitutions presented conclude that from (3) one may get all (1), (2), and (4). Re-
cently, Fahad, Pečarić, and Praljak proved generalization [4] of (1) by extending the results
given in [13].

Now, we include some important conclusions given in [4].

Corollary 1 Suppose that ψ : J → R, f : [c, d] → R are two differentiable functions with f
non-decreasing as well, where J is an interval containing [c, d], f (c), and f (d). If ψ is convex,
then:

(i) If f (t) ≤ t, then

ψ
(
f (d)

) ≤ ψ
(
f (c)

)
+

∫ d

c
ψ ′(z)f ′(z) dz. (5)

(ii) If f (t) ≥ t, then (5) holds in reverse direction.

Corollary 1 gives (3) and therefore leads to (1), (2), and (4). Next we narrate some further
important results of [4].

Corollary 2 Let ψ : [0, d] →R be a convex, differentiable function with ψ(0) = 0 and f be
a non-negative function on [0, d].
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(i) If
∫ t

0 f (z) dz ≤ t for every t ∈ [0, d], then

ψ

(∫ d

0
f (z) dz

)
≤

∫ d

0
ψ ′(z)f (z) dz. (6)

(ii) If t ≤ ∫ t
0 f (z) dz for every t ∈ [0, d], then (6) holds reversely.

Corollary 3 Consider ψ and f be as defined in Corollary 2, and let λ : [0, d] → [0, +∞)
and denote Λ(z) =

∫ d
z λ(t) dt.

(i) If
∫ t

0 f (z) dz ≤ t for every t ∈ [0, d], then

∫ d

0
λ(t)ψ

(∫ t

0
f (z) dz

)
dt ≤

∫ d

0
Λ(z)ψ ′(z)f (z) dz. (7)

(ii) If t ≤ ∫ t
0 f (z) dz for every t ∈ [0, d], then (7) holds reversely.

The main objective of this article is to establish generalization of (3) and ultimately pro-
duce the generalizations of (1), (2), and (4). The connection between classical Hardy-type
inequalities and inequalities (6) and (7) has been elaborated in [4]. Due to significance of
(6) and (7), we prove their generalizations as well. As an application, we present contri-
bution of new inequalities to theory of exponentially convex functions and (n + 1)-convex
functions at a point. We use Čebyšev functional to construct new bounds of Grüss and Os-
trowski type inequalities. To achieve this objective, we use the generalized Montgomery
identity and Green functions. The following two lemmas will be useful in our construction
as well, see [11] and [5].

Lemma 1 For a function ψ ∈ C2([c, d]), we have:

ψ(ξ ) =
d – ξ

d – c
ψ(c) +

ξ – c
d – c

ψ(d) +
∫ d

c
G∗,1(ξ , u)ψ ′′(u) du, (8)

ψ(ξ ) = ψ(c) + (ξ – c)ψ ′(d) +
∫ d

c
G∗,2(ξ , u)ψ ′′(u) du, (9)

ψ(ξ ) = ψ(d) + (d – ξ )ψ ′(c) +
∫ d

c
G∗,3(ξ , u)ψ ′′(u) du, (10)

ψ(ξ ) = ψ(d) – (d – c)ψ ′(d) + (ξ – c)ψ ′(c) +
∫ d

c
G∗,4(ξ , u)ψ ′′(u) du, (11)

ψ(ξ ) = ψ(c) + (d – c)ψ ′(c) – (d – ξ )ψ ′(d) +
∫ d

c
G∗,5(ξ , u)ψ ′′(u) du, (12)

where

G∗,1(ξ , u) =

⎧⎨
⎩

(ξ–d)(u–c)
d–c , if c ≤ u ≤ ξ ,

(u–d)(ξ–c)
d–c , if ξ < u ≤ d,

(13)

G∗,2(ξ , u) =

⎧⎨
⎩

c – u, if c ≤ u ≤ ξ ,

c – ξ , if ξ < u ≤ d,
(14)
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G∗,3(ξ , u) =

⎧⎨
⎩

ξ – d, if c ≤ u ≤ ξ ,

u – d, if ξ < u ≤ d,
(15)

G∗,4(ξ , u) =

⎧⎨
⎩

ξ – c, if c ≤ u ≤ ξ ,

u – c, if ξ < u ≤ d,
(16)

and

G∗,5(ξ , u) =

⎧⎨
⎩

d – u, if c ≤ u ≤ ξ ,

d – ξ , if ξ < u ≤ d.
(17)

Lemma 2 Let ψ ∈ C1[c, d], then

ψ(ξ ) =
1

d – c

∫ d

c
ψ(u) du +

∫ d

c
p1(ξ , u)ψ ′(u) du, (18)

ψ(ξ ) = ψ(d) +
∫ d

c
p2(ξ , u)ψ ′(u) du, (19)

and

ψ(ξ ) = ψ(c) +
∫ d

c
p3(ξ , u)ψ ′(u) du, (20)

where

p1(ξ , u) =

⎧⎨
⎩

u–c
d–c , if c ≤ u ≤ ξ ,
u–d
d–c , if ξ < u ≤ d,

(21)

p2(ξ , u) =

⎧⎨
⎩

0, if c ≤ u ≤ ξ ,

–1, if ξ < u ≤ d,
(22)

p3(ξ , u) =

⎧⎨
⎩

1, if c ≤ u ≤ ξ ,

0, if ξ < u ≤ d.
(23)

Clearly,

pi(ξ , u) =
∂G∗,i(ξ , u)

∂ξ
for all i = 1, 2, 3,

p2(ξ , u) =
∂G∗,5(ξ , u)

∂ξ
, and p3(ξ , u) =

∂G∗,4(ξ , u)
∂ξ

.
(24)

From now on, during the calculations, we will use pi(ξ , u) corresponding to ∂G∗,i(ξ ,u)
∂ξ

for
i = 1, 2, 3 and for ∂G∗,4(ξ ,u)

∂ξ
, ∂G∗,5(ξ ,u)

∂ξ
we use p3(ξ , s) and p2(ξ , s) respectively.

