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Abstract
In this paper, we propose a regularized alternating direction method of multipliers
(RADMM) for a class of nonconvex optimization problems. The algorithm does not
require the regular term to be strictly convex. Firstly, we prove the global
convergence of the algorithm. Secondly, under the condition that the augmented
Lagrangian function satisfies the Kurdyka–Łojasiewicz property, the strong
convergence of the algorithm is established. Finally, some preliminary numerical
results are reported to support the efficiency of the proposed algorithm.
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1 Introduction
In this paper, we consider the following nonconvex optimization problem

min f (x) + g(Ax), (1)

where f : Rn → R ∪ {+∞} is a proper lower semicontinuous function, g : Rm → R is a
continuous differentiable function with ∇g Lipschitz continuous and modulus L > 0, while
A ∈ Rm×n is a given matrix. When the functions f and g are convex, the problem (1) can
be transformed into the split feasibility problem [1, 2]. Problem (1) is equivalent to the
following constraint optimization problem:

min f (x) + g(y),

s.t. Ax – y = 0. (2)

The augmented Lagrangian function of (2) is defined as follows:

Lβ (x, y,λ) = f (x) + g(y) – 〈λ, Ax – y〉 +
β

2
‖Ax – y‖2, (3)

where λ ∈ Rm is the Lagrangian parameter and β > 0 is the penalty parameter.
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The alternating direction method of multipliers (ADMM) was first proposed by Gabay
and Mercier in 1970s, which is an effective algorithm for solving the two-block convex
problems [3]. The iterative scheme of the classic ADMM for problem (2) is as follows:

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 ∈ arg min{Lβ (x, yk ,λk)},
yk+1 ∈ arg min{Lβ (xk+1, y,λk)},
λk+1 = λk – β(Axk+1 – yk+1).

(4)

If f , g are convex functions, then the convergence of ADMM is well-understood and there
are some recent convergence rate analysis results [4–8]. However, when the objective func-
tion is nonconvex, ADMM does not necessarily converge. Recently, some scholars have
proposed various improved ADMM for nonconvex problems, and analyzed their conver-
gence [9–15]. In particular, Guo et al. [16, 17] analyzed the strong convergence of classical
ADMM for the nonconvex optimization problem of (2). Wang et al. [12, 14] studied the
convergence of the Bregman ADMM for the nonconvex optimization problems, where
they need the augmented Lagrangian function with respect to x or the Bregman distance
in the x-subproblem to be strongly convex.

The first formula of (4) has the following structure:

min

{

f (x) + g
(
yk) –

〈
λk , Ax – yk 〉 +

β

2
∥
∥Ax – yk∥∥2

}

. (5)

When A is not the identity matrix, the above problem may not be easy. Regularization is
a popular technique to simplify the optimization problems [12, 14, 18]. For example, the
regular term 1

2‖x – xk‖2
G could be added to the above problem (5), where G is a symmetric

semidefinite matrix. Specifically, when G = αI – βA
A, problem (5) is converted into the
following form:

min

{

f (x) +
α

2
∥
∥x – bk∥∥2

}

, (6)

with a certain known bk ∈ Rn. Since the first formula of (4) has the form of (6) with α = 1,
this paper considers the following regularized ADMM (in short, RADMM) for problem
(2):

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 ∈ arg min{Lβ (x, yk ,λk) + 1
2‖x – xk‖2

G},
yk+1 ∈ arg min{Lβ (xk+1, y,λk)},
λk+1 = λk – β(Axk+1 – yk+1),

(7)

where G is a symmetric semidefinite matrix, ‖x‖2
G := x
Gx.

The framework of this paper is as follows. In Sect. 2, we present some preliminary ma-
terials that will be used in this paper. In Sect. 3, we prove the convergence of algorithm
(7). In Sect. 4, we report some numerical results. In Sect. 5, we draw some conclusions.

2 Preliminaries
For a vector x = (x1, x2, . . . , xn)
 ∈ Rn, we let ‖x‖ = (

∑n
i=1 x2

i ) 1
2 , ‖x‖1 =

∑n
i=1 |xi|, and ‖x‖ 1

2
=

(
∑n

i=1 |xi| 1
2 )2. Also G � 0 (� 0) denotes that G is a positive semidefinite (positive definite)
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matrix. For a subset S ⊆ Rn and a point x ∈ Rn, if S is nonempty, let d(x, S) = infy∈S ‖y – x‖.
When S = ∅, we set d(x, S) = +∞ for all x. A function f : Rn → (–∞, +∞] is said to be
proper, if there exists at least one x ∈ Rn such that f (x) < +∞. The effective domain of f is
defined through dom f = {x ∈ Rn|f (x) < +∞}.

