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Abstract
In this paper, we present min–sup-type zero duality gap properties for DC composite
optimization problem with conic constraints. Using properties of the subdifferentials
of involved functions, we introduce some new constraint qualifications. Under these
new constraint qualifications, we provide necessary and/or sufficient conditions for
the min–sup-type stable zero duality to hold.
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1 Introduction
Let X, Y and Z be real locally convex Hausdorff topological vector spaces with their duals
X∗, Y ∗, and Z∗, respectively. Let Y and Z be partially ordered by closed convex cones S ⊆ Y
and K ⊆ Z, respectively. Denote Y • := Y ∪ {∞Y } and Z• := Z ∪ {∞Z}, where {∞Y } and
{∞Z} are the greatest elements with respect to the partial orders ≤S and ≤K , respectively.
The following operations are defined on Y • (resp., Z•): for any y ∈ Y (resp., Z), y+∞ = ∞+
y = ∞ and t∞ = ∞ for any t ≥ 0. In this paper, we consider the following DC composite
optimization problem:

inf f
(
ϕ(x)

)
– g(x)

s.t. x ∈ C, h(x) ∈ –S,
(P)

where C ⊆ X is a nonempty convex set, ϕ : X → Z• is a proper K-convex mapping, f :
Z• →R := R∪{+∞} is a proper convex K-increasing function with f (∞Z) = +∞, g : X →
R is a proper convex function, and h : X → Y • is a proper S-convex mapping.

Problem (P) includes several kinds of optimization problems as particular cases. For
example, in the case where X = Z and ϕ = IdX (the identity operator on X) the problem (P)
is reduced to the DC optimization problem (see [4–6, 8, 10, 17] and the references therein)

inf f (x) – g(x)

s.t. x ∈ C, h(x) ∈ –S,
(P)
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whereas if g = 0, then problem (P) is reduced to the convex composite optimization prob-
lem (see [2, 7, 9, 14] and the references therein)

inf f
(
ϕ(x)

)

s.t. x ∈ C, h(x) ∈ –S.
(P)

In particular, if X = Z, ϕ = IdX , and g = 0, then problem (P) is reduced to the classic convex
optimization problem (see [1, 3, 11–13] and the references therein)

inf f (x)

s.t. x ∈ C, h(x) ∈ –S.
(P)

Following [18], we define the Lagrange dual problem of (P) by

inf
u∗∈dom g∗ sup

λ∈S⊕
β∈dom f ∗

{
g∗(u∗) – (δC + λh + βϕ)∗

(
u∗) – f ∗(β)

}
.

(D)

As is shown in [18, Remark 4.3], if g is lower semicontinuous (l.s.c.), then the optimal val-
ues v(P) and v(D) of problem (P) and (D), respectively, satisfy the so-called weak Lagrange
duality, that is, v(P) ≥ v(D), but a duality gap may occur, that is, we may have v(P) > v(D).
One of the most interesting and challenging problems in convex and nonconvex anal-
ysis was giving sufficient conditions that guarantee the zero duality gap property (i.e.,
v(P) = v(D)). Over the years, various criteria have been developed ensuring the zero dual-
ity gap property for convex and nonconvex programming problems (see, e.g., [1, 6, 7, 11–
13, 18, 20] and the references therein); here let us especially mention some recent papers
[1, 11–13] regarding problem (P), [6] regarding problem (P), and [7] regarding problem
(P). In particular, the authors in [18] established the inf–sup-type stable zero duality gap
property for problem (P) by using the epigraph properties of the infimal convolution of
conjugate functions.

Another related and interesting problem is the min–sup-type zero duality property,
which corresponds to the situation in which v(P) = v(D) and problem (P) has at least an
optimal solution. This problem was considered in [7] for the case where g = 0 and in [11]
in the case where ϕ = IdX and g = 0. However, to the best of our knowledge, not many re-
sults are known to provide the min–sup-type zero duality property for the DC composite
optimization problem (P).

Our main aim in this paper is to give new conditions that completely characterize the
min–sup-type zero duality gap properties for problem (P). In general, we do not impose
any topological assumption on C, f , ϕ, and h, that is, we only need to assume that C is
convex, f and ϕ are proper convex, and h is S-convex. Moreover, the results obtained in
this paper are either new or proper extensions of some known results in [7, 11].

