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1 Introduction

pr>1 +——1 Apyby > 0,0< Y > ah, <00,and 0 < Y o2, b < 0o, then we have the
followmg Hardy—Hllberts inequality w1th the best possible constant factor 7/ sin(%) (ct.
[1], Theorem 315):

0o 0o 00 1p / so 1/q
amb, T
Syt ewmmlne) (%) X

Mulholland’s inequality with the same best possible constant factor was provided as
follows (cf. [1], Theorem 343, replacing “=, b” by a,,, by,):

> oA db b4 =1 o 1 v
i P —p1) . 2
Z Z Inmn < sin(m /p) (Z mt Pa"’) (; nl-a ”) @
If f(x),g(y) > 0,0 < [, f7(x)dx < 00, and 0 < 3~ g%(y) dy < 00, then we still have the
following Hardy—Hilbert’s integral inequality (cf. [1], Theorem 316):

mf(x)g(y) T 00 1/p %) 1/q
[ [l (o). o

where the constant factor 7/ sin(%) is the best possible. Inequalities (1), (2), and (3) with
their extensions are important in analysis and its applications (cf. [2-12]).

In 1934, a half-discrete Hilbert-type inequality was given as follows (cf. [1], Theo-
rem 351): If K(¢) (¢ > 0) is decreasing, p > 1,}7 + % =1L0<¢(s) = [, K@)t dt < oo, then
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we have

) 00 p %)
/ xP2 (ZK(nx)a,,) dx < ¢P <$> Z ab. (4)
0 n=1 n=1

In the last ten years, some new extensions of (4) with their applications and the reverses
were provided by [13-17].

In 2016, by the use of the technique of real analysis, Hong [18] considered some equiv-
alent statements of the extensions of (1) with the best possible constant factor related to
a few parameters. The other similar works about Hilbert-type integral inequalities were
given by [19-22].

In this paper, following the way of [18], by the use of the weight coefficients, the idea
of introducing parameters and Hermite—Hadamard’s inequality, a more accurate reverse
Mulholland-type inequality with parameters and the equivalent forms are given in The-
orem 1. The equivalent statements of the best possible constant factor related to a few

parameters and some particular cases are considered in Theorem 2 and Remarks 1-2.

2 Some lemmas
In what follows, we assume that p < 0 (0 < g < 1),}7+ L-1,6nelo0, %],s eN={1,2,...},0<

q
1< <¢,0<A<A<s,X1;<1(i=1,2),a,,b,>0,such that

Ahy My
© - l(m—é)

0< Z a’ <oo and
(m—-&)-r "
m=2
0o 1 qll-(2+2 1)1
I T ()
q
O<Z PR bl < oo.

For y = A1, A — Xy, we set

P
)= | =t
v /0 szl(t*/s + k)

By Example 1 of (23], it follows that

e R, =(0,00). (5)

In particular, for s = 1, we have

0 yy-1 n_
k(y) = f dt-— "
0

t+q _ksin(’;—") !

for s = 2, we have
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Lemma 1 Define the following weight coefficients:

oo

e n*2 (n - n) 1
@)=l = 8) ; [T In*5(m = &) + cx In*5(n =) =1

(m e N\{1}),

i 0 In*17 (m — ) 1
) =00 L G 8y ol €

(n e N\{1}).
For Ay <1, we have
ws(ha,m) <ks(h—23)  (m € N\{1});
for X1 <1, we have
k(A1) (1 = 05(h1, 1)) < (A1, 1) < ks(M1) (€ N\{1}),

where 6;(11) is indicated by

-1

1
95()\.1,1’1)1 1) /. l_[k : u)”/5+ck) dl/lZO(m) E(O, 1).

Proof Sincefor0<Xiy; <1,0<A <s,y> %, we find that

d ro-1 i l
(- )dlln (y-n) =0, (l)d ¥ y—n >0 and
d 1
(-1 )’ >0 (i=1,2).
dy' [Tiey In*(m = £) + ¢ In*5 (y — )]
It follows that
l 1 Ao—1 _
1L o) 50 (i=0,1,2).

dy' [Tia [In**(m =€) + e In™*(y = )] y = 1

By Hermite—Hadamard’s inequality (cf. [24]), we find

I Y(y—n) 1
605()»2, }’I’l) < ln)»—lz (Wl - i:) / 3 rls (y Als d_)/
3 [ ™ (m =€) + cxIn* (y = m)] ¥ -
A )»2 Wl S)/ In*274~ 1()’ 77) 1
b T (0 g y =
Setting u = ln((y oy » it follows that du = hi'z‘ (;” ns)) yln dy and
In(m-§)
D) a1 S|
wsgm) < [ " _ay< ———————du=k(\ - Ay),
o 0 [Teca 85 + i) o [T +c) ) ’

namely (8) follows.