Definition 2.1 ([19]) The function f : Rn → R ∪ {+∞} is lower semicontinuous at x̄, if
f (x̄) ≤ lim infx→x̄ f (x). If f is lower semicontinuous at every point x ∈ Rn, then f is called a
lower semicontinuous function.

Definition 2.2 ([19]) Let f : Rn → R ∪{+∞} be a proper lower semicontinuous function.
(i) The Fréchet subdifferential, or regular subdifferential, of f at x ∈ dom f , denoted by

∂̂f (x), is the set of all elements u ∈ Rn which satisfy

∂̂f (x) =
{

u ∈ Rn
∣
∣
∣ lim

y�=x
inf
y→x

f (y) – f (x) – 〈u, y – x〉
‖y – x‖ ≥ 0

}

,

when x /∈ dom f , let ∂̂f (x) = ∅;
(ii) The limiting-subdifferential, or simply the subdifferential, of f at x ∈ dom f ,

denoted by ∂f (x), is defined as

∂f (x) =
{

u ∈ Rn | ∃xk → x, f
(
xk) → f (x), uk ∈ ∂̂f

(
xk) → u, k → ∞}

.

Proposition 2.1 ([20]) Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous function,
then

(i) ∂̂f (x) ⊆ ∂f (x) for each x ∈ Rn, where the first set is closed and convex while the
second one is only closed;

(ii) Let uk ∈ ∂f (xk) and limk→∞(xk , uk) = (x, u), then u ∈ ∂f (x);
(iii) A necessary condition for x ∈ Rn to be a minimizer of f is

0 ∈ ∂f (x); (8)

(iv) If g : Rn → R is continuously differentiable, then ∂(f + g)(x) = ∂f (x) + ∇g(x) for any
x ∈ dom f .

A point that satisfies (8) is called a critical point or a stationary point. The set of critical
points of f is denoted by crit f .

Lemma 2.1 ([21]) Suppose that H(x, y) = f (x) + g(y), where f : Rn → R ∪ {+∞} and g :
Rm → R are proper lower semicontinuous functions, then

∂H(x, y) = ∂xH(x, y) × ∂yH(x, y) = ∂f (x) × ∂g(y),

for all (x, y) ∈ dom H = dom f × dom g.

The following lemma is very important for the convergence analysis.
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Lemma 2.2 ([22]) Let function h : Rn → R be continuously differentiable and its gradient
∇h be Lipschitz continuous with modulus L > 0, then

∣
∣h(y) – h(x) –

〈∇h(x), y – x
〉∣
∣ ≤ L

2
‖y – x‖2, for all x, y ∈ Rn.

Definition 2.3 We say that (x∗, y∗,λ∗) is a critical point of the augmented Lagrangian
function Lβ (·) of (2) if it satisfies

⎧
⎪⎪⎨

⎪⎪⎩

A
λ∗ ∈ ∂f (x∗),

∇g(y∗) = λ∗,

Ax∗ – y∗ = 0.

(9)

Obviously, (2) is equivalent to 0 ∈ ∂Lβ (x∗, y∗,λ∗).

Definition 2.4 ([21] (Kurdyka–Łojasiewicz property)) Let f : Rn → R ∪{+∞} be a proper
lower semicontinuous function. If there exist η ∈ (0, +∞], a neighborhood U of x̂, and a
concave function ϕ : [0,η) → R+ satisfying the following conditions:

(i) ϕ(0) = 0;
(ii) ϕ is continuously differentiable on (0,η) and continuous at 0;

(iii) ϕ′(s) > 0 for all s ∈ (0,η);
(iv) ϕ′(f (x) – f (x̂))d(0, ∂f (x)) ≥ 1, for all x ∈ U ∩ [f (x̂) < f (x) < f (x̂) + η],

then f is said to have the Kurdyka–Łojasiewicz (KL) property at x̂.

Lemma 2.3 ([23] (Uniform KL property)) Let Φη be the set of concave functions which
satisfy (i), (ii) and (iii) in Definition 2.4. Suppose that f : Rn → R ∪ {+∞} is a proper lower
semicontinuous function and Ω is a compact set. If f (x) ≡ a for all x ∈ Ω and f satisfies the
KL property at each point of Ω , then there exist ε > 0, η > 0, and ϕ ∈ Φη such that

ϕ′(f (x) – a
)
d
(
0, ∂f (x)

) ≥ 1,

for all x ∈ {x ∈ Rn|d(x,Ω) < ε} ∩ [x : a < f (x) < a + η].