This paper is organized as follows. The next section contains some necessary notations
and preliminary results. In Sect. 3, we provide some new constraint qualifications and give
several relationships among them. Using the new constraint qualifications, we establish
the min–sup-type zero duality gap properties. In Sect. 4, we give applications to problems
(P), (P), and (P).
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2 Notations and preliminary results
The notations used in the present paper are standard (cf.[19]). In particular, we assume
that X is a real locally convex Hausdorff topological vector space, X∗ denotes the dual
space of X, endowed with the weak∗-topology w∗(X∗, X). By 〈x∗, x〉 we denote the value of
the functional x∗ ∈ X∗ at x ∈ X, that os, 〈x∗, x〉 = x∗(x). We endow X∗ ×R with the product
topology of w∗(X∗, X) and the usual Euclidean topology. Let D be a nonempty subset of X.
The closure of D is denoted by cl D. If D ⊆ X∗, then cl D denotes the weak∗-closure of D.
The positive dual cone D⊕ and the indicator function δD of D are defined, respectively, by

D⊕ :=
{

x∗ ∈ X∗ :
〈
x∗, x

〉 ≥ 0 for each x ∈ D
}

,

and

δD(x) :=

⎧
⎨

⎩
0, x ∈ D,

+∞ otherwise.

Let f : X → R be a proper function. The effective domain, the conjugate function, and
the epigraph of f are denoted by dom f , f ∗, and epi f , respectively; they are defined respec-
tively by dom f := {x ∈ X : f (x) < +∞}, f ∗(x∗) := sup{〈x∗, x〉 – f (x) : x ∈ X} for x∗ ∈ X∗, and
epi f := {(x, r) ∈ X × R : f (x) ≤ r}. It is well known and easy to verify that epi f ∗ is weak∗-
closed. The l.s.c. hull of f , denoted by cl f , is defined by

epi(cl f ) = cl(epi f ). (1)

By [19, Theorem 2.3.1(iv)] we have

f ∗ = (cl f )∗ and f ∗∗ :=
(
f ∗)∗ ≤ clf ≤ f . (2)

We can easily see that the following Young–Fenchel inequality holds:

f (x) + f ∗(x∗) ≥ 〈
x, x∗〉 for each pair

(
x, x∗) ∈ X × X∗. (3)

The subdifferential of f at x ∈ dom f is defined by

∂f (x) :=
{

x∗ ∈ X∗ : f (x) +
〈
x∗, y – x

〉 ≤ f (y) for all y ∈ X
}

, (4)

and for any ε ≥ 0, the ε-subdifferential of f at x ∈ dom f is defined by

∂ε f (x) :=
{

x∗ ∈ X∗ : f (x) +
〈
x∗, y – x

〉 ≤ f (y) + ε for all y ∈ X
}

. (5)

Then, for all ε ≥ 0 and x ∈ dom f ,

x∗ ∈ ∂ε f (x) ⇔ f (x) + f ∗(x∗) ≤ 〈
x∗, x

〉
+ ε ⇔ (

x∗, ε +
〈
x∗, x

〉
– f (x)

) ∈ epi f ∗. (6)

In particular, we have the following Young’s equality:

x∗ ∈ ∂f (x) ⇔ f (x) + f ∗(x∗) =
〈
x∗, x

〉
. (7)
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Moreover, by definition we have the following implication:

x0 is a global minimizer of ϕ ⇔ 0 ∈ ∂ϕ(x0). (8)

3 Min–sup-type zero duality gap property
Recall that a function ψ : Z → R is said to be K-increasing if for any x, y ∈ Z such that
y ≤K x, we have ψ(y) ≤ ψ(x). A function φ : X → Y • is said to be S-convex if for all x, y ∈
domφ := {x ∈ X : φ(x) ∈ Y } and all t ∈ [0, 1],

φ
(
tx + (1 – t)y

) ≤S tφ(x) + (1 – t)φ(y).

Throughout this paper, unless otherwise specified, C ⊆ X is a nonempty convex set,
f : Z →R is a proper convex K-increasing function, ϕ : X → Z is a proper K-convex map-
ping, and h : X → Y • is a proper S-convex mapping. Set

(f ◦ ϕ)(x) :=

⎧
⎨

⎩
f (ϕ(x)) if x ∈ domϕ,

+∞ otherwise.