To prove our main results in the next section, we also use the following generalized
Montgomery identity via Taylor’s formula given in [1].
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Theorem 3 Let n ∈N, ψ : J →R be such that ψ (n–1) is absolutely continuous, J ⊂R be an
open interval, c, d ∈ J , c < d. Then

ψ(s) =
1

d – c

∫ d

c
ψ(ξ ) dξ +

n–2∑
l=0

ψ (l+1)(c)
l!(l + 2)

(s – c)l+2

d – c
–

n–2∑
l=0

ψ (l+1)(d)
l!(l + 2)

(s – d)l+2

d – c

+
1

(n – 1)!

∫ d

c
Rn(s, t)ψ (n)(t) dt, (25)

where

Rn(s, t) =

⎧⎨
⎩

– (s–t)n

n(d–c) + s–c
d–c (s – t)n–1, c ≤ t ≤ s,

– (s–t)n

n(d–c) + s–d
d–c (s – t)n–1, s < t ≤ d.

(26)

The next section contains the main result of the article.

2 Generalization of Steffensen’s inequality by generalized Montgomery
identity

For our convenience, we use the following notations and assumptions:

S1(ψ , f , c, d) = ψ
(
f (c)

)
+

∫ d

c
ψ ′(z)f ′(z) dz – ψ

(
f (d)

)
,

S2(ψ , f , d) =
∫ d

0
ψ ′(z)f (z) dz – ψ

(∫ d

0
f (z) dz

)
,

S3(ψ , f ,λ, d) =
∫ d

0
Λ(z)ψ ′(z)f (z) dz –

∫ d

0
λ(t)ψ

(∫ t

0
f (z) dz

)
dt.

(A1) For n ∈N, n ≥ 3, let ψ : [c, d] →R be an n times differentiable function with ψ (n–1)

absolutely continuous on [c, d].
(A2) For n ∈N, n ≥ 3, let ψ : [0, d] →R be an n times differentiable function with ψ(0) =

0 and ψ (n–1) absolutely continuous on [0, d].
The first part of this section is the generalization of (5). For this, we start with the fol-

lowing theorem.

Theorem 4 Consider (A1) with f be as in Corollary 1(i) and Rn be defined by (26), then:
(a) For j = 1, 2, 4, 5, we have

S1(ψ , f , c, d)

=
ψ ′(c) – ψ ′(d)

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

+
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

+
1

(n – 3)!

∫ d

c
ψ (n)(v)

(∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
R̃n–2(s, v) ds

)
dv. (27)
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(b) If ψ ′(c) = 0, then

S1(ψ , f , c, d)

=
ψ ′(c) – ψ ′(d)

d – c

∫ d

c
S1

(
G∗,3(·, s), f , c, d

)
ds

+
1

d – c

∫ d

c
S1

(
G∗,3(·, s), f , c, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

+
1

(n – 3)!

∫ d

c
ψ (n)(v)

(∫ d

c
S1

(
G∗,3(·, s), f , c, d

)
R̃n–2(s, v) ds

)
dv, (28)

where

R̃n–2(s, v) =

⎧⎨
⎩

1
d–c [ (s–v)n–2

(n–2) + (s – c)(s – v)n–3], c ≤ v ≤ s,
1

d–c [ (s–v)n–2

(n–2) + (s – d)(s – v)n–3], s < v ≤ d,
(29)

and
(a′) For j = 1, 2, 4, 5, we have

S1(ψ , f , c, d)

=
(

ψ ′(d) – ψ ′(c)
d – c

)∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

+
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)

×
( n–1∑

l=3

ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

c
ψ (n)(v)

(∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
Rn–2(s, v) ds

)
dv. (30)

(b′) If ψ ′(c) = 0, then

S1(ψ , f , c, d)

=
(

ψ ′(d) – ψ ′(c)
d – c

)∫ d

c
S1

(
G∗,3(·, s), f , c, d

)
ds

+
1

d – c

∫ d

c
S1

(
G∗,3(·, s), f , c, d

)( n–1∑
l=3

ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

c
ψ (n)(v)

(∫ d

c
S1

(
G∗,3(·, s), f , c, d

)
Rn–2(s, v) ds

)
dv.

Proof By using (8) and (18) for ψ and ψ ′ respectively and then applying (24), we get

S1(ψ , f , c, d) =
∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ψ ′′(s) ds. (31)
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Differentiating (25) twice with respect to first variable, we have

ψ ′′(s) =
ψ ′(c) – ψ ′(d)

d – c
+

n–1∑
l=2

(
l

(l – 1)!

)(
ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1

d – c

)

+
1

(n – 3)!