(8)

)

(10)
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In the same way, for A; < 1, by Hermite—Hadamard’s inequality, we find

i In*17(x - &) 1
ZD's()\l;n) <In (Vl ﬂ)/ Hk l[ln)\/s x g) e ln;\/s(n _ 7])] x —E

Setting u = :28:3 , it follows that

00 ukl— -1
w's()\zlxn) < /;11(%—5) 1_[7< (L{)”/s +Ck l—Ik l(u)‘/s +Ck_ dl/l:ks()\zi)‘

=)

By the decreasing property, we also find

In*1-1 1
w(ry, 1) > I (n - 17)/ T e —f) s dx
]_[kl[ln =& +qgIn*(m-—n)]x-§&
/OO u)\.l—l [ ]
= ——du=k;(A1)|1 - 05(Ay,m)| >0,
ey TG + )
n(2— E) 1 A

ln(n m 1 In(2 - &)™
0 < 65(Aq, du = .

<Blum = xl) * xlks(xl)c;[ln(n—n)}

Hence, (9) and (10) follow. O

Lemma 2 We have the following inequality:

o el o]

amub,
ZZ [Tacal [In*s(m - &) + ¢ In*(n = )]

n=2 m=2
- ;L 1
1 1 i lnp[l—(ApAz*?l)]—l(m_%_) p
Py _ q P
>k (A — Ao)ks ()\1){% (m_%-)lfp Ay
- 1
o ln‘I[l ( )L1+A2 (I’l 1) q
1-6(Aq, bt . 11
x:;( ) (1)

Proof By reverse Holder’s inequality (cf. [24]), we obtain

) 00 o0 1 In%27D2 (5 — £) I (51 — )
g3 [Tic 0" 0m = §) + e 1™ (= )] [ (=) (m—§)1a am]

n=2 m=2
In®1- 1)/q(m £) In1-*2) /P(n 1)

X[ (m-8Va () ]

o n( 10"} (n — ) 1
>iz|:ln " S)an 1[1n’\/sm E)+cxIn* (m—n)n- 77:|

m=2

lnp(lf)»l)fl(m_%-) , 1%
SEETEOET

22 I (m - &) 1
:Z[ln " n)znkl A/s(m—é)+6khlm(”‘_’7)]m_é}

n=2
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1

q(1-rp)-1(,, _ q

 n (=),
(m—mt-a "

)L/LQ )Ll

p[1-(

- In a7 m - £ , ’
=iZws(x2,m) RGN

m=2

1

00 1-(2=A
1 ql 7
X {Zws(kl,n) 1 U ’7) n} .
n=2

(n— 77)1 a

Then, by (8) and (9), we have (11). O
Remark 1 By (11), for A1 + A = &, we find

™27} (n — 1)

Ao, m) = In* € N\{1}),
ws(Ao,m) =1 (m — E)an 0 (= &) 1 o 100 )] 71— 7 (m eN\{1})
o~ P o £) A )
0< —— 2P <00, 0< —bl<oo,
o (m=g)r " ; (n—mn)t»
and the following inequality:
= i I = &) + e I (n = )]
1
X pPd-*1)-1 (m—¢&) »
> ks()‘l) |:Z —_ﬂp
—  (m-g)r "
(1-2g)-1 7
= I3t ) 17
X |:Z(1 —05(A1, n))wbﬁ} . (12)
n=2

In particular, for £ = n = 0, we have y(A;,n) = O(—=—) € (0,1), and

Ml

Z Z [T 1(ln”sm + ¢ In** )

n=2 m=2

1 1
© pr-2)-1 ., p| In?(-22)-1 q
> ks(A1) |:Z Taﬁq Z(l 7 (MM))T[’Z . (13)

m=2 n=2

Hence, (12) is a more accurate extension of (13).