Then f ◦ ϕ is a proper convex function. For convenience, we write, for each λ ∈ S⊕,

(λh)(x) :=

⎧
⎨

⎩
〈λ, h(x)〉 if x ∈ dom h,

+∞ otherwise.

It is easy to see that h is S-convex if and only if λh is convex for each λ ∈ S⊕. Let
A := {x ∈ C : h(x) ∈ –S}. We always assume that A∩dom(f ◦ϕ –g) �= ∅. Let p ∈ X∗. Consider
the following primal problem with linear perturbation:

inf f
(
ϕ(x)

)
– g(x) – 〈p, x〉

s.t. x ∈ C, h(x) ∈ –S.
(Pp)

Define its dual Lagrange problem by

inf
u∗∈dom g∗ sup

(λ,β)∈S⊕×dom f ∗

{
g∗(u∗) – (βϕ + λh + δC)∗

(
p + u∗) – f ∗(β)

}
. (Dp)

In the case where p = 0, problem (Pp) and its dual problem (Dp) reduce to problem (P) and
problem (D), respectively. Let v(Pp) and v(Dp) denote optimal values of problems (Pp) and
(Dp), respectively. As usual, we denote by S(Pp) the solution set of problem (Pp), that is,

S(Pp) := {x0 ∈ A : f
(
ϕ(x0)

)
– g(x0) – 〈p, x0〉 = min

x∈A

{
f
(
ϕ(x)

)
– g(x) – 〈p, x〉}.

As before, we use S(P) to denote S(P0). As is shown in [6, Example 3.2], the weak duality
between (P) and (D) does not necessarily hold in general even in the case ϕ is an identity
operator. To establish the weak duality and the stable weak duality between (P) and (D),
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the authors in [18] introduce the following condition:

epi(f ◦ ϕ – g + δA)∗ = epi(f ◦ ϕ – cl g + δA)∗. (9)

We will further need the following lemma, taken from [18, Proposition 4.2].

Lemma 3.1 Suppose that (9) holds. Then, for each p ∈ X∗, we have

v(Dp) ≤ v(Pp), (10)

that is, the stable weak duality holds between (P) and (D).

In particular, if (10) holds for p = 0, then we say that the weak duality holds between
(P) and (D). Following [18], if (10) becomes an equality, then we say that the inf–sup-type
stable zero duality gap property holds, and if v(P) = v(D), then we say the inf–sup-type
zero duality gap property holds. In this section, we mainly study the min–sup-type zero
duality gap property, that is, when does the inf–sup-type zero duality gap property holds
between (P) and (D) (assuming that S(P) �= ∅). We also study the min–sup-type stable zero
duality gap property, that is, when does the following implication hold for any p ∈ X∗:

S(Pp) �= ∅ ⇒ v(Pp) = v(Dp).

To study the min–sup zero duality gap property of problem (P), we introduce some new
constraint qualifications. For this purpose, we make use of the subdifferential ∂ϕ(x) for
a general proper function (not necessarily convex) ϕ : X → R; see (4). For simplicity, we
denote

Λ(x0) =
⋂

ε>0
u∗∈dom g∗

( ⋃

λ∈S⊕ ,β∈∂ε (f (ϕ(x0)))
(λh)(x0)∈[–ε,0]

{
∂ε(βϕ + δC + λh)(x0) – u∗}

)

and

Λ0(x0) =
⋂

ε>0
u∗∈∂g(x0)

( ⋃

λ∈S⊕ ,β∈∂ε (f (ϕ(x0)))
(λh)(x0)∈[–ε,0]

{
∂ε(βϕ + δC + λh)(x0) – u∗}

)
,

where x0 ∈ dom(f ◦ ϕ – g) ∩ A. By definitions we have Λ(x0) ⊆ Λ0(x0).

Definition 3.2 We say that the family {f ,ϕ, g; δA} satisfies
(i) strong-(ABCQ) at x0 ∈ dom(f ◦ ϕ – g) ∩ A if

∂(f ◦ ϕ – g + δA)(x0) ⊆ Λ(x0). (11)

(ii) (ABCQ) at x0 ∈ dom(f ◦ ϕ – g) ∩ A if

∂(f ◦ ϕ – g + δA)(x0) ⊆ Λ0(x0). (12)



Tian and Fang Journal of Inequalities and Applications        (2019) 2019:190 Page 6 of 13

Moreover, we say the family {f ,ϕ, g; δA} satisfies strong-(ABCQ) (resp., the (ABCQ)) if
strong-(ABCQ) (resp., (ABCQ)) holds at each point x ∈ dom(f ◦ ϕ – g) ∩ A.