∫ d

c
R̃n–2(s, v)ψ (n)(v) dv. (32)

Using (32) in (31), we get

S1(ψ , f , c, d)

=
ψ ′(c) – ψ ′(d)

d – c

∫ d

c
S1

(
G∗,1(·, s), f , c, d

)
ds

+
n–1∑
l=2

(
l

(l – 1)!

)∫ d

c
S1

(
G∗,1(·, s), f , c, d

)(ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1

d – c

)
ds

+
1

(n – 3)!

∫ d

c
S1

(
G∗,1(·, s), f , c, d

)(∫ b

a
R̃n–2(s, v)ψ (n)(v) dv

)
ds.

By applying Fubini’s theorem in the last term, we have (27). Next, using formula (25) on
the function ψ ′′, replacing n by n – 2 (n ≥ 3), and rearranging the indices, we have

ψ ′′(s) =
(

ψ ′(d) – ψ ′(c)
d – c

)

+
n–1∑
l=3

(
1

(l – 3)!(l – 1)

)(
ψ (l)(c)(s – c)l–1 – ψ (l)(b)(s – d)l–1

d – c

)

+
1

(n – 3)!

∫ d

c
Rn–2(s, v)ψ (n)(v) dv. (33)

Similarly, using (33) in (31) and applying Fubini’s theorem, we get (30). The proof for j =
2, 3, 4, 5 can be obtained in a similar way except for the use of (9)–(12) and (19)–(20).

From the next two theorems, we get generalization of Steffensen’s inequality and its re-
verse by generalizing (5) and its reverse. �

Theorem 5 Consider (A1) with f be as in Corollary 1(i), and let Rn, R̃n–2 be as in Theo-
rem 4. If ψ is n-convex and

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
R̃n–2(s, v) ds ≥ 0, (34)

then

S1(ψ , f , c, d) ≥ ψ ′(c) – ψ ′(d)
d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

+
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1)

)
ds (35)



Butt et al. Journal of Inequalities and Applications        (2019) 2019:199 Page 8 of 23

and if

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
Rn–2(s, v) ds ≥ 0, (36)

then

S1(ψ , f , c, d)

≥
(

ψ ′(d) – ψ ′(c)
d – c

)∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

+
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)( n–1∑
l=3

ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds (37)

for j = 1, 2, . . . , 5, where ψ ′(c) = 0 for j = 3.

Proof Since ψ (n–1) is absolutely continuous on [c, d], ψ (n) exists almost everywhere. As ψ

is n-convex, so ψ (n)(x) ≥ 0 for all x ∈ [c, d] (see [16], p. 16). Hence we can apply Theorem 4
to obtain (35) and (37) respectively. �

Theorem 6 Consider (A1) with f be as in Corollary 1(i), and let Rn, R̃n–2 be as in Theo-
rem 4. If ψ is n-convex, then:

(i) If n is even and n ≥ 4, then (35) holds.
(ii) Let inequality (35) be satisfied and

n–1∑
l=1

l
(l – 1)!

(
ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1) ≥ 0; ∀s ∈ [c, d], (38)

OR
(37) be satisfied and

ψ ′(d) – ψ ′(c) +
n–1∑
l=3

ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)
≥ 0 ∀s ∈ [c, d], (39)

then we have

S1(ψ , f , c, d) ≥ 0. (40)

Proof Since Green’s function G is convex and f is as in Corollary 1(a), therefore,
S1(G∗,j(·, s), f , c, d) ≥ 0 holds by virtue of Corollary 1(a). Moreover, R̃n–2(s, v) ≥ 0 for
n = 4, 6, . . . , so (34) holds. As ψ is n-convex, hence by Theorem 5, we obtain (35). Fur-
ther, by using (38) in (35) or (39) in (37), we have (40). �

Remark 2 Inequalities (35) and (37) hold in reverse directions if either the inequalities
in (34) and (36) are reversed or –ψ is n-convex. By using these reverse inequalities and
applying a similar technique as in Theorem 6, one may prove S1(ψ , f , c, d) ≤ 0, which gives
the reverse of (1) inequality.
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In the next theorem, we prove a few identities which enable us to prove generalization
of (6) and its reverse.

Theorem 7 Consider (A2) and let f be as in Corollary 2(i), then:
(a)

S2(ψ , f , d)

=
ψ ′(0) – ψ ′(d)

d

∫ d

0
S2

(
G∗,j(·, s), f , d

)
ds

+
1
d

∫ d

0
S2

(
G∗,j(·, s), f , d

)( n–1∑
l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S2

(
G∗,j(·, s), f , d

)
R̃0,n–2(s, v) ds

)
dv

for j = 1, 2.
(b) If ψ ′(0) = 0, then

S2(ψ , f , d) + ψ(d)

=
ψ ′(0) – ψ ′(d)

d

∫ d

0
S2

(
G∗,3(·, s), f , d

)
ds

+
1
d

∫ d

0
S2

(
G∗,3(·, s), f , d

)( n–1∑
l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S2

(
G∗,3(·, s), f , d

)
R̃0,n–2(s, v) ds

)
dv.

(c)

S2(ψ , f , d) + ψ(d) – dψ ′(d)

=
ψ ′(0) – ψ ′(d)

d

∫ d

0
S2

(
G∗,4(·, s), f , d

)
ds

+
1
d

∫ d

0
S2

(
G∗,4(·, s), f , d

)( n–1∑
l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S2

(
G∗,4(·, s), f , d

)
R̃0,n–2(s, v) ds

)
dv.

