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Abstract
Some properties of a new class of binary symmetric meanMp(a,b) which depends on
two positive numbers a and b, as well as a positive parameter p, are investigated. The
logarithmic mean and arithmetic mean are two members of this class. It is shown
that, for all values of the parameter p, the set of p-dependent meansMp(a,b) is
bounded above by the meanM∞(a,b).
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1 Introduction
The arithmetic-geometric mean which was first investigated by Lagrange and Gauss [1]
has found many applications due to its rapid convergence properties. It has played an
important role in the calculation of the number π , as well as various elliptic integrals.

Let a and b denote real numbers such that a > b > 0. A sequence of arithmetic means
and a sequence of geometric means can be constructed by letting a0 = a and b0 = b and
defining the recursions [2]

an+1 =
1
2

(an + bn), bn+1 =
√

anbn, n = 0, 1, 2, . . . . (1)

The sequence (bn) is increasing and bounded above by a while the sequence (an) is de-
creasing and bounded below by b since inductively

b < · · · < bn < an < · · · < a. (2)

Therefore, each sequence converges by the monotone convergence theorem. Since it is
the case that [3]

0 ≤ an+1 – bn+1 ≤ 1
2

· (an – bn)2

(√an +
√

bn)2
,

we observe that an and bn converge to a common limit determined uniquely by a0 and
b0. The arithmetic-geometric mean AG(a, b) is defined as the common limit of these two
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sequences

AG(a, b) = lim
n→∞ an = lim

n→∞ bn.

Gauss was able to prove that AG(a, b) can be calculated by means of an integral

1
AG(a, b)

=
2
π

∫ ∞

0

dx
√

(x2 + a2)(x2 + b2)
. (3)

Another type of mean which also has many applications is the logarithmic mean L(a, b)
defined to be

1
L(a, b)

=
log(a) – log(b)

a – b
=

∫ ∞

0

dx
(x + a)(x + b)

. (4)

The similarity of expressions (3) and (4) motivates the introduction of a parametrized set
of means which depends on a positive parameter and incorporates these two means. Let
a, b > 0 be given real numbers and p ∈ (0,∞) then define Mp(a, b) by the integral [4]

1
Mp(a, b)

= cp

∫ ∞

0

dx
[(xp + ap)(xp + bp))]1/p , 0 < p < ∞. (5)

The arithmetic-geometric mean is obtained from (5) by taking p = 2 and the logarithmic
mean is the case p = 1. The constant cp depends only on the single parameter p and is
defined to satisfy the condition Mp(a, a) = a. Expressed as an integral it takes the form

1
cp

= a
∫ ∞

0

dx
(xp + ap)2/p =

∫ ∞

0

dt
(tp + 1)2/p . (6)

It is the intention here to study some of the properties of 1/cp and Mp(a, b) [5, 6]. It will
be shown that 1/cp increases monotonically for all p ∈ (0,∞). Some bounds for the means
Mp(a, b) are obtained. Two additional means M0(a, b) and M∞(a, b) are defined by

M0(a, b) = lim
p→0+

Mp(a, b), M∞(a, b) = lim
p→∞ Mp(a, b). (7)

These two limits will be calculated in closed form. It is shown that Mp(a, b) ≤ M∞(a, b)
for all p ∈ (0,∞).

In general, a binary symmetric mean M(a, b) of positive numbers a and b is a func-
tion that satisfies the following properties: (i) min(a, b) ≤ M(a, b) ≤ max(a, b); (ii) M(a, b) =
M(b, a); (iii) M(λa,λb) = λM(a, b) for all λ > 0; and (iv) M(a, b) is nondecreasing in a and
b. It is the case that Mp(a, b) satisfies (ii)–(iv), and by the end it will be seen all (i)–(iv) hold
[7].

To start let us establish some general bounds for Mp(a, b) in an elementary way.

Theorem 1 Let a, b > 0, then

min(a, b) ≤ √
ab ≤ Mp(a, b) ≤

(
ap + bp

2

)1/p

≤ max(a, b). (8)
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Proof The first inequality on the left follows from the fact that min(a, b) ≤ √
min(a, b)2 ≤√

ab. The last inequality on the right follows from the fact that ((ap + bp)/2)1/p is strictly
increasing with p and the fact that

lim
p→∞

(
ap + bp

2

)1/p

= max(a, b).

Since (ap/2 – bp/2)2 ≥ 0, it follows that 2(ab)p/2 ≤ ap + bp. Squaring this, we have further
4(ab)p < (ap + bp)2. The following inequalities follow by first adding x2p and then apbp to
both sides of this result:

x2p + 2(
√

ab)pxp + apbp ≤ x2p +
(
ap + bp)xp + apbp

=
(
xp + ap)(xp + bp) ≤ x2p +

(
ap + bp)xp +

1
4
(
ap + bp)2.