Remark 3.3
(a) We have the following implication:

strong-(ABCQ) ⇒ (ABCQ).

(b) Note that, in the particular case g = 0, dom g∗ = ∂g(x0) = {0}, and hence
strong-(ABCQ) and (ABCQ) turn into the following qualification condition:

∂(f ◦ ϕ + δA)(x) ⊆
⋂

ε>0

( ⋃

λ∈S⊕ ,β∈∂ε (f (ϕ(x)))
(λh)(x)∈[–ε,0]

{
∂ε(βϕ + δC + λh)(x)

})
, (13)

which was introduced in [7] to study the zero duality gap property for problem (P).
(c) In the case where ϕ = IdX and g = 0, strong-(ABCQ) and (ABCQ) collapse into

(ABCQ): ∂(f + δA)(x) ⊆
⋂

ε>0

(
∂f (x) +

⋃

λ∈S⊕
(λh)(x)∈[–ε,0]

{
∂ε(δC + λh)(x)

}
)

,

which was introduced in [7].

Given two proper functions h1, h2 : X →R, their infimal convolution is

h1 � h2 : X → R∪ {±∞}, (h1 � h2)(x) := inf
z∈X

{
h1(z) + h2(x – z)

}
.

Recall that the authors in [18] introduced the qualification condition (DCCQ)

epi(f ◦ ϕ – g + δA)∗ =
⋂

u∗∈dom g∗
epi

(
�� δ∗

C � h�) –
(
u∗, g∗(u∗)) (14)

to study the inf–sup-type zero duality gap property for problem (P), where the functions
h� : X∗ →R and � : X∗ →R are defined respectively by

h�(x∗) = inf
λ∈S⊕(λh)∗

(
x∗) for x∗ ∈ X∗

and

�
(
x∗) = inf

β∈dom f ∗
(
βϕ – f ∗(β)

)∗(x∗) for x∗ ∈ X∗.

The following proposition on relationship between (DCCQ) and (ABCQ) is an extension
of [7, Proposition 3.8] from g = 0 to the general g .

Proposition 3.4 We have the following implication:

(DCCQ) ⇒ (ABCQ).
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Proof Suppose that condition (DCCQ) holds. Let x0 ∈ dom(f ◦ϕ – g) ∩ A and p ∈ ∂(f ◦ϕ –
g + δA)(x0). By (6) we have

(
p, 〈p, x0〉 – (f ◦ ϕ – g + δA)(x0)

) ∈ epi(f ◦ ϕ – g + δA)∗

=
⋂

u∗∈dom g∗
epi

(
�� δ∗

C � h�) –
(
u∗, g∗(u∗)).

Let u∗ ∈ ∂g(x0). Then

(
p + u∗, 〈p, x0〉 – (f ◦ ϕ – g + δA)(x0) + g∗(u∗)) ∈ epi

(
�� δ∗

C � h�).

It follows that

(
�� δ∗

C � h�)(p + u∗) ≤ 〈p, x0〉 – (f ◦ ϕ – g + δA)(x0) + g∗(u∗)

= 〈p, x0〉 – (f ◦ ϕ + δA)(x0) + g∗(u∗) + g(x0)

=
〈
p + u∗, x0

〉
– (f ◦ ϕ + δA)(x0),

where the last equality holds by (7). This implies that

inf
x∗

1,x∗
2∈X∗

{
�

(
x∗

1
)

+ δ∗
C
(
x∗

2
)

+ h�(p + u∗ – x∗
1 – x∗

2
)} ≤ 〈

p + u∗, x0
〉
– f

(
ϕ(x0)

)
. (15)

Let ε > 0. Then by (15) there exist x∗
1, x∗

2 ∈ X∗ such that

�
(
x∗

1
)

+ δ∗
C
(
x∗

2
)

+ h�(p + u∗ – x∗
1 – x∗

2
) ≤ 〈

p + u∗, x0
〉
– f

(
ϕ(x0)

)
+

ε

3
, (16)

whereas by definitions there exist β ∈ dom f ∗ and λ ∈ S⊕ such that

(βϕ)∗
(
x∗

1
)

+ f ∗(β) ≤ �
(
x∗

1
)

+
ε

3
(17)

and

(λh)∗
(
p + u∗ – x∗

1 – x∗
2
) ≤ h�(p + u∗ – x∗

1 – x∗
2
)

+
ε

3
.