3 Convergence analysis
In this section, we prove the convergence of algorithm (7). Throughout this section, we
assume that the sequence {zk := (xk , yk ,λk)} is generated by RADMM (7). Firstly, the global
convergence of the algorithm is established by the monotonically nonincreasing sequence
{Lβ (zk)}. Secondly, the strong convergence of the algorithm is proved under the condition
that Lβ (·) satisfies the KL property. From optimality conditions of each subproblem in (7),
we have

⎧
⎪⎪⎨

⎪⎪⎩

0 ∈ ∂f (xk+1) – A
λk + βA
(Axk+1 – yk) + G(xk+1 – xk),

0 = ∇g(yk+1) + λk – β(Axk+1 – yk+1),

λk+1 = λk – β(Axk+1 – yk+1).

(10)
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That is,

⎧
⎪⎪⎨

⎪⎪⎩

A
λk+1 – βA
(yk+1 – yk) – G(xk+1 – xk) ∈ ∂f (xk+1),

–λk+1 = ∇g(yk+1),

λk+1 = λk – β(Axk+1 – yk+1).

(11)

We need the following basic assumptions on problem (2).

Assumption 3.1
(i) f : Rn → R ∪ {+∞} is proper lower semicontinuous;

(ii) g : Rm → R is continuously differentiable, with ‖∇g(u) – ∇g(v)‖ ≤ L‖u – v‖,
∀u, v ∈ Rn;

(iii) β > 2L and δ := β–L
2 – L2

β
> 0;

(iv) G � 0 and G + A
A � 0.

The following lemma implies that sequence {Lβ (zk)} is monotonically nonincreasing.

Lemma 3.1

Lβ

(
zk+1) ≤Lβ

(
zk) – δ

∥
∥yk – yk+1∥∥2 –

1
2
∥
∥xk+1 – xk∥∥2

G. (12)

Proof From the definition of the augmented Lagrangian function Lβ (·) and the third for-
mula of (11), we have

Lβ

(
xk+1, yk+1,λk+1) = Lβ

(
xk+1, yk+1,λk) +

〈
λk – λk+1, Axk+1 – yk+1〉

= Lβ

(
xk+1, yk+1,λk) +

1
β

∥
∥λk – λk+1∥∥2 (13)

and

Lβ

(
xk+1, yk+1,λk) – Lβ

(
xk+1, yk ,λk)

= g
(
yk+1) – g

(
yk) –

〈
λk , yk – yk+1〉 –

β

2
∥
∥Axk+1 – yk∥∥2

+
β

2
∥
∥Axk+1 – yk+1∥∥2. (14)

From Assumption 3.1(ii), Lemma 2.2 and (11), we have

g
(
yk+1) – g

(
yk) ≤ 〈

–λk+1, yk+1 – yk 〉 +
L
2
∥
∥yk – yk+1∥∥2. (15)

Inserting (15) into (14) yields

Lβ

(
xk+1, yk+1,λk) – Lβ

(
xk+1, yk ,λk)

≤ 〈
λk – λk+1, yk+1 – yk 〉 –

β

2
∥
∥Axk+1 – yk∥∥2

+
β

2
∥
∥Axk+1 – yk+1∥∥2 +

L
2
∥
∥yk – yk+1∥∥2. (16)
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Since λk+1 = λk – β(Axk+1 – yk+1), we have

Axk+1 – yk+1 =
1
β

(
λk – λk+1) (17)

and

Axk+1 – yk =
1
β

(
λk – λk+1) –

(
yk – yk+1).

It follows that

〈
λk – λk+1, yk+1 – yk 〉 –

β

2
∥
∥Axk+1 – yk∥∥2

= –
β

2
∥
∥yk+1 – yk∥∥2 –

1
2β

∥
∥λk – λk+1∥∥2.

(18)

Combining (16), (17) and (18), we have

Lβ

(
xk+1, yk+1,λk) – Lβ

(
xk+1, yk ,λk) ≤ –

β – L
2

∥
∥yk+1 – yk∥∥2. (19)

From –λk+1 = ∇g(yk+1) and Assumption 3.1(ii), we have

1
β

∥
∥λk – λk+1∥∥2 ≤ L2

β

∥
∥yk+1 – yk∥∥2. (20)

Adding (13), (19) and (20), one has

Lβ

(
xk+1, yk+1,λk+1) ≤Lβ

(
xk+1, yk ,λk) –

(
β – L

2
–

L2

β

)
∥
∥yk+1 – yk∥∥2.