This is equivalent to the inequalities

(
xp + (

√
ab)p)2/p ≤ [(

xp + ap)(xp + bp)]1/p ≤
(

xp +
ap + bp

2

)2/p

. (9)

Inverting these inequalities and then integrating with respect to x, we get

∫ ∞

0

dx
(xp + ap+bp

2 )2/p
≤

∫ ∞

0

dx
[(xp + ap)(xp + bp)]1/p ≤

∫ ∞

0

dx
(xp + (

√
ab)p)2/p

. (10)

Multiply through (10) by cp, invert what results, and then use definition (5) of Mp(a, b) to
obtain the result

Mp(
√

ab,
√

ab) ≤ Mp(a, b) ≤ Mp

((
ap + bp

2

)1/p

,
(

ap + bp

2

)1/p)
. (11)

Using Mp(z, z) = z for any z > 0, the two inner inequalities in (8) are obtained. �

2 Series representations for the reciprocal of Mp(a, b)
Some useful integral and series representations related to these means will be developed
next. First, make the substitution t = (yp + 1)–1 with dy = –p–1t–1–1/p(1 – t)1/p–1 dt so cp can
be put in the form of the beta function integral

1
cp

=
1
p

∫ 1

0
t1/p–1(1 – t)1/p–1 dt =

Γ ( 1
p )2

pΓ ( 2
p )

. (12)

Returning to the integral for Mp(a, b), let us make the following change of variable:

xp = ap
(

1
t

– 1
)

= ap
(

1 – t
t

)
, dx = –

a
p

t–1–1/p(1 – t)1/p–1 dt.

In this case, the integral for Mp(a, b) takes the following form:

1
Mp(a, b)

= cp
a
p

∫ 1

0

t1–1/p(1 – t)1/p–1

a
t1/p (ap 1–t

t + bp)1/p
dt =

cp

p

∫ 1

0

t1/p–1(1 – t)1/p–1

(ap(1 – t) + bpt)1/p dt. (13)
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Theorem 2 The function 1/cp increases monotonically for all p ∈ (0,∞). Moreover, as p →
∞, this function admits the asymptotic expansion

1
cp

= 2 –
π2

2p2 +
4ζ (3)

p3 + O
(

1
p4

)
. (14)

Proof Beginning with (12) and setting h(p) = 1/cp, we have

log
(
h(p)

)
= log

(
Γ ( 1

p )2

pΓ ( 2
p )

)
.

Differentiating both sides of this with respect to p, it follows that

h′(p)
h(p)

=
1
p2

(
2ψ

(
2
p

)
– 2ψ

(
1
p

)
– p

)
.

It suffices to show the quantity in brackets is always positive. To this end, substitute the
series form of ψ(z) to obtain

2ψ

(
2
p

)
– 2ψ

(
1
p

)
– p

= –p +
2
p

∞∑

n=1

1
n(n + 2

p )
+ 2p –

1
p

∞∑

n=1

1
n(n + 1

p )
– p

=
1
p

∞∑

n=1

1
(n + 1

p )(n + 2
p )

> 0.

Since h(p) → 0 as p → 0+ and h′(p) > 0 on (0,∞), it follows that the function h(p) is posi-
tive and strictly increasing on (0,∞). �

The reciprocal of Mp(a, b) can be expanded into an infinite series. This expansion will
be seen to have several uses. Let us introduce the following expressions:

(a, k) = a(a + 1) · · · (a + k – 1), (a, 0) = 1, (a, –1) = 0, a 	= 0.

Theorem 3 Given a, b > 0 and p ∈ (0,∞), the following expansion holds:

1
Mp(a, b)

=
1

max(a, b)

∞∑

k=0

( 1
p , k)

( 2
p , k)k!

[
1 –

(
min(a, b)
max(a, b)

)p]k

, (15)

with 0! = 1.

Proof Both sides of (15) are equal to 1/a when a = b. Assume without loss of generality
that a > b > 0. Set β = 1 – (b/a)p so we have 0 < β < 1 and

ap(1 – t) + bpt = ap(1 – βt).
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Expanding the denominator of (13) into power series gives

1
[ap(1 – t) + bpt]1/p =

1
a

(1 – βt)–1/p =
1
a

∞∑

k=0

(
1
p

, k
)

βk

k!
tk . (16)

The series on the right-hand side of (16) converges when β ∈ (0, 1), and so integration of
the series term by term is justified. Substitute (16) into (13) to obtain

1
Mp(a, b)

=
1

aB( 1
p , 1

p )

∫ 1

0

∞∑

k=0

k–1∏

m=0

(
1
p

+ m
)

βk

k!
tk+1/p–1(1 – t)1/p–1 dt

=
1

aB( 1
p , 1

p )

∞∑

k=0

(
1
p

, k
)

βk

k!