Combining this with (16) and (17), we have

(βϕ)∗
(
x∗

1
)

+ f ∗(β) + δ∗
C
(
x∗

2
)

+ (λh)∗
(
p + u∗ – x∗

1 – x∗
2
) ≤ 〈

p + u∗, x0
〉
– f

(
ϕ(x0)

)
+ ε. (18)

Noting δC(x0) = 0 and (λh)(x0) ≤ 0, it follows from (18) and the Young–Fenchel inequality
(3) that

0 ≤ f ∗(β) + f
(
ϕ(x0)

)
– (βϕ)(x0)

≤ 〈
p + u∗, x0

〉
– (βϕ)∗

(
x∗

1
)

– (βϕ)(x0) – δ∗
C
(
x∗

2
)

– (λh)∗
(
p + u∗ – x∗

1 – x∗
2
)

+ ε

≤ 〈
p + u∗, x0

〉
–

〈
x∗

1, x0
〉
–

〈
x∗

2, x0
〉
+ δC(x0) –

〈
p + u∗ – x∗

1 – x∗
2, x0

〉
+ (λh)(x0) + ε

≤ ε.
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This, together with (6), implies that β ∈ ∂ε f (ϕ(x0)) and (λh)(x0) ∈ [–ε, 0]. Moreover, by
(18) and (3) we get that, for each x ∈ X,

(βϕ)(x0) + (λh)(x0) –
〈
p + u∗, x0

〉 ≤ f ∗(β) + f
(
ϕ(x0)

)
+ (λh)(x0) –

〈
p + u∗, x0

〉

≤ –(βϕ)∗
(
x∗

1
)

– δ∗
C
(
x∗

2
)

– (λh)∗
(
p + u∗ – x∗

1 – x∗
2
)

+ ε

≤ (βϕ)(x) + δC(x) + (λh)(x) –
〈
p + u∗, x

〉
+ ε.

This yields p + u∗ ∈ ∂ε(βϕ + δC + λh)(x0), and hence p ∈ Λ0(x0). Therefore the result holds,
and the proof is complete. �

The following theorem gives a sufficient condition and a necessary condition to ensure
the min–sup-type stable zero duality gap property for problem (P).

Theorem 3.5 Suppose that (9) holds. Let x0 ∈ dom(f ◦ ϕ – g) ∩ A. Consider the following
statements:

(i) The family {f ,ϕ, g; δA} satisfies strong-(ABCQ) at x0.
(ii) For each p ∈ X∗ such that x0 ∈ S(Pp), v(Pp) = v(Dp).

(iii) The family {f ,ϕ, g; δA} satisfies (ABCQ) at x0.
Then (i) ⇒ (ii) ⇒ (iii).

Proof (i) ⇒ (ii). Suppose that (i) holds. Let p ∈ X∗ be such that x0 ∈ S(Pp), that is,

f
(
ϕ(x0)

)
– g(x0) – 〈p, x0〉 = inf

x∈A

{
f
(
ϕ(x)

)
– g(x) – 〈p, x〉}.

Then by (8) p ∈ ∂(f ◦ϕ – g + δA)(x0), and hence p ∈ Λ(x0) by strong-(ABCQ). Let ε > 0 and
u∗ ∈ dom g∗. Then there exist β ∈ ∂ε(f (ϕ(x0))) and λ ∈ S⊕ with (λh)(x0) ∈ [–ε, 0] such that
p + u∗ ∈ ∂ε(βϕ + δC + λh)(x0). This implies that, for each x ∈ X,

〈
p + u∗, x

〉 ≤ (βϕ + δC + λh)(x) – (βϕ + δC + λh)(x0) + ε + 〈p, x0〉 +
〈
u∗, x0

〉

≤ (βϕ + δC + λh)(x) – (βϕ + δC + λh – g)(x0) + 〈p, x0〉 + g∗(u∗) + ε,

where the inequality holds since g∗(u∗) + g(x0) ≥ 〈u∗, x0〉 by (3). Thus, for each x ∈ C,

(βϕ)(x0) + (λh)(x0) – g(x0) – 〈p, x0〉 ≤ (βϕ)(x) + (λh)(x) + g∗(u∗) –
〈
p + u∗, x

〉
+ ε. (19)

Noting that β ∈ ∂ε(f (ϕ(x0))), it follows from (6) that

f
(
ϕ(x0)

)
+ f ∗(β) ≤ (βϕ)(x0) + ε.