(d) If ψ ′(0) = 0, then

S2(ψ , f , d) – dψ ′(d)

=
ψ ′(0) – ψ ′(d)

d

∫ d

0
S2

(
G∗,5(·, s), f , d

)
ds
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+
1
d

∫ d

0
S2

(
G∗,5(·, s), f , d

)( n–1∑
l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S2

(
G∗,5(·, s), f , d

)
R̃0,n–2(s, v) ds

)
dv,

where R̃0,n–2 is obtained by taking c = 0 in (29), and
(a′)

S2(ψ , f , d) =
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S2

(
G∗,j(·, s), f , d

)
ds

+
1
d

∫ d

0
S2

(
G∗,j(·, s), f , d

)( n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S2

(
G∗,j(·, s), f , d

)
R0,n–2(s, v) ds

)
dv

for j = 1, 2.
(b′) If ψ ′(0) = 0, then

S2(ψ , f , d) + ψ(d)

=
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S2

(
G∗,3(·, s), f , d

)
ds

+
1
d

∫ d

0
S2

(
G∗,3(·, s), f , d

)( n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S2

(
G∗,3(·, s), f , d

)
R0,n–2(s, v) ds

)
dv.

(c′)

S2(ψ , f , d) + ψ(d) – dψ ′(d)

=
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S2

(
G∗,4(·, s), f , d

)
ds

+
1
d

∫ d

0
S2

(
G∗,4(·, s), f , d

)( n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S2

(
G∗,4(·, s), f , d

)
R0,n–2(s, v) ds

)
dv.

(d′) If ψ ′(0) = 0, then

S2(ψ , f , d) – dψ ′(d)

=
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S2

(
G∗,5(·, s), f , d

)
ds
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+
1
d

∫ d

0
S2

(
G∗,5(·, s), f , d

)( n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S2

(
G∗,5(·, s), f , d

)
R0,n–2(s, v) ds

)
dv,

where R0,n–2 is obtained by taking c = 0 in (26).

Proof We give the proof of our results by fixing j = 1, other cases can be followed in a
similar pattern. By using (8) and (18) for ψ and ψ ′ respectively and applying assumption
ψ(0) = 0, we get

S2(ψ , f , d) =
∫ d

0
S2

(
G∗,1(·, s), f , d

)
ψ ′′(s) ds.

The rest is a similar application of (25) as in the proof of Theorem 4. �

Similar to Theorem 5 (from Theorem 4), we may get the following theorem (from The-
orem 7).

Theorem 8 Consider (A2) and let f be as in Corollary 2(i). If ψ is n-convex and

∫ d

0
S2

(
G∗,j(·, s), f , d

)
R̃0,n–2(s, v) ds ≥ 0, (41)

then

S2(ψ , f , d)

≥ ψ ′(0) – ψ ′(d)
d

∫ d

0
S2

(
G∗,j(·, s), f , d

)
ds

+
1
d

∫ d

0
S2

(
G∗,j(·, s), f , d

)( n–1∑
l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)
ds (42)

and if

∫ d

0
S2

(
G∗,j(·, s), f , d

)
R0,n–2(s, v) ds ≥ 0, (43)

then

S2(ψ , f , d) ≥
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S2

(
G∗,j(·, s), f , d

)
ds

+
1
d

∫ d

0
S2

(
G∗,j(·, s), f , d

)( n–1∑
l=3

f (l)(0)(s)l–1 – f (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds (44)

for j = 1, 2, where R̃0,n–2 and R0,n–2 are as described in Theorem 7.

The following theorem yields generalization of (6).
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Theorem 9 Consider (A2) and let f be as in Corollary 2(i). If ψ and
(i) If n is even and n ≥ 4, then (42) holds.
(ii) Let inequality (42) be satisfied and

n–1∑
l=1

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1); ∀s ∈ [0, d], (45)

OR
(44) be satisfied and

ψ ′(d) – ψ ′(0) +
n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)
≥ 0 ∀s ∈ [0, d], (46)

then we have

S2(ψ , f , d) ≥ 0. (47)

Proof The proof is similar to that of Theorem 6 except for the use of Theorem 8 and
Corollary 2(a). �

Remark 3 Inequalities (42) and (44) hold in reverse directions if either the inequalities
in (41) and (43) are reversed or –ψ is n-convex. By using these reverse inequalities and
applying a similar technique as in Theorem 9, one may prove S2(ψ , f , d) ≤ 0, which gives
the reverse of (6).

For the generalization of (7), we construct the following identities.

Theorem 10 Consider (A2) and let f be as in Corollary 2(i), then
(a)

S3(ψ , f ,λ, d) =
ψ ′(0) – ψ ′(d)

d

∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)
ds

+
1
d

∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)
R̃0,n–2(s, v) ds

)
dv

for j = 1, 2.
(b) If ψ ′(0) = 0, then

S3(ψ , f ,λ, d) + ψ(d)
∫ d

0
λ(x) dx

=
ψ ′(0) – ψ ′(d)

d

∫ d

0
S3

(
G∗,3(·, s), f ,λ, d

)
ds
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+
1
d

∫ d

0
S3

(
G∗,3(·, s), f ,λ, d

)( n–1∑
l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S3

(
G∗,3(·, s), f ,λ, d

)
R̃0,n–2(s, v) ds

)
dv.