Lemma 3 For 0 < € < gAy, we have

o 1
Li=)" O(lnwﬂ(n n)) =0(1). (14)

n=2 n=

Proof There exist constants m, M > 0 such that

1

2-n) - 1
O<m <L<M +
Z 1n)q+£+l(n 77) -7 — — |:ln)q+£+1(2 n) ,,1223: 1 )q+£+1(n n) n-n
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By Hermite—Hadamard’s inequality, it follows that

- °° 1 1
0<LSM 1 Atet+lig + 5 1A1+8+1 _ _ d_)/
n 2-n J; In @-ny-n
2-n)t 1 5
=M|: ,\( 1’7) + lnxl‘g(——n)]
In"1** (2 -n) A +e 2

(2_77)_1 1 A1 —gA 5
M W+—ln 17942 ——=n < Q.
In 2-n M 2

Hence, (14) follows.

IA

Lemma 4 The constant factor k;(\1) in (12) is the best possible.

Proof For 0 < & < gAy, we set

_ M m—g)

R /)
Ay o= , =—"=

n—n

S
S
i

(m,n € N\{l}).

If there exists a constant M > k;(11) such that (12) is valid when replacing k(A1) by M,
then, in particular, we have

— )l
s (n—m)t>

00 (-r)-1(,, P oo (A-A2)~1(p, _ 1\ _ 7
>M|: %aﬁi [Z(l—@s(kl,n))wlﬂ} .
m=2

In view of (10) and (14), we obtain

(m— &)t (m - &)

m=2

R (1-A1)-1(,,, A1—6— _ }_17
j>M{Zlnp (m — £) P11 (1m s)}

1

. L N 1

In20-22)-1(y; _ ) In?2—5-49 (1 — 1

A (1-6,00,m) n (n-n) In (n-n)
~ (n—n)ta (n—mn)1

e & ln-f-1<m—s>]‘l’

=M 1t +m, -

=3

1

o0 ln—s—l(n _ 77) S 1 ln—s—l(n _ 77) q
(B Rol)

In*!(n - 1)

n=2 e
el 00 1p—€-1 ’
M[ﬂ o ﬁd}
2-¢& 2 x=§
%0 1t l(y n [od] < 1 ) 1 %
dy-3"0
x |:/; y n2=2: lnk1+e+1(n_ 77) n-n
—e-1 ; 7
8 [eln 2-%) +Int(2— g):| [In™*(2-n)-0(1)]7.
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By (8), setting A, = A5 — te 0,M)(hy <1,hq = Aq + £), we find

1nt2-5)-

)\,1+ ) ! (n r))
I= Ziln 7 (m — S)anl[lnx/sm £€) + ¢ In**(n — )] n=n }

I (m — &)
« — 57

m—§
-l-g(9 _ S —1-¢ _
Zws()»z,m) ( my g)</ (M)[n ZEZS €)+§m m(jng ﬂ
[ @2-&) [ x-§)
Sksm[ el R dx]
—1-g(9 _
= éks(il)[sm?(zg) +In7*(2 - é)}.
Then we have
-1-¢
ks(il)[gm?(z‘g) + ln-8<2—s)}
—e-1 117 1
zei>M[8h‘+§_g)+mf(z-5)}[ f(2-n)-e0(1)]7.

For ¢ — 0%, we find k(A1) > M. Hence, M = ks(1,) is the best possible constant factor
of (12).

Setting ):1 =2y *—1,12 =AMy %2, we find

p q q

~ = A=Ay A1 A=A Xy A A
AM+Ay= + —+ +—=—+-
p q q r p q

:A,

and we can rewrite (11) as follows:

~ 1
1 1 X P11y, »
I> ki (= A2)k{ (A1) |:Z n—wﬂfn}

o (m=g
© lq(l—iz)—l _ %
X [2(1-95(&,71))“(”_—”)(1”_,1”)193} . (15D)

1 1
Lemma5 IfA € (A +(1—q)Ay, (1= p)A1 +Xy), the constant factor ki (. — Ay)ks! (A1) in (15)
is the best possible, then we have ) = Ay + As.

Proof For A1 + (1 — qg)Ap < A < A1 + Ay, we obtain

by }‘_)‘2 )‘_)‘2 ~ A )Lz )»1
}"12 + =)\—)\,2>0, )\,lz———+—<)\‘,
p q p p q

O0<h<A0<hy=A—A; <A
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for A1 + Ay < A < (1 — p)Aq + Ay, we still obtain

~ Ay Ao ~ A A Ay
)»2>—+——A2>0 Ap=———+ —<A,

q P 9 9 b
0<12<)L,0<)~»1=A—)~Lz<)».