This, together with (19) and the fact (λh)(x0) ∈ [–ε, 0], implies that, for each x ∈ C,

f
(
ϕ(x0)

)
– g(x0) – 〈p, x0〉

≤ (βϕ)(x0) – f ∗(β) – g(x0) – 〈p, x0〉 + ε

≤ (βϕ)(x) + (λh)(x) + g∗(u∗) –
〈
p + u∗, x

〉
– f ∗(β) – (λh)(x0) + 2ε

≤ (βϕ)(x) + (λh)(x) + g∗(u∗) –
〈
p + u∗, x

〉
– f ∗(β) + 3ε.
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Consequently, we get that

g∗(u∗) – (βϕ + λh + δC)∗
(
p + u∗) – f ∗(β)

= inf
x∈C

{
(βϕ)(x) + (λh)(x) + g∗(u∗) – f ∗(β) –

〈
p + u∗, x

〉}

≥ f
(
ϕ(x0)

)
– g(x0) – 〈p, x0〉 – 3ε.

This means that

v(Dp) ≥ f
(
ϕ(x0)

)
– g(x0) – 〈p, x0〉 – 3ε.

Letting ε → 0, we have that

v(Dp) ≥ f
(
ϕ(x0)

)
– g(x0) – 〈p, x0〉 = v(Pp). (20)

This, together with Lemma 3.1, implies that v(Dp) = v(Pp).
(ii) ⇒ (iii). Suppose that (ii) holds. Let p ∈ ∂(f ◦ ϕ – g + δA)(x0). Then by (8) we see that

x0 ∈ S(Pp). This implies that

f
(
ϕ(x0)

)
– g(x0) – 〈p, x0〉 = min

x∈A

{
f
(
ϕ(x)

)
– g(x) – 〈p, x〉},

and hence, by (ii),

f
(
ϕ(x0)

)
– g(x0) – 〈p, x0〉 = v(Dp). (21)

We will further show that p ∈ Λ0(x0). For this purpose, let ε > 0 and u∗ ∈ ∂g(x0). It follows
from (21) that there exists (λ,β) ∈ S⊕ × dom f ∗ such that, for each x ∈ X,

f
(
ϕ(x0)

)
– g(x0) – 〈p, x0〉 ≤ g∗(u∗) – (βϕ + λh + δC)∗

(
p + u∗) – f ∗(β) + ε

≤ (βϕ + λh + δC)(x) –
〈
p + u∗, x

〉
+ g∗(u∗) – f ∗(β) + ε, (22)

where the last inequality holds by (3). Note that u∗ ∈ ∂g(x0). It follows that g∗(u∗) + g(x0) =
〈u∗, x0〉. Combining this with (22), we have that, for each x ∈ C,

f
(
ϕ(x0)

)
– 〈p, x0〉 ≤ (βϕ + λh)(x) –

〈
p + u∗, x

〉
+

〈
u∗, x0

〉
– f ∗(β) + ε,

that is,

f
(
ϕ(x0)

)
–

〈
p + u∗, x0

〉 ≤ (βϕ)(x) + (λh)(x) –
〈
p + u∗, x

〉
– f ∗(β) + ε. (23)

Letting x = x0 and noting that (λh)(x0) ≤ 0, we see from (23) and (3) that

0 ≥ (λh)(x0) ≥ f
(
ϕ(x0)

)
+ f ∗(β) – (βϕ)(x0) – ε ≥ –ε.

This implies that (λh)(x0) ∈ [–ε, 0] and

f
(
ϕ(x0)

)
+ f ∗(β) – (βϕ)(x0) ≤ ε.
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Thus by (6) β ∈ ∂ε f (ϕ(x0)). Moreover, by (23) and (3) we can see that, for each x ∈ C,

(βϕ)(x0) + (λh)(x0) –
〈
p + u∗, x0

〉 ≤ f
(
ϕ(x0)

)
+ f ∗(β) + (λh)(x0) –

〈
p + u∗, x0

〉

≤ (βϕ)(x) + (λh)(x) –
〈
p + u∗, x

〉
+ ε.