(c)

S3(ψ , f ,λ, d) +
(
ψ(d) – dψ ′(d)

)∫ d

0
λ(x) dx

=
ψ ′(0) – ψ ′(d)

d

∫ d

0
S3

(
G∗,4(·, s), f ,λ, d

)
ds

+
1
d

∫ d

0
S3

(
G∗,4(·, s), f ,λ, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S3

(
G∗,4(·, s), h, k, b

)
R̃0,n–2(s, v) ds

)
dv.

(d) If ψ ′(0) = 0, then

S3(ψ , f ,λ, d) – dψ ′(d)
∫ d

0
λ(x) dx

=
ψ ′(0) – ψ ′(d)

d

∫ d

0
S3

(
G∗,5(·, s), f ,λ, d

)
ds

+
1
d

∫ d

0
S3

(
G∗,5(·, s), f ,λ, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S3

(
G∗,5(·, s), f ,λ, d

)
R̃0,n–2(s, v) ds

)
dv

and
(a′)

S3(ψ , f ,λ, d)

=
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)
ds

+
1
d

∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)( n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)
R0,n–2(s, v) ds

)
dv

for j = 1, 2.
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(b′) If ψ ′(0) = 0, then

S3(ψ , f ,λ, d) + ψ(d)
∫ d

0
λ(x) dx

=
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S3

(
G∗,3(·, s), f ,λ, d

)
ds

+
1
d

∫ d

0
S3

(
G∗,3(·, s), f ,λ, d

)( n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S3

(
G∗,3(·, s), f ,λ, d

)
R0,n–2(s, v) ds

)
dv.

(c′)

S3(ψ , f ,λ, d) +
(
ψ(d) – dψ ′(d)

)∫ d

0
λ(x) dx

=
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S3

(
G∗,4(·, s), f ,λ, d

)
ds

+
1
d

∫ d

0
S3

(
G∗,4(·, s), f ,λ, d

)( n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S3

(
G∗,4(·, s), f ,λ, d

)
R0,n–2(s, v) ds

)
dv.

(d′) If ψ ′(0) = 0, then

S3(ψ , f ,λ, d) – dψ ′(d)
∫ d

0
λ(x) dx

=
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S3

(
G∗,5(·, s), f ,λ, d

)
ds

+
1
d

∫ d

0
S3

(
G∗,5(·, s), f ,λ, d

)( n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

+
1

(n – 3)!

∫ d

0
ψ (n)(v)

(∫ d

0
S3

(
G∗,5(·, s), f ,λ, d

)
R0,n–2(s, v) ds

)
dv,

where R̃0,n–2 and R0,n–2 are as described in Theorem 7.

Proof We give the proof of our results by fixing j = 1, other cases can be followed in a
similar pattern. By using (8) and (18) for ψ and ψ ′, ψ(0) = 0 and

∫ d
0 λ(x)

∫ x
0 f (t) dt dx =∫ d

0 f (t)(
∫ b

t λ(x) dx) dt =
∫ d

0 Λ(t)f (t) dt, we get

S3(ψ , f ,λ, d) =
∫ d

0
S3

(
G∗,1(·, s), f ,λ, d

)
ψ ′′(s) ds.

The rest is a similar application of (25). �

Similar to Theorem 5 (from Theorem 4), we may get the following theorem (from The-
orem 10).
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Theorem 11 Consider (A2) and let f be as in Corollary 2(i). If ψ is n-convex and

∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)
R̃0,n–2(s, v) ds ≥ 0, (48)

then

S3(ψ , f ,λ, d) ≥ ψ ′(0) – ψ ′(d)
d

∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)
ds

+
1
d

∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1)

)
ds; (49)

and if

∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)
R0,n–2(s, v) ds ≥ 0, (50)

then

S3(ψ , f ,λ, d) ≥
(

ψ ′(d) – ψ ′(0)
d

)∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)
ds

+
1
d

∫ d

0
S3

(
G∗,j(·, s), f ,λ, d

)

×
( n–1∑

l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds (51)

for j = 1, 2, where R̃0,n–2 and R0,n–2 are as described in Theorem 7.

In the next theorem, we prove generalization of (7).

Theorem 12 Consider (A2) and let f , λ, Λ be as in Corollary 3(i). If ψ is n-convex and
(i) If n is even and n ≥ 4, then (49) holds.
(ii) Let inequality (49) be satisfied and

n–1∑
l=1

l
(l – 1)!

(
ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1); ∀s ∈ [0, d], (52)

OR
(51) be satisfied and

ψ ′(d) – ψ ′(0) +
n–1∑
l=3

ψ (l)(0)(s)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)
≥ 0; ∀s ∈ [0, d]. (53)

Then we have

S3(ψ , f ,λ, d) ≥ 0. (54)
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Proof The proof is an application of Theorem 10, Theorem 11, and Corollary 3(a). �

Remark 4 Inequalities (49) and (51) hold in reverse directions if either the inequalities
in (48) and (50) are reversed or –ψ is n-convex. By using these reverse inequalities and
applying similar technique as in Theorem 12, one may prove S3(ψ , f ,λ, d) ≤ 0, which gives
the reverse of (7).

