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Abstract
In a recent work by Zhang et al. (J. Inequal. Appl. 2017:82, 2017) the authors studied
large deviations of the aggregate amount of claims in a size-dependent renewal risk
model. They claimed that they obtained a precise large-deviation formula for the case
with subexponential claims and with arbitrary dependence between each claim size
and its waiting time. In this short note, we point out that their main result is
unfortunately not correct in general.
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1 Review of the work by Zhang et al. [7]
Large deviations of the aggregate amount of claims are an important topic, which was
initiated by Klüppelberg and Mikosch [4], reactivated by Tang et al. [6], and revisited by
many researchers afterward. Due to its potential applications to insurance and finance,
this topic is receiving increasing attention from academia.

In a recent work by Zhang et al. [7] the authors studied large deviations of the aggregate
amount of claims in a size-dependent renewal risk model. In their notation, let {Xk , k ∈N}
and {θk , k ∈ N} be claim sizes and interarrival times, respectively. Assume that the pairs
(Xk , θk), k ∈N, form a sequence of independent and identically distributed (i.i.d.) copies of
a generic random pair (X, θ ) with marginal distribution functions F = 1 – F on [0,∞) and
G on [0,∞) and with arbitrary dependence between X and θ . Define an integer-valued
stochastic process

N∗
t = inf{k ∈N : θ1 + · · · + θk ≥ t}, t ≥ 0.

Note that N∗
t is slightly different from the commonly used renewal counting pro-

cess

Nt = sup{k ∈N : θ1 + · · · + θk ≤ t}.
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Then the aggregate amount of claims is defined by

S∗
t =

N∗
t∑

k=1

Xk , t ≥ 0,

where the sum is understood as 0 when N∗
t = 0.

The authors consider the case of subexponential claims. By definition a distribution
function F on [0,∞) is subexponential, denoted by F ∈ S , if

lim
x→∞

F∗n(x)
F(x)

= n (1.1)

for all n ≥ 2, where F∗n denotes the n-fold convolution of F . As the authors pointed out,
(1.1) implies

lim
x→∞

P(X1 + · · · + Xn > x)
P(max{X1, . . . , Xn} > x)

= 1, (1.2)

where X1, X2, . . . are i.i.d. random variables with common distribution function F .
Then the authors stated the following precise large-deviation result.

Theorem ZWY Assume that F ∈ S , E[X] = μ ∈ (0,∞), and E[θ ] = 1/λ ∈ (0,∞). Then for
arbitrarily given γ > 0, it holds uniformly for all x ≥ γ t that

P
(
S∗

t – μλt > x
) ∼ λtF(x), t → ∞. (1.3)

Here the uniformity is understood as

lim
t→∞ sup

x≥γ t

∣∣∣∣
P(S∗

t – μλt > x)
λtF(x)

– 1
∣∣∣∣ = 0.

This result is claimed to hold for the whole subexponential class S , and, in particular,
it squarely removes a condition on the dependence structure of (X, θ ) originally proposed
by Chen and Yuen [2] and recently used by many researchers. Thus this result, if correct,
would be an important contribution to the theory of large deviations. Unfortunately, the
counterexample given in the following section disproves it.

2 A counterexample
Assume that:

(i) the generic random pair (X, θ ) contains comonotonic and identical components,
that is, X = θ ;

(ii) the common distribution of X and θ is the Weibull distribution

F(x) = 1 – e–
√

x, x ≥ 0;

(iii) x = t → ∞.
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Then

P
(
S∗

t – μλt > x
) ∼ λ

∫ 2x

x
F(y) dy = o

(
λtF(x)

)
. (2.1)

Our proof given in the next section shows that we have plenty of room to generalize this
counterexample, but we will not do so to save space. Thus Theorem ZWY is fatally wrong.
The erroneous step appears on the first two lines of their proof, where the authors claimed
that, by the assumption F ∈ S and relation (1.2), to prove (1.3), one needs only to prove

P
(

max
k≤N∗

t
(Xk – μ) > x

)
∼ λtF(x), t, x → ∞. (2.2)

They seem to have overlooked an essential difference between (1.2) and (2.2): The index n
in (1.2) is arbitrarily fixed, whereas the index N∗

t in (2.2) varies in t and almost surely
diverges to ∞ as t → ∞.

Nevertheless, in the paper the authors developed a martingale approach to the study of
precise large deviations, which is novel to us.