Since xx+1 is the optimal solution of the first subproblem of (7), one has

Lβ

(
xk+1, yk ,λk) ≤Lβ

(
xk , yk ,λk) –

1
2
∥
∥xk+1 – xk∥∥2

G.

Thus

Lβ

(
xk+1, yk+1,λk+1)

≤Lβ

(
xk , yk ,λk) –

(
β – L

2
–

L2

β

)
∥
∥yk – yk+1∥∥2 –

1
2
∥
∥xk+1 – xk∥∥2

G. �

Lemma 3.2 If the sequence {zk} is bounded, then

+∞∑

k=0

∥
∥zk – zk+1∥∥2 < +∞.

Proof Since {zk} is bounded, {zk} has at least one cluster point. Let z∗ = (x∗, y∗,λ∗) be a
cluster point of {zk} and let a subsequence {zkj} converge to z∗. Since f is lower semi-
continuous and g is continuously differentiable, then Lβ (·) is lower semicontinuous, and
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hence

Lβ

(
z∗) ≤ lim inf

kj→+∞
Lβ

(
zkj

)
. (21)

Thus {Lβ (zkj )} is bounded from below. Furthermore, by Lemma 3.1, sequence {Lβ (zk)} is
nonincreasing, and so {Lβ (zk)} is convergent. Moreover, Lβ (z∗) ≤Lβ (zk), for all k.

On the other hand, summing up of (12) for k = 0, 1, 2, . . . , p, it follows that

1
2

p∑

k=0

∥
∥xk+1 – xk∥∥2

G + δ

p∑

k=0

∥
∥yk+1 – yk∥∥2 ≤Lβ

(
z0) – Lβ

(
zp+1)

≤Lβ

(
z0) – Lβ

(
z∗)

< +∞.

Since δ > 0, G � 0, and p is chosen arbitrarily,

+∞∑

k=0

∥
∥yk+1 – yk∥∥2 < +∞,

+∞∑

k=0

∥
∥xk+1 – xk∥∥2

G < +∞. (22)

From (20) we have

+∞∑

k=0

∥
∥λk+1 – λk∥∥2 < +∞.

Next we prove
∑+∞

k=0 ‖xk+1 – xk‖2 < +∞. From λk+1 = λk – β(Axk+1 – yk+1), we have

λk+1 – λk = λk – λk–1 + β
(
Axk – Axk+1) + β

(
yk+1 – yk).

Then
∥
∥β

(
Axk – Axk+1)∥∥2

=
∥
∥
(
λk+1 – λk) –

(
λk – λk–1) – β

(
yk+1 – yk)∥∥2

≤ 3
(∥
∥λk+1 – λk∥∥2 +

∥
∥λk – λk–1∥∥2 + β2∥∥yk – yk+1∥∥2). (23)

Therefore, we have
∑+∞

k=0 ‖xk+1 – xk‖2
A
A < +∞. Taking into account (22), we have

+∞∑

k=0

∥
∥xk+1 – xk∥∥2

(A
A+G) < +∞.

Since A
A + G � 0 (see Assumption 3.1(iv)), one has
∑+∞

k=0 ‖xk+1 – xk‖2 < +∞.
Therefore,

∑+∞
k=0 ‖zk+1 – zk‖2 < +∞. �

Lemma 3.3 Define

⎧
⎪⎪⎨

⎪⎪⎩

εk+1
x = βA
(yk – yk+1) + A
(λk – λk+1) – G(xk+1 – xk),

εk+1
y = λk+1 – λk ,

εk+1
λ = 1

β
(λk+1 – λk).
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Then (εk+1
x , εk+1

y , εk+1
λ )
 ∈ ∂Lβ (zk+1). Furthermore, if A
A � 0, then there exists τ > 0 such

that

d
(
0, ∂Lβ

(
zk+1)) ≤ τ

(∥
∥yk+1 – yk∥∥ +

∥
∥yk – yk–1∥∥

)
, k ≥ 1.

Proof By the definition of Lβ (·), one has

⎧
⎪⎪⎨

⎪⎪⎩

∂xLβ (zk+1) = ∂f (xk+1) – A
λk+1 + βA
(Axk+1 – yk+1),

∂yLβ (zk+1) = ∇g(yk+1) + λk+1 – β(Axk+1 – yk+1),

∂λLβ (zk+1) = –(Axk+1 – yk+1).

(24)

Combining (24) and (11), we get

⎧
⎪⎪⎨

⎪⎪⎩

βA
(yk – yk+1) + A
(λk – λk+1) – G(xk+1 – xk) ∈ ∂xLβ (zk+1),

λk+1 – λk ∈ ∂yLβ (zk+1),
1
β

(λk+1 – λk) ∈ ∂λLβ (zk+1).