Remark 5 Theorem 8 and Theorem 11 have been proved for j = 1, 2. Both theorems can be
extended to j = 1, 2, . . . , 5 according to each case in Theorem 7 and Theorem 10, respec-
tively, which ultimately produce inequalities (as given in Theorem 9 and Theorem 12)
related to the generalizations of (6) and (7) (and their reverse).

3 New upper bounds via Čebyšev functional
Consider the Čebyšev functional for two Lebesgue integrable functions F1,F2 : [c, d] →R

given as follows:

T(F1,F2) =
1

d – c

∫ d

c
F1(ξ )F2(ξ ) dξ –

1
d – c

∫ d

c
F1(ξ ) dξ

1
d – c

∫ d

c
F2(ξ ) dξ .

Dragomir et al. in [3] proposed new bounds utilizing the Čebyšev functional given as fol-
lows.

Theorem 13 For F1 ∈ L[c, d] and F2 : [c, d] → R being absolutely-continuous functions
along with (· – c)(d – ·)[F′

2]2 ∈ L[c, d], the following inequality holds:

∣∣T(F1,F2)
∣∣ ≤ 1√

2

[
T(F1,F1)

(d – c)

] 1
2
(∫ d

c
(ξ – c)(d – ξ )

[
F

′
2(ξ )

]2 dξ

) 1
2

. (55)

Theorem 14 For F1 : [c, d] → R being absolutely continuous with F
′
1 ∈ L∞[c, d] and F2 :

[c, d] →R being an increasing function, the following inequality holds:

∣∣T(F1,F2)
∣∣ ≤ ‖F′

1‖∞
2(d – c)

∫ d

c
(ξ – c)(d – ξ ) dF2(ξ ). (56)

The constants 1√
2 and 1

2 are the optimal constants.
Now we utilize above theorems to construct new upper bounds for our obtained gener-

alized identities. For our convenience, we note

S̃j(v) =
∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
R̃n–2(s, v) ds, v ∈ [c, d] (57)

and

Sj(v) =
∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
Rn–2(s, v) ds, v ∈ [c, d] (58)

for {j = 1, . . . , 5}. Consider the Čebyšev functionals Tj(S̃j, S̃j) and Tj(Sj,Sj) {j = 1, . . . , 5}
given as

Tj(S̃j, S̃j) =
1

d – c

∫ d

c
S̃

2
j (ξ ) dξ –

(
1

d – c

∫ d

c
S̃j(ξ ) dξ

)2

(59)
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and

Tj(Sj,Sj) =
1

d – c

∫ d

c
Sj

2(ξ ) dξ –
(

1
d – c

∫ d

c
Sj(ξ ) dξ

)2

(60)

respectively.
Grüss type inequalities associated with Theorem 13 and Theorem 14 can be given as

follows.

Theorem 15 Under the assumptions of Theorem 4, let ψ : [c, d] →R be absolutely contin-
uous along with (· – c)(d – ·)[ψ (n+1)]2 ∈ L[c, d] and S̃j, Sj j ∈ {1, 2, . . . , 5} be defined in (57),
(58) respectively. Then

S1(ψ , f , c, d) –
ψ ′(c) – ψ ′(d)

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

–
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

–
ψ (n–1)(d) – ψ (n–1)(c)

(d – c)(n – 3)!

∫ d

c
S̃j(v) dv = Rem

(
c, d, S̃j,ψ (n)) (61)

and

S1(ψ , f , c, d) –
(

ψ ′(d) – ψ ′(c)
d – c

)∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

–
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)( n–1∑
l=3

ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

–
ψ (n–1)(d) – ψ (n–1)(c)

(d – c)(n – 3)!

∫ d

c
Sj(v) dv = Rem

(
c, d,Sj,ψ (n)), (62)

where

∣∣Rem
(
c, d, S̃j,ψ (n))∣∣ ≤ [Tj(S̃j, S̃j)]

1
2

(n – 3)!

√
d – c

2

∣∣∣∣
∫ d

c
(v – c)(d – v)

[
ψ (n+1)(v)

]2 dv
∣∣∣∣

1
2

and

∣∣Rem
(
c, d,Sj,ψ (n))∣∣ ≤ [Tj(Sj,Sj)]

1
2

(n – 3)!

√
d – c

2

∣∣∣∣
∫ d

c
(v – c)(d – v)

[
ψ (n+1)(v)

]2 dv
∣∣∣∣

1
2

.

Proof Fix j ∈ {1, 2, . . . , 5}. Using the Čebyšev functional for F1 = S̃j, F2 = ψ (n) and by com-
paring (61) with (27), we have

Rem
(
c, d,Sj,ψ (n)) =

d – c
(n – 3)!

Tj
(
Sj, f (n)).

Employing Theorem 13 for the new functions, we get the required bound.
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Similarly, we can construct the other bound by using the Čebyšev functional for F1 = Sj,
F2 = ψ (n) and by comparing (62) with (30). �

Theorem 16 Under the assumptions of Theorem 4, let ψ : [c, d] →R be absolutely contin-
uous alongwith ψ (n+1) ≥ 0 and S̃j, Sj {j = 1, 2, 3, 4, 5} be defined in (57), (58) respectively.
Then Rem(c, d, S̃j,ψ (n)) in (61) and Rem(c, d,Sj,ψ (n)) in (62) satisfy bounds

∣∣Rem
(
c, d, S̃j,ψ (n))∣∣

≤ (d – c)‖S̃′
j
‖∞

(n – 3)!