∫ 1

0
tk+1/p–1(1 – t)1/p–1 dt

=
1
a

∞∑

k=0

(
1
p

, k
)

αk

k!
B(k + 1

p , 1
p )

B( 1
p , 1

p )
. (17)

Expressing the beta functions in (17) in terms of the gamma function, we find that

B(k + 1
p , 1

p )

B( 1
p , 1

p )
=

Γ (k + 1
p )Γ ( 1

p )

Γ ( 1
p )Γ (k + 2

p )
=

k–1∏

m=0

( 1
p + m)

( 2
p + m)

=
( 1

p , k)

( 2
p , k)

. (18)

Substituting (18) into (17), the required result (15) is obtained. �

Another expansion which is relevant to Mp(a, b) is given in the following theorem.

Theorem 4 Given a, b > 0 and p ∈ (0,∞),

1
Mp(a, b)

=
(

2
ap + bp

)1/p ∞∑

k=0

( 1
p , k)
k!

( 1
p , 2k)

( 2
p , 2k)

·
(

ap – bp

ap + bp

)2k

. (19)

Proof Completing the square, we can write

(
xp + ap)(xp + bp) =

(
xp –

ap + bp

2

)2

–
(

ap – bp

2

)2

=
(

xp +
ap + bp

2

)2(
1 + τ (x)

)
, (20)

where τ (x) is defined to be

τ (x) =
ap–bp

2

xp + ap+bp
2

.

Clearly, |τ (x)| < 1 and using (20), the following expansion holds:

[(
xp + ap)(xp + bp)]–1/p =

(
1 +

ap + bp

2

)–2/p(
1 – τ (x)2)–1/p

=
(

xp +
ap + bp

2

)–2/p ∞∑

k=0

( 1
p , k)
k!

τ (x)k . (21)
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Substituting expansion (21) into the integral (13) for Mp(a, b)–1, we obtain

1
Mp(a, b)

= cp

∫ ∞

0

1
(xp + ap+bp

2 )2/p

∞∑

k=0

( 1
p , k)
k!

τ (x)2kdx

= cp

∫ ∞

0

dx
(xp + ap+bp

2 )2/p
+ cp

∞∑

k=1

( 1
p , k)
k!

∫ ∞

0

τ (x)2k

(xp + ap+bp
2 )2/p

dx

=
(

ap + bp

2

)–1/p

+ cp

∞∑

k=1

( 1
p , k)
k!

∫ ∞

0

τ (x)2k

(xp + ap+bp
2 )2/p

dx

=
(

2
ap + bp

)1/p

+ cp

∞∑

k=1

( 1
p , k)
k!

(
ap – bp

2

)2k ∫ ∞

0

dx
(xp + ap+bp

2 )2k+2/p
. (22)

Consider the integral apart from (22) and make use of the substitution

x =
(

ap + bp

2

)1/p

y.

The integral in (22) takes the form

∫ ∞

0

dx
(xp + ap+bp

2 )2k+2/p
=

(
ap + bp

2

)–2k–1/p ∫ ∞

0

dy
(yp + 1)2k+2/p .

Finally, introduce the change of variable yp + 1 = t–1 into the integral so it takes the form

∫ ∞

0

dx
(xp + ap+bp

2 )2k+2/p
=

(
ap + bp

2

)–2k–1/p 1
p

B
(

2k +
1
p

,
1
p

)
. (23)

Multiply (23) by cp from (12) to obtain

cp

∫ ∞

0

dx
(xp + ap+bp

2 )2k+2/p
=

(
ap + bp

2

)–2k–1/p B(2k + 1
p , 1

p )

B( 1
p , 1

p )
=

(
2

ap + bp

)2k+1/p ( 1
p , 2k)

( 2
p , 2k)

.

Substituting this integral into (22), we arrive at the desired expansion

1
Mp(a, b)

=
(

2
ap + bp

)1/p

+
(

2
ap + bp

)1/p ∞∑

k=1

( 1
p , k)
k!

( 1
p , 2k)

( 2
p , 2k)

(
ap – bp

ap + bp

)2k

. �

3 Bounds for Mp(a, b)
Theorem 5 Given a, b > 0, the following set of inequalities holds:

M0(a, b) =
√

ab ≤ Mp(a, b), M∞(a, b) =
2 max(a, b)

2 + log( max(a,b)
min(a,b) )

≤ a + b
2

. (24)

Proof It can be verified that

lim
p→0+

(
ap + bp

2

)1/p

=
√

ab,
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so the equality M0(a, b) =
√

ab follows directly from Theorem 1. The inequalities on either
side of Mp(a, b) follow from monotonicity of Mp(a, b) as a function of p. The last two
inequalities follow easily if a = b. Suppose then that a > b > 0. Since it has been shown that
cp → 1/2 as p → ∞, we conclude that

lim
p→∞

∫ ∞

0

dy
(yp + 1)2/p = 2.