(25)

From Lemma 2.1, one has (εk+1
x , εk+1

y , εk+1
λ )
 ∈ ∂Lβ (zk+1).

On the other hand, it is easy to see that there exists τ1 > 0 such that

∥
∥
(
εk+1

x , εk+1
y , εk+1

λ

)
∥
∥ ≤ τ1

(∥
∥yk+1 – yk∥∥ +

∥
∥λk+1 – λk∥∥ +

∥
∥xk+1 – xk∥∥

)
. (26)

Due to A
A � 0 and (23), there exists τ2 > 0 such that

∥
∥xk+1 – xk∥∥ ≤ τ2

(∥
∥yk+1 – yk∥∥ +

∥
∥λk+1 – λk∥∥ +

∥
∥λk – λk–1∥∥

)
, k ≥ 1. (27)

Since (εk+1
x , εk+1

y , εk+1
λ )
 ∈ ∂Lβ (zk+1), from (26), (20) and (27), there exists τ > 0 such that

d
(
0, ∂Lβ

(
zk+1)) ≤ ∥

∥
(
εk+1

x , εk+1
y , εk+1

λ

)
∥
∥ ≤ τ

(∥
∥yk+1 – yk∥∥ +

∥
∥yk – yk–1∥∥

)
,

k ≥ 1. �

Theorem 3.1 (Global convergence) Let Ω denote the cluster point set of the sequence {zk}.
If {zk} is bounded, then

(i) Ω is a nonempty compact set, and d(zk ,Ω) → 0, as k → +∞,
(ii) Ω ⊆ critLβ ,

(iii) Lβ (·) is constant on Ω , and limk→+∞ Lβ (zk) = Lβ (z∗) for all z∗ ∈ Ω .

Proof (i) From the definitions of Ω and d(zk ,Ω), the claim follows trivially.
(ii) Let z∗ = (x∗, y∗,λ∗) ∈ Ω , then there is a subsequence {zkj} of {zk}, such that

limkj→+∞ zkj = z∗. Since xk+1 is a minimizer of function Lβ (x, yk ,λk) + 1
2‖x – xk‖2

G for the
variable x, one has

Lβ

(
xk+1, yk ,λk) +

1
2
∥
∥xk+1 – xk∥∥2

G ≤Lβ

(
x∗, yk ,λk) +

1
2
∥
∥x∗ – xk∥∥2

G,

that is,

Lβ

(
xk+1, yk ,λk) ≤Lβ

(
x∗, yk ,λk) +

1
2
∥
∥x∗ – xk∥∥2

G –
1
2
∥
∥xk+1 – xk∥∥2

G. (28)
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Lemma 3.1 implies that limk→∞ ‖xk+1 – xk‖2
G = 0. Since Lβ (·) is continuous with respect

to y and λ, we have

lim sup
kj→+∞

Lβ

(
zkj+1) = lim sup

kj→+∞
Lβ

(
xkj+1, ykj ,λkj

)

≤ lim sup
kj→+∞

Lβ

(
x∗, yk ,λk)

= Lβ

(
z∗). (29)

On the other hand, since L(·) is lower semicontinuous,

lim inf
kj→+∞

Lβ

(
zkj+1) ≥Lβ

(
z∗). (30)

Combining (29) and (30), we get limkj→+∞ Lβ (zkj ) = Lβ (z∗). Then limkj→+∞ f (xkj ) = f (x∗).
By taking the limit kj → +∞ in (11), we have

⎧
⎪⎪⎨

⎪⎪⎩

A
λ∗ ∈ ∂f (x∗),

∇g(y∗) = –λ∗,

Ax∗ – y∗ = 0.

that is, z∗ ∈ critLβ .
(iii) Let z∗ ∈ Ω . There exists {zkj} such that limkj→+∞ zkj = z∗. Combining

limkj→+∞ Lβ (zkj ) = Lβ (z∗) and the fact that {Lβ (zk)} is monotonically nonincreasing, for
all z∗ ∈ Ω , we have

lim
k→+∞

Lβ

(
zk) = Lβ

(
z∗),

and so Lβ (·) is constant on Ω . �

Theorem 3.2 (Strong convergence) If {zk} is bounded, A
A � 0, and Lβ (z) satisfies the
KL property at each point of Ω , then

(i)
∑+∞

k=0 ‖zk+1 – zk‖ < +∞,
(ii) The sequence {zk} converges to a stationary point of Lβ (·).