[
ψ (n–1)(d) + ψ (n–1)(c)

2
–

ψ (n–2)(d) – ψ (n–2)(c)
d – c

]
(63)

and

∣∣Rem
(
c, d,Sj,ψ (n))∣∣

≤ (d – c)‖Sj
′‖∞

(n – 3)!

[
ψ (n–1)(d) + ψ (n–1)(c)

2
–

ψ (n–2)(d) – ψ (n–2)(c)
d – c

]
(64)

respectively.

Proof We gave proof for one bound (63), and that for the other bound (64) can be obtained
similarly. Since we have established

Rem
(
c, d, S̃j,ψ (n)) =

d – c
(n – 3)!

Tj
(
S̃j,ψ (n)),

now, applying Theorem 14 for F1 = S̃j, F2 = ψ (n), we have

∣∣Rem
(
c, d, S̃j,ψ (n))∣∣ =

d – c
(n – 3)!

∣∣Tj
(
S̃j,ψ (n))∣∣

≤ ‖Sj
′‖∞

2(n – 3)!

∫ d

c
(v – c)(d – v)ψ (n+1)(v) dv.

Now since

∫ d

c
(v – c)(d – v)ψ (n+1)(v) dv =

∫ d

c

[
2v – (c + d)

]
ψ (n)(v) dv

= (d – c)
[
ψ (n–1)(d) + ψ (n–1)(c)

]
– 2

(
ψ (n–2)(d) – f (n–2)(c)

)
,

therefore the required bound (63) follows. �

Ostrowski type inequalities associated with generalized Steffensen’s inequality can be
given as follows.

Theorem 17 Under the assumptions of Theorem 4, let |ψ (n)|p : [c, d] → R be an R-
integrable function, and consider (p, p′) to be a pair of conjugate exponents from [1,∞]
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such that 1
p + 1

p′ = 1. Then we have

∣∣∣∣∣S1(ψ , f , c, d) –
ψ ′(c) – ψ ′(d)

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

–
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

∣∣∣∣∣

≤ ‖ψ (n)‖p

(n – 3)!

(∫ d

c

∣∣S1
(
G∗,j(·, s), f , c, d

)
R̃n–2(s, v) ds

∣∣p′
dv

)1/p′

(65)

and
∣∣∣∣∣S1(ψ , f , c, d) –

(
ψ ′(d) – ψ ′(c)

d – c

)∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

–
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)( n–1∑
l=3

ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1

(l – 3)!(l – 1)

)
ds

∣∣∣∣∣

≤ ‖ψ (n)‖p

(n – 3)!

(∫ d

c

∣∣S1
(
G∗,j(·, s), f , c, d

)
Rn–2(s, v) ds

∣∣p′
dv

)1/p′

(66)

respectively. The constant on the R.H.S. of (65) and (66) is sharp for 1 < p ≤ ∞ and the best
possible for p = 1.

Proof Fix j ∈ {1, 2, . . . , 5}. Let us denote

Ĩj =
1

(n – 3)!
(
S1

(
G∗,j(·, s), f , c, d

)
R̃n–2(s, v) ds

)
, v ∈ [c, d].

Using identity (27), we find

∣∣∣∣∣S1(ψ , f , c, d) –
ψ ′(c) – ψ ′(d)

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

–
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

∣∣∣∣∣

=
∣∣∣∣
∫ d

c
Ĩj(t)ψ (n)(v) dv

∣∣∣∣. (67)

Applying Hölder’s inequality for integrals on the R.H.S. of (67), we obtain

∣∣∣∣
∫ d

c
Ĩj(v)ψ (n)(v) dv

∣∣∣∣ ≤
(∫ d

c

∣∣ψ (n)(v)
∣∣p dv

) 1
p
(∫ d

c

∣∣Ĩj(v)
∣∣p′

dv
) 1

p′
,

which combined together with (67) gives (65).
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For sharpness of the constant (
∫ d

c |Ĩj(v)|p′ dv)1/p′ , see [2].
Similarly, we can prove (66). �

Remark 6 Similar bounds of Grüss and Ostrowski type inequalities can be obtained by
using Theorem 7 and Theorem 10.

4 Monotonic Steffensen-type functionals
The notion of (n + 1)-convex function at a point was introduced in [15]. In the current
section, we define some linear functionals from the differences of generalized Steffensen-
type inequalities. By proving monotonicity of these functionals, we obtain new inequali-
ties which contribute to theory of more generalized class of functions, i.e., (n + 1)-convex
functions at a point. The following is the definition of (n + 1)-convex function at a point,
see [15].

Definition 1 Let I ⊆R be an interval, ξ ∈ I0, and n ∈N. A function f : I →R is said to be
(n + 1)-convex at point ξ if there exists a constant Kξ such that the function

F(x) = f (x) – Kξ

xn

n!

is n-concave on I ∩ (–∞, ξ ] and n-convex on I ∩ [ξ ,∞).