Hence, we have X; € (0,1) (i = 1,2), and then k;(;) € R
1 1

If the constant factor kZ (A — o)k (A1) in (15) is the best possible, then, in view of (12),
the unique best possible constant factor must be the form of k,(%1), namely

ks(hy) = kZ (= Aa)kd (1)

By reverse Holder’s inequality, we find

. A—A A
ks(xl)m( 2 +—1)
p q

1
),

o TR 1
1 A—hp—1 )p </ 1 A-1 )q
> " du " du
(f [T+ a0 o Tl )

= k2 (n = A)kd (A1). (16)

We conclude that (16) keeps the form of equality if and only if there exist constants A
and B such that they are not all zero and (cf. [24])

Au)\,_)\'2_1 = Buxl_l a.e. in R+ = (0! OO)

Assuming that A # 0 (otherwise, B = A = 0), it follows that #*21 = 4 a.e. in R,, and
then A — Ay — A1 =0, namely A = A; + As.

g
3 Main results and particular cases
Theorem 1 Inequality (11) is equivalent to the following inequalities:
00 A Al AZ 00 ry i
Z - (n—n) Z Am ?
(1 O5(A1,m)P~L(n — ) Hizl[ln“s(m —&) + e In**(n-1n)]
: : W ),
Py _ q
>k (k= M)k (1) ; (m LA (17)

> T D ) [ by “
]1 = {ZZ WI—S Z s ]

- I—[kzl[ln“s(m —&) +In*(mn-n)

A— 1
q-(A71+2

1 1 o L)1 a
> ki’ (k= ha)k! (M){Z(l — 65(A1,m)) n T n)lfq(n n)bZ} . (18)
n=2
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If the constant factor in (11) is the best possible, then so is the constant factor in (17) and
(18).

Proof Suppose that (17) is valid. By Holder’s inequality, we have

1 Amh
L T R (V) e A
I =
;{(1 O5(A1, m)) V4 (n — n)””;ﬂklln*’s(m £) + e In*(n - )]
1_(Ah, ro
1ne™C7 ) (n - )
o (e
N N 1
i -G By
z}!%(l—es(m,n)) e (19)

Then, by (17), we obtain (11). On the other hand, assuming that (11) is valid, we set

A=A

_ " ) i m o
T =0, mP (=) | A [T I (m = &) + e I (= )] |
n e N\{1}.

If ] = 0, then (17) is naturally valid; if J = 0o, then it is impossible that makes (17) valid,
namely J < co. Suppose that 0 < J < co. By (11), we have

> -5 +172)]_1(11 -n)
_ q
;(1 05()\1, n)) (l/l _ T])l_q n
ST PV N 8 e
=JP =15k (A—A2)ks (A a,
> ks ( 2)ks' (A1) ; (= %_) >

-1 42

> ln 7 n- " g ‘
1 Os(A1,m ,
i;‘ G (n =)t }

A=Ay A 1
o -G+ 20, G
1:!2(1—@@1,;4))“ N 7Y,

—~ (n—m)t-1
-1 ’
(m-§)
(m—§)tr afn} ’

117[1 Alz )Ll)

> kL (= M)k (M){Z

m=2

namely (17) follows. Hence, inequality (11) is equivalent to (17).
Suppose that (18) is valid. By Holder’s inequality, we have

> lnéf(%J'%)(m—E)
" ;{ g )
7 D - ) & 2
x { (m—§&)Va ,12_2: [T 05 (m = &) + ¢ In** (1 — )]
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k—

o [1-(=2+
ziZlnp =) }h (20)

(m— S )i-r

m=2
Then, by (18), we obtain (11). On the other hand, assuming that (11) is valid, we set
A= )»2 )»1

gq-1

T en ) [ by
m = m—£& [T, [I0*5(m = &) + cx In*(n — )] ’

n=2

m e N\{1}.