This, together with (6), implies that p + u∗ ∈ ∂ε(βϕ + δC + λh)(x0), and hence p ∈ Λ0(x0).
Therefore (12) holds, and the proof is complete. �

In [18, Theorem 4.5] the authors showed that condition (DCCQ) implies that the inf–
sup-type stable zero duality gap property holds for problem (P). Thus by definition we
easily to see that the following corollary holds.

Corollary 3.6 Suppose that (9) holds. If the family {f ,ϕ, g; δA} satisfies condition (DCCQ),
then for each p ∈ X∗ such that x0 ∈ S(Pp), v(Pp) = v(Dp).

Remark 3.7 Let φ : X → [–∞, +∞] be an extended real-valued function. Recall from [16]
(see also [15, p. 90]) that the Fréchet subdifferential of φ at a point x0 with |φ(x0)| < ∞ is
defined by

∂̂φ(x0) :=
{

x∗ ∈ X∗ : lim inf
x→x0

φ(x) – φ(x0) – 〈x∗, x – x0〉
‖ x – x0 ‖ ≥ 0

}
.

By using Fréchet subdifferential properties we can give a new constraint qualification

∂̂(f ◦ ϕ – g + δA)(x0) ⊆
⋂

ε>0
u∗∈dom g∗

( ⋃

λ∈S⊕ ,β∈∂ε (f (ϕ(x0)))
(λh)(x0)∈[–ε,0]

{
∂ε(βϕ + δC + λh)(x0) – u∗}

)
, (24)

where x0 ∈ dom(f ◦ ϕ – g) ∩ A. Similarly to the proof of implication (i) ⇒ (ii) in Theo-
rem 3.5, we see the min–sup-type stable zero duality gap property also holds under con-
dition (24).

Taking p = 0 in Theorem 3.5(ii), we get the following corollary.

Corollary 3.8 Suppose that (9) holds. Let x0 ∈ dom(f ◦ ϕ – g) ∩ A ∩ S(P). If the family
{f ,ϕ, g; δA} satisfies strong-(ABCQ) at x0, then

min
x∈A

{
f
(
ϕ(x)

)
– g(x)

}
= inf

u∈dom g∗ sup
(λ,β)∈S⊕×dom f ∗

{
g∗(u∗) – (βϕ + δC + λh)∗

(
u∗) – f ∗(β)

}
.

4 Applications
4.1 Application to DC programming
Let X = Z and ϕ = IdX . Then problem (Pp) turns into the problem

inf f (x) – g(x) – 〈p, x〉
s.t. x ∈ C, h(x) ∈ –S,

(Pp)
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and problem (Dp) reduces to the problem

inf
u∗∈dom g∗ sup

(λ,β)∈S⊕×dom f ∗

{
g∗(u∗) – f ∗(x∗) – (δC + λh)∗

(
p + u∗ – x∗)}, (Dp)

where p ∈ X∗. Moreover, we see that the conditions strong-(ABCQ) and (ABCQ) are recast
into

∂(f – g + δA)(x) ⊆
⋂

ε>0
u∗∈dom g∗

( ⋃

λ∈S⊕
(λh)(x)∈[–ε,0]

{
∂f (x) + ∂ε(δC + λh)(x) – u∗}

)
(25)

and

∂(f – g + δA)(x) ⊆
⋂

ε>0
u∗∈∂g(x0)

( ⋃

λ∈S⊕
(λh)(x)∈[–ε,0]

{
∂f (x) + ∂ε(δC + λh)(x) – u∗}

)
, (26)

respectively. As before, we use S(Pp) to denote the solution set of problem (Pp), that is,

S(Pp) :=
{

x0 ∈ A : f (x0) – g(x0) – 〈p, x0〉 = min
x∈A

{
f (x) – g(x) – 〈p, x〉}

}
.

Thus by Theorem 3.5 we get the following result.

Theorem 4.1 Let x0 ∈ dom(f – g) ∩ A. Suppose that

epi(f – g + δA)∗ = epi(f – cl g + δA)∗. (27)

Consider the following statements.
(i) Inclusion (25) holds.