Pečarić et al. in [15] studied necessary and sufficient conditions on two linear function-
als Ω : C([δ1, ξ ]) → R and Γ : C([ξ , δ2]) → R so that the inequality Ω(f ) ≤ Γ (f ) holds
for every function f that is (n + 1)-convex at point ξ . In this section, we define linear
functionals and obtain such inequalities for defined functionals. Let n ∈ N, n ≥ 2 be
even, ψ : [c, d] → R be an n times differentiable function with ψ (n–1) absolutely contin-
uous on [c, d]. Let c1, c2 ∈ [c, d] and ξ ∈ (c, d), where c1 < ξ < c2. Let f1 : [c1, ξ ] → R and
f2 : [ξ , c2] →R be increasing with fi(t) ≤ t for i = 1, 2. For j = 1, 2, . . . , 5, we construct:

Ω1,j(ψ) = S1(ψ , f1, c1, ξ ) –
ψ ′(c1) – ψ ′(ξ )

ξ–c1

∫ ξ

c1

S1
(
G∗,j(·, s), f1, c1, ξ

)
ds

–
1

ξ – c1

∫ ξ

c1

S1
(
G∗,j(·, s), f1, c1, ξ

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(c1)(s – c1)l–1 – ψ (l)(ξ )(s – ξ )l–1)

)
ds (68)

and

Γ1,j(ψ) = S1(ψ , f2, ξ , c2) –
ψ ′(ξ ) – ψ ′(c2)

c2–ξ

∫ c2

ξ

S1
(
G∗,j(·, s), f2, ξ , c2

)
ds

–
1

c2–ξ

∫ c2

ξ

S1
(
G∗,j(·, s), f2, ξ , c2

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(ξ )(s–ξ )l–1 – ψ (l)(c2)(s–c2)l–1)

)
ds. (69)
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Theorem 5(a) enables Γ1,j(ψ) ≥ 0 for j = 1, 2, . . . , 5 (and ψ ′(0) = 0 for j = 3) provided that
ψ is n-convex. Furthermore, Remark 2 enables Ω1,j(ψ) ≤ 0 for j = 1, 2, . . . , 5 (and f ′(0) = 0
for j = 3) provided that –ψ is n-convex.

Theorem 18 Let ψ , f1, f2 be as defined above and ψ : [c, d] → R be (n + 1)-convex at a
point ξ for even n > 3. If Ω1,j(Pn) = Γ1,j(Pn) for all j = 1, 2, . . . , 5 and ψ ′(0) = 0 for j = 3, where
Pn(u) = un, then

Ω1,j(ψ) ≤ Γ1,j(ψ)

for j = 1, 2, . . . , 5.

Proof As ψ is (n + 1)-convex at ξ , so by Definition 1 there is ∃Kξ such that Ψ (u) = ψ(u) –
Kξ un

n! is n-concave on [c1, ξ ] and n-convex on [ξ , c2]. Therefore, for each j = 1, 2, . . . , 5, we
have

Ω1,j(ψ) –
Kξ

n!
Ω1,j(Pn) = Ω1,j(Ψ ) ≤ 0 ≤ Γ1,j(Ψ ) = Γ1,j(ψ) –

Kξ

n!
Γ1,j(Pn).

Since Ω1,j(Pn) = Γ1,j(Pn), therefore Ω1,j(ψ) ≤ Γ1,j(ψ), which completes the proof. �

Remark 7 We may proceed further by defining linear functionals with the inequalities
proved in (37), Theorem 8, and Theorem 11. Moreover, by proving monotonicity of new
functionals, we extend the inequalities from Theorem 5, Theorem 8, and Theorem 11.

5 Application to exponentially convex functions
We start this section by an important remark given as follows.

Remark 8 By the virtue of Theorem 5, for j = 1, 2, . . . , 5, we define the positive linear func-
tionals with respect to n-convex function ψ as follows:

�1,j(ψ) := S1(ψ , f , c, d) –
ψ ′(c) – ψ ′(d)

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)
ds

–
1

d – c

∫ d

c
S1

(
G∗,j(·, s), f , c, d

)

×
( n–1∑

l=2

l
(l – 1)!

(
ψ (l)(c)(s – c)l–1 – ψ (l)(d)(s – d)l–1)

)
ds

≥ 0. (70)

Next we construct the non-trivial examples of exponentially convex functions (see [8])
from positive linear functionals �1,j(ψ) for (j = 1, 2, . . . , 5).

For this, consider a family of real-valued functions on [0,∞) given as

ψs(u) =

⎧⎨
⎩

us

s(s–1)···(s–n+1) , s /∈ {0, 1, . . . , n – 1};
ut ln u

(–1)n–1–t t!(n–1–t)! , s = t ∈ {0, 1, . . . , n – 1}.
(71)
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It is interesting to note that this is a family of n-convex functions as

dn

dun ψs(u) = us–n ≥ 0.

Since s �→ us–n = e(s–n) ln u is an exponentially convex function, therefore the mapping
s �→ �1,j(ψs) is exponentially convex and, as a special case, it is also log-convex mapping.
The log-convexity of this mapping enables us to construct the known Lyapunov inequality
given as

(
�1,j(ψs)

)t–r ≤ (
�1,j(ψr)

)t–s(
�1,j(ψt)

)s–r (72)

for r, s, t ∈R such that r < s < t, where j = 1, 2, . . . , 5.

Remark 9 We have not given the proof of the above mentioned results in detail (see [8]).
Lyapunov inequality empowered us to refine lower (upper) bound for action of the func-
tional on the class of functions given in (71) because if an exponentially convex mapping
attains zero value at some point, it is zero everywhere (see [8]).

One can also consider some other classes of n-convex functions given in the paper [8]
and can get similar estimations. A similar technique can also be employed by considering
the results of (37), Theorem 8, and Theorem 11.
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