Proof (i) Let z∗ ∈ Ω . From Theorem 3.1, we have limk→+∞ Lβ (zk) = Lβ (z∗). We consider
two cases:

(a) There exists an integer k0, such that Lβ (zk0 ) = Lβ (z∗). From Lemma 3.1, we have

1
2
∥
∥xk+1 – xk∥∥2

G + δ
∥
∥yk+1 – yk∥∥2

≤Lβ

(
zk) – Lβ

(
zk+1) ≤Lβ

(
zk0

)
– Lβ

(
z∗) = 0, k ≥ k0.

Then, one has ‖xk+1 – xk‖2
G = 0, yk+1 = yk , k ≥ k0. From (20), one has λk+1 = λk , k > k0.

Furthermore, from (23) and A
A � 0, we have xk+1 = xk , k > k0 + 1. Thus zk+1 = zk , k >
k0 + 1. Therefore, the conclusions hold.
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(b) Suppose that Lβ (zk) > Lβ (z∗), k ≥ 1. From Theorem 3.1(i), it follows that for ε > 0,
there exists k1 > 0, such that d(zk ,Ω) < ε, for all k > k1. Since limk→+∞ Lβ (zk) = Lβ (z∗), for
given η > 0, there exists k2 > 0, such that Lβ (zk) < Lβ (z∗) + η, for all k > k2. Consequently,
one has

d
(
zk ,Ω

)
< ε,Lβ

(
z∗) < Lβ

(
zk) < Lβ

(
z∗) + η, for all k > k̃ = max{k1, k2}.

It follows from the KL property, that

ϕ′(Lβ

(
zk) – Lβ

(
z∗))d

(
0, ∂Lβ

(
zk)) ≥ 1, for all k > k̃. (31)

By the concavity of ϕ and since Lβ (zk) –Lβ (zk+1) = (Lβ (zk) –Lβ (z∗)) – (Lβ (zk+1) –Lβ (z∗)),
we have

ϕ
(
Lβ

(
zk) – Lβ

(
z∗)) – ϕ

(
Lβ

(
zk+1) – Lβ

(
z∗))

≥ ϕ′(Lβ

(
zk) – Lβ

(
z∗))(Lβ

(
zk) – Lβ

(
zk+1)).

(32)

Let �p,q = ϕ(Lβ (zp) –Lβ(z∗)) –ϕ(Lβ(zq) –Lβ (z∗)). Combining ϕ′(Lβ (zk) –Lβ(z∗)) > 0, (31)
and (32), we have

Lβ

(
zk) – Lβ

(
zk+1) ≤ �k,k+1

ϕ′(Lβ (zk) – Lβ (z∗))
≤ d

(
0, ∂Lβ

(
zk)) �k,k+1 .

From Lemma 3.3, we obtain

Lβ

(
zk) – Lβ

(
zk+1) ≤ τ

(∥
∥yk – yk–1∥∥ +

∥
∥yk–1 – yk–2∥∥

) �k,k+1 .

From Lemma 3.1 and the above inequality, we have

1
2
∥
∥xk+1 – xk∥∥2

G + δ
∥
∥yk+1 – yk∥∥2

≤ τ
(∥
∥yk – yk–1∥∥ +

∥
∥yk–1 – yk–2∥∥

)�k,k+1, for all k > k̃.

Thus

∥
∥yk+1 – yk∥∥2 ≤ τ

δ

(∥
∥yk – yk–1∥∥ +

∥
∥yk–1 – yk–2∥∥

)�k,k+1, for all k > k̃.

Furthermore,

3
∥
∥yk+1 – yk∥∥

≤ 2
(∥
∥yk – yk–1∥∥ +

∥
∥yk–1 – yk–2∥∥

) 1
2

(
3
2

√
τ

δ
� 1

2
k,k+1

)

, for all k > k̃.

Using the fact that 2ab ≤ a2 + b2, we obtain

3
∥
∥yk+1 – yk∥∥

≤ (∥
∥yk – yk–1∥∥ +

∥
∥yk–1 – yk–2∥∥

)
+

9τ

4δ
�k,k+1, for all k > k̃. (33)
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Summing up the above inequality for k = k̃ + 1, . . . , s, yields

3
s∑

k=k̃+1

∥
∥yk+1 – yk∥∥ ≤

s∑

k=k̃+1

(∥
∥yk – yk–1∥∥ +

∥
∥yk–1 – yk–2∥∥

)
+

9τ

4δ
�k̃+1,s+1.

Thus

s∑

k=k̃+1

∥
∥yk+1 – yk∥∥ ≤ (

2
∥
∥yk̃+1 – yk̃∥∥ +

∥
∥yk̃ – yk̃–1∥∥

)
+

9τ

4δ
�k̃+1,s+1.