3 Proof of (2.1)
By conditions (i) and (ii), μ = 1/λ = 12. By condition (ii), F has a long and rapidly vary-
ing tail; see Embrechts et al. [3] for these and related terminologies. Furthermore, for a
distribution F with a long and rapidly varying tail, it is easy to verify the following:

F(x) = o
(∫ ∞

x
F(y) dy

)
,

∫ 2x

x
F(y) dy ∼

∫ ∞

x
F(y) dy = o

(
xF(x)

)
. (3.1)

See Su and Tang [5] for closely related discussions; for example, the first relation in (3.1)
can be found in their Theorem 3.1(i). Thus, it remains to prove the first step in (2.1). Keep-
ing in mind condition (iii), we derive

P
(
S∗

t – μλt > x
)

=
∞∑

n=1

P

( n∑

k=1

Xk > 2x, N∗
t = n

)

=
∞∑

n=1

P

( n∑

k=1

Xk > 2x,
n–1∑

k=1

Xk < x

)

=
∫ x–

0
F(2x – y)

∞∑

n=1

P

( n–1∑

k=1

Xk ∈ dy

)

=
∫ x

0
F(2x – y) dλ(y),

where
∫ x–

0 is understood as
∫

(0,x), and λ(y) = E[Ny] for y ≥ 0 is the renewal function. The
last step can be verified as follows: for y > 0,

∞∑

n=1

P

( n–1∑

k=1

Xk ≤ y

)
=

∞∑

n=0

P

( n∑

k=1

Xk ≤ y

)
= 1 +

∞∑

n=1

P(Ny ≥ n) = 1 + λ(y).
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Recall Blackwell’s renewal theorem:

lim
x→∞

(
λ(x + 1) – λ(x)

)
= λ;

see, e.g., page 155 of Asmussen [1]. Thus, for arbitrarily fixed small ε > 0, there is some
large x0 ∈N such that, for all x ≥ x0,

(1 – ε)λ ≤ λ(x + 1) – λ(x) ≤ (1 + ε)λ. (3.2)

We continue the derivation:

P
(
S∗

x – μλx > x
)

=

(∫ x0

0
+


x�–1∑

i=x0

∫ i+1

i
+

∫ x–


x�

)
F(2x – y) dλ(y)

= I1 + I2 + I3, (3.3)

where 
x� is the commonly used floor function. Since F has a long tail,

I1 ∼ F(2x)λ(x0).

For the other two terms in (3.3), we derive

I2 + I3 ≤

x�∑

i=x0

∫ i+1

i
F(2x – y) dλ(y)

≤

x�∑

i=x0

F(2x – i – 1)
(
λ(i + 1) – λ(i)

)

≤ (1 + ε)λ

x�∑

i=x0

F(2x – i – 1) (3.4)

≤ (1 + ε)λ

x�∑

i=x0

∫ i+1

i
F(2x – y – 1) dy

≤ (1 + ε)λ
∫ x+1

0
F(2x – y – 1) dy

= (1 + ε)λ
∫ 2x–1

x–2
F(y) dy

∼ (1 + ε)λ
∫ 2x

x
F(y) dy, (3.5)

where in step (3.4) we applied the upper bound in (3.2), and in step (3.5) we used the long
tail property of F again and the two asymptotic relations in (3.1). Plugging these estimates
into (3.3) yields

P
(
S∗

x – μλx > x
)
� F(2x)λ(x0) + (1 + ε)λ

∫ 2x

x
F(y) dy ∼ (1 + ε)λ

∫ 2x

x
F(y) dy,
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where the last step is due to F(2x) ≤ F(x) = o(
∫ 2x

x F(y) dy). A similar asymptotic lower
bound can also be established. Finally, by the arbitrariness of ε we prove the first step
in (2.1).

Acknowledgements
The author wishes to thank the two anonymous referees for their very careful reading of the previous version of the paper.

Funding
The research was supported by a Center of Actuarial Excellence (CAE) Research Grant (2018–2021) from the Society of
Actuaries (SOA) and a Summer Research Grant from the College of Business and Public Administration, Drake University.

Availability of data and materials
Not applicable.

Competing interests
The author declares that she has no competing interests.

Author’s contributions
This entire work has been completed solely by the author. Author read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 February 2019 Accepted: 24 June 2019

References
1. Asmussen, S.: Applied Probability and Queues. Springer, Berlin (2003)
2. Chen, Y., Yuen, K.C.: Precise large deviations of aggregate claims in a size-dependent renewal risk model. Insurance

Math. Econom. 51(2), 457–461 (2012)
3. Embrechts, P., Klüppelberg, C., Mikosch, T.: Modelling Extremal Events: For Insurance and Finance. Springer, Berlin

(1997)
4. Klüppelberg, C., Mikosch, T.: Large deviations of heavy-tailed random sums with applications in insurance and finance.

J. Appl. Probab. 34(2), 293–308 (1997)
5. Su, C., Tang, Q.: Characterizations on heavy-tailed distributions by means of hazard rate. Acta Math. Appl. Sin. 19(1),

135–142 (2003)
6. Tang, Q., Su, C., Jiang, T., Zhang, J.: Large deviations for heavy-tailed random sums in compound renewal model. Statist.

Probab. Lett. 52(1), 91–100 (2001)
7. Zhang, S., Wang, D., Yu, S.: Precise large deviations of aggregate claims in a size-dependent renewal risk model with

stopping time claim-number process. J. Inequal. Appl. 2017, 82 (2017)


	Comment on the work of Zhang et al. (2017, Journal of Inequalities and Applications)
	Abstract
	MSC
	Keywords

	Review of the work by Zhang et al. Zhaetal2017
	A counterexample
	Proof of (2.1)
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Author's contributions
	Publisher's Note
	References