Moreover,

lim
p→∞

∫ ∞

0

dx
[(xp + ap)(xp + bp)]1/p =

∫ b

0

dx
ab

+
∫ a

b

dx
xa

+
∫ ∞

a

dx
x2

=
2 + (log(a) – log(b))

a
=

2 + log( a
b )

a
.

Therefore,

lim
p→∞ Mp(a, b) =

2a
2 + log( a

b )
.

Finally, it is the case that the mean M1(a, b) satisfies the inequality

a – b
log(a) – log(b)

≤ a + b
2

.

Consequently, this implies the following inequality:

2(a – b) ≤ (a + b)
(
log(a) – log(b)

)
.

Collecting terms on the right and adding 2a to both sides, we get

4a ≤ 2(a + b) + (a + b)
(
log(a) – log(b)

)
.

This result implies the upper bound for M∞(a, b),

2a
2 + log( a

b )
≤ a + b

2
.

This is the final inequality on the right in (24), so we are done. �

Lemma 1 For fixed p > 0 and k ∈ N,

( 1
p + k)2

k( 2
p + k)

≥ 1. (25)

Proof Since (1/p)2 ≥ 0, it follows that

(
1
p

)2

+ 2
k
p

+ k2 ≥ 2
k
p

+ k2.
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Consequently,

(
1
p

+ k
)2

≥ k
(

2
p

+ k
)

.

Dividing both sides of this by the right-hand side, (25) is obtained. �

Theorem 6 For a, b > 0 and all p ∈ (0,∞), the following bound holds:

Mp(a, b) ≤ M∞(a, b). (26)

Proof The proof relies on expressing series (15) given in Theorem 3 and (24) in a certain
way. In fact, the reciprocal of (26) will be shown. Let p > 0 and define

r = rp = 1 –
(

min(a, b)
max(a, b)

)p

.

Clearly, r ∈ (0, 1) and this can be solved for the ratio on the right as a function of r,

max(a, b)
min(a, b)

= (1 – r)–1/p. (27)

From Theorem 3, the following expansion holds for any p ∈ (0,∞):

max(a, b)
Mp(a, b)

= 1 +
∞∑

k=1

( 1
p , k)2

( 2
p , k)k!

rk . (28)

Moreover, substituting (27) into (24), with r ∈ (0, 1), expand the logarithm function in
series to obtain

max(a, b)
M∞(a, b)

= 1 +
1

2p

∞∑

k=1

rk

k
. (29)

Therefore, it suffices to show the reciprocal of (26) holds,

∞∑

k=1

( 1
p , k)2

( 2
p , k)k!

rk ≥ 1
2p

∞∑

k=1

rk

k
.

This is equivalent to the inequality

∞∑

k=1

[ ( 1
p , k)2

( 2
q , k)k!

–
1

2pk

]
rk ≥ 0. (30)

If it can be shown that the coefficients in (30) are positive for each k, inequality in (30) will
follow. This amounts to showing that

( 1
p , k)2

( 2
p , k)k!

≥ 1
2pk

.
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This implies it has to be shown that

2p
(

1
p

, k
)2

≥
(

2
p

, k
)

(k – 1)!. (31)

It is clear that when k = 1 and 2 are put in (31) the inequality holds. Suppose (31) holds up
to some value of k, so the following statement holds

2p
(

1
p

)2(1
p

+ 1
)2

· · ·
(

1
p

+ k – 1
)2

≥ 2
p

(
2
p

+ 1
)

· · ·
(

2
p

+ k – 1
)

(k – 1)!. (32)

Multiply both sides of (32) by ( 1
p + k)2 and use (25) from Lemma 1 to obtain that

2p
(

1
p

)2

· · ·
(

1
p

+ k – 1
)2(1

p
+ k

)2

≥ 2
p

(
2
p

+ 1
)

· · ·
(

2
p

+ k – 1
)(

2
p

+ k
)

k! ·
( ( 1

p + k)2

k( 2
p + k)

)

≥ 2
p

(
2
p

+ 1
)

· · ·
(

2
p

+ k
)

k!.

This is exactly (32) but with k replaced by k + 1. By the Principle of Mathematical Induc-
tion, (32) holds. �

This serves to generalize the result given in [4] where it was shown that M2(a, b) ≤
M∞(a, b).
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