(ii) For each p ∈ X∗ such that x0 ∈ S(Pp), we have the following equality:

min
x∈A

{
f (x)–g(x)–〈p, x〉} = inf

u∗∈dom g∗ sup
(λ,x∗)∈S⊕×X∗

{
g∗(u∗)– f ∗(x∗)–(δC +λh)∗

(
p+u∗ –x∗)}.

(iii) Inclusion (26) holds.
Then (i) ⇒ (ii) ⇒ (iii).

The proof of the following theorem is almost similar to that of Theorem 3.5, so we omit
it here.

Theorem 4.2 Let x0 ∈ dom(f – g) ∩ A. Suppose that (27) holds. Consider the following
statements.

(i) The following inclusion holds:

∂(f – g + δA)(x0) ⊆
⋂

ε>0
u∗∈dom g∗

( ⋃

λ∈S⊕
(λh)(x0)∈[–ε,0]

{
∂ε(f + δC + λh)(x0) – u∗}

)
.
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(ii) For each p ∈ X∗ such that x0 ∈ S(Pp), we have the following equality:

min
x∈A

{
f (x) – g(x) – 〈p, x〉} = inf

u∗∈dom g∗ sup
λ∈S⊕

{
g∗(u∗) – (f + δC + λh)∗

(
p + u∗)}.

(iii) The following inclusion holds:

∂(f – g + δA)(x0) ⊆
⋂

ε>0
u∗∈∂g(x0)

( ⋃

λ∈S⊕
(λh)(x0)∈[–ε,0]

{
∂ε(f + δC + λh)(x0) – u∗}

)
.

Then (i) ⇒ (ii) ⇒ (iii).

4.2 Application to composite optimization problem
In the case where g = 0, problem (Pp) is reduced to the composite optimization problem

inf f
(
ϕ(x)

)
– 〈p, x〉

s.t. x ∈ C, h(x) ∈ –S.
(Pp)

Noting that g∗ = δ{0}, it follows that problem (Dp) reduces to the problem

sup
(λ,β)∈S⊕×dom f ∗

{
–f ∗(β) – (βϕ + δC + λh)∗(p)

}
. (Dp)

Thus by Theorem 3.5 and Remark 3.3(b) we straightforwardly get the following corollary,
which was given in [7, Theorem 4.5].

Theorem 4.3 Let x0 ∈ dom f (ϕ(x)) ∩ A. Then (13) holds at x0 if and only if for each p ∈ X∗

with x0 ∈ S(Pp), problem (P) has a stable zero duality gap property, that is,

min
x∈A

{
f
(
ϕ(x)

)
– 〈p, x〉} = sup

λ∈S⊕
sup

β∈dom f ∗

{
–f ∗(β) – (βϕ + δC + λh)∗(p)

}
,

where S(Pp) := {x0 ∈ A : f (ϕ(x0)) – 〈p, x0〉 = minx∈A{f (ϕ(x)) – 〈p, x〉}}.

4.3 Application to conic programming
Let X = Z, ϕ = IdX , and g = 0. Then problem (Pp) is reduced to the classical convex conical
programming problem

inf f (x) – 〈p, x〉
s.t. x ∈ C, h(x) ∈ –S,

(Pp)

and problem (Dp) reduces to the following Fenchel–Lagrange dual problem

sup
λ∈S⊕

sup
x∗∈X∗

{
–f ∗(x∗) – (δC + λh)∗

(
p – x∗)}. (Dp)

As mentioned in Remark 3.3(c), the conditions strong-(ABCQ) and (ABCQ) are collapsed
into condition (ABCQ). Thus by Theorem 3.5 we straightforwardly get the following corol-
lary, which was given in [7, Theorem 5.3].
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Theorem 4.4 Let x0 ∈ dom f ∩ A. The condition (ABCQ) holds at x0 if and only if for each
p ∈ X∗ with x0 ∈ S(Pp), problem (P) has a stable zero gap property, that is,

min
x∈A

{
f (x) – 〈p, x〉} = sup

λ∈S⊕
sup

x∗∈X∗

{
–f ∗(x∗) – (δC + λh)∗

(
p – x∗)},

where S(Pp) = {x0 ∈ A : f (x0) – 〈p, x0〉 = minx∈A{f (x) – 〈p, x〉}}.
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