Notice that ϕ(Lβ(zs+1) – Lβ (z∗)) > 0, so taking the limit s → +∞, we have

+∞∑

k=k̃+1

∥
∥yk+1 – yk∥∥

≤ (
2
∥
∥yk̃+1 – yk̃∥∥ +

∥
∥yk̃ – yk̃–1∥∥

)
+

9τ

4δ
ϕ
(
Lβ

(
zk̃+1) – L

(
z∗)). (34)

Thus

+∞∑

k=k̃+1

∥
∥yk+1 – yk∥∥ < +∞.

It follows from (20) that

+∞∑

k=k̃+1

∥
∥λk+1 – λk∥∥ < +∞.

From A
A � 0, (23) and the above two formulas, we obtain

+∞∑

k=k̃+1

∥
∥xk+1 – xk∥∥ < +∞.

Since

∥
∥zk+1 – zk∥∥ =

(∥
∥xk+1 – xk∥∥2 +

∥
∥yk+1 – yk∥∥2 +

∥
∥λk+1 – λk∥∥2) 1

2

≤ ∥
∥xk+1 – xk∥∥ +

∥
∥yk+1 – yk∥∥ +

∥
∥λk+1 – λk∥∥,

we know

m∑

k=k̃+1

∥
∥zk+1 – zk∥∥ < +∞.

(ii) From (i), we known that {zk} is a Cauchy sequence and so is convergent. Theo-
rem 3.2(ii) follows immediately from Theorem 3.1(ii). �

In the above results, we have assumed the boundedness of the sequence {zk}. Next, we
present two sufficient conditions ensuring this requirement.
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Lemma 3.4 Suppose that A
A � 0 and

Γ := inf
y∈Rm

{

g(y) –
1

2L
∥
∥∇g(y)

∥
∥2

}

> –∞.

If one of the following statements is true:
(i) f is coercive, i.e., lim‖x‖→+∞ f (x) = +∞,

(ii) f is bounded from below and g is coercive, i.e., infx∈Rn f (x) > –∞ and
lim‖x‖→+∞ g(x) = +∞,

then {zk} is bounded.

Proof (i) Suppose that f is coercive. From Lemma 3.1, we know that Lβ (zk) ≤ Lβ (z1) <
+∞, for all k ≥ 1. Combining with ∇g(xk) = –λk , one has

Lβ

(
z1) ≥ f

(
xk) + g

(
yk) –

〈
λk , Axk – yk 〉 +

β

2
∥
∥Axk – yk∥∥2

= f
(
xk) + g

(
yk) –

1
2β

∥
∥λk∥∥2 +

β

2

∥
∥
∥
∥Axk – yk –

1
β

λk
∥
∥
∥
∥

2

= f
(
xk) +

(

g
(
yk) –

1
2L

∥
∥∇g

(
yk)∥∥2

)

+
(

1
2L

–
1

2β

)
∥
∥λk∥∥2

+
β

2

∥
∥
∥
∥Axk – yk –

1
β

λk
∥
∥
∥
∥

2

≥ f
(
xk) + Γ +

(
1

2L
–

1
2β

)
∥
∥λk∥∥2 +

β

2

∥
∥
∥
∥Axk – yk –

1
β

λk
∥
∥
∥
∥

2

. (35)

Since β > 2L and f is coercive, it is easy to see that {xk}, {λk}, and { β

2 ‖Axk – yk – 1
β
λk‖2} are

bounded. Furthermore, {yk} is bounded. Thus {zk} is bounded.
(ii) Similar as with (i), we have

Lβ

(
z1) ≥ f

(
xk) + g

(
yk) –

1
2β

∥
∥λk∥∥2 +

β

2

∥
∥
∥
∥Axk – yk –

1
β

λk
∥
∥
∥
∥

2

≥ f
(
xk) +

1
2

g
(
yk) +

1
2
Γ +

1
4L

∥
∥∇g

(
yk)∥∥2 –

1
2β

∥
∥λk∥∥2

+
β

2

∥
∥
∥
∥Axk – yk –

1
β

λk
∥
∥
∥
∥

2

≥ f
(
xk) +

1
2

g
(
yk) +

1
2
Γ +

(
1

4L
–

1
2β

)
∥
∥λk∥∥2 +

β

2

∥
∥
∥
∥Axk – yk –

1
β

λk
∥
∥
∥
∥

2

.

Notice that β > 2L, function f is bounded from below, g is coercive and Assumption 3.1(ii)
holds, thus {yk}, {λk}, and { β

2 ‖Axk – yk – 1
β
λk‖2} are bounded. Since A
A � 0, {xk} is

bounded. Thus {zk} is bounded. �
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4 Numerical examples
In compressed sensing, one needs to find the sparsest solution of a linear system, which
can be modeled as

min ‖x‖0,

s.t. Dx = b, (36)

where D ∈ Rm×n is the measuring matrix, b ∈ Rm is observed data, ‖x‖0 denotes the num-
ber of nonzero elements of x, which is called the l0 norm.

Problem (36) is NP-hard. In practical applications, one may relax the l0 norm to the
l1 norm or l 1

2
norm, and consider their regularized versions, which lead to the following

convex problem (37) and nonconvex problem (38):

min γ ‖x‖1 + ‖y‖2,

s.t. Dx – y = b, (37)

and

min γ ‖x‖ 1
2
1
2

+ ‖y‖2,

s.t. Dx – y = b. (38)

In this section, we will apply RADMM (7) to solve the above two problems. For sim-
plicity, we set b = 0 throughout this section. Applying RADMM (7) to problem (37) with
G = αI – βD
D yields

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 ∈ S(xk – β

α
D
Dxk + 1

α
D
(βyk + λk)); γ

2α
),

yk+1 = 1
2+β

(βDxk+1 – λk),

λk+1 = λk – β(Dxk+1 – yk+1),

(39)

where S(·;μ) = {sμ(x1), sμ(x2), . . . , sμ(xn)}
 is the soft shrinkage operator [24] defined as
follows:

sμ(xi) =

⎧
⎪⎪⎨

⎪⎪⎩

xi + μ

2 , if xi ≤ – μ

2 ,

0, if |x| < μ

2 ,

xi – μ

2 , if xi ≥ μ

2 .

Applying RADMM (7) to problem (38) with G = αI – βD
D yields

⎧
⎪⎪⎨

⎪⎪⎩

xk+1 ∈ H(xk – β

α
D
Dxk + 1

α
D
(βyk + λk)); γ

α
),

yk+1 = 1
2+β

(βDxk+1 – λk),

λk+1 = λk – β(Dxk+1 – yk+1),

(40)
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Figure 1 Comparison the performance of HRADMM and SRADMM

where H(·;μ) = {hμ(x1), hμ(x2), . . . , hμ(xn)}
 is the half-shrinkage operator [25] defined as
follows:

hμ(xi) =

⎧
⎨

⎩

2xi
3 (1 + cos 2

3 (π – ϕ(|xi|))), |xi| >
3√54

4 μ
2
3 ,

0, otherwise,

with ϕ(x) = arccos( μ

8 ( xi
3 )– 3

2 ).
For simplicity, we denote algorithms (39) and (40) by SRADMM and HRADMM, respec-

tively. The selection of relevant parameters in numerical experiments is given below. We
now conduct an experiment to verify convergence of the nonconvex RADMM, and reveal
its advantages in sparsity-inducing and efficiency through comparing the performance of
HRADMM and SRADMM. In the experiment, m = 511, n = 512, the matrix D ∈ R511×512

is obtained by unitizing the matrix with randomly generated entries obeying the normal
distribution N (0, 1), the noise vector ε ∼N (0, 1), the recovery vector r = Dx0 + ε, and the
regularization parameters are γ = 0.0015, β = 0.8, α = 2.5.

The experimental results are shown in Fig. 1, where the restoration accuracy is measured
by means of the mean squared error:

MSE
(∥
∥x∗ – xk∥∥

)
=

1
n

∥
∥x∗ – xk∥∥,

MSE
(∥
∥y∗ – yk∥∥

)
=

1
n

∥
∥y∗ – yk∥∥,

where (x∗, y∗) = (0, 0) is the optimal solution for the problems (37) and (38), respectively.
Programming is performed on Matlab R2014a, a computer running the program is con-

figured as follows: Windows 7 system, Inter(R) Core(TM) i7-4790 CPU 3.60 GHz, 4 GB
memory. Numerical results show that algorithm (7) is efficient and stable. As shown in
Fig. 1, both sequences xk and yk were fairly near the true solution. i.e., the convergence is
justified. It is readily seen that HRADMM converges faster than SRADMM.

5 Conclusion and outlook
In this paper, a regularized alternating direction method of multipliers is proposed for a
class of nonconvex problems. Firstly, the global convergence of the algorithm is analyzed.
Secondly, under the condition that the augmented Lagrangian function Lβ (·) satisfies the
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Kurdyka–Łojasiewicz property, the strong convergence of the algorithm is analyzed. Fi-
nally, the effectiveness of the algorithm is verified by numerical experiments.
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