If J; = 0, then (18) is naturally valid; if /; = oo, then it is impossible that makes (18) valid,
namely /; < oo. Suppose that 0 < J; < co. By (11), we have

11‘1[ —(2 ]1(m %-)
Z (m £)r “n

m=2

m=2

1 1 Pl +—)] 1

o0 R AT
X {Z(l—@s(kl,n)) 1 e . bZ} ,

n=2

o 1[7[1(
hziz

m=2

A-hy )\1)

Tom-g) |
(m—§)'» "

_(AA L My
0 lnq[l (=~

; ; R
>k (= 22)K ()] D) (1= 60s00,m)) PR 748
n=2

namely (18) follows. Hence, inequality (11) is equivalent to (17) and (18).

If the constant factor in (11) is the best possible, then so is the constant factor in (17)
and (18). Otherwise, by (19) (or (20)), we would reach a contradiction that the constant
factor in (11) is not the best possible. O

Theorem 2 If A € (A1 + (1 —q)A, (1 — p)A1 + Ay), then the following statements (i), (ii), (iii),
and (iv) are equivalent:
1 1
(i) k& (A = Ao)ki’ (A1) is independent of p, q;
1 1
(ii) k& (X — A2)ks’ (A1) is expressed by a single integral;
1 1
(iii) k& (A = Ao)ks’ (A1) in (10) is the best possible constant factor;
(iv) A=2A1+ A
If statement (iv) follows, namely A = A1 + Ao, then we have (12) and the following equiva-
lent inequalities with the best possible constant factor ks(\1):

N ) > 17
Z n Am
{ — (1= 6,(r, mp(n—1) [ —~ [Ty (I (1 — &) + ¢ In*(n - n)]] }

m

InP-*1 ’
>ks(xl){2 “(m—;)’f’p“am} : 1)

m=2
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0L — ) [ & by ok
{mz m—§ iZ HLl[ln“S(m—s)+ck1n”~“<n—n)1} }

i In?1-*2)-1(;, _ %
>ks(kl)|:§(l—Gs(kl,n))ll(n_—MbZ] . (22)

Proof (i)=(ii). By (i), we have

1 1 1 1
ki (A = xo)ks' (A1) = lir? k§ (A = do)ks" (A1) = ks(R1),
g—>1*

1 1

namely k¢ (A — Ap)k (A1) is expressed by a single integral

W dy.

) = / ~ 1
Yl Tho s+ )

(il)=(iv). If k” (o kz)kq (A1) is expressed by a convergent single integral (’\ 22 4 ’\q‘)

then (16) keeps the form of equality. In view of the proof of Lemma 5, it follows that A =
A+ Ao . )

(iv)=>(i). If A = A; + Ay, then k2 (A — Ap)kd (A1) = ks(A1), which is independent of p,q.
Hence, it follows that (i) < (ii) < (iv).

(iii)=(iv). By Lemma 5, we have X = A1 + klz.

1 1
(iv)=(iil). By Lemma 4, for A = A1 + Ay, k& (A — A2)k{’ (A1) (= ks(A1)) is the best possible
constant factor of (11). Therefore, we have (iii) < (iv).
Hence, statements (i), (ii), (iii), and (iv) are equivalent. O

Remark2 For A =1,A; = Ay = %,
~ /1 00 -1/2
ki = ) := 7
S(2> _/0 [T (8 + ck) " sin(Z kX: k 1;[]() G- e

R —1/2 1
95(5,}’1) = k( ) / Hk 1(u1/5+ck) O(ilnlm(n_n)> E(O,l))

in (12), (21), and (22), we have the following equivalent inequalities with the best possible

constant factor /A(S( % ):

mbn
ZZ [Tial [InYS(m — &) + cx In'*(n = )]

n=2 m=2

~ /1 In2 7 (m - &) > A1 111%_1(71—’7) g
>"S(§)[§W“"’} [;(1‘95(5’”>>W"4 S

> ]ng"l(n -n) > am "1?
{Z; (1- 6,3, m)P-1(n - n) [g [Tjey (050 = £) + ¢ In'(n - n)]} }

1 > lng’l(m &) ’
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= Ind o €) b, N
; m—§ ; ]_[Zzl[lnl/s(m — &)+ InY(m - n)]
~ (1 > ~ (1 ln%‘l(n—n) i
H() 200G ) *

n=2

4 Conclusions

In this paper, by the use of the weight coefficients, the idea of introducing parameters
and Hermite—Hadamard’s inequality, a more accurate reverse Mulholland-type inequality
with parameters and the equivalent forms are given in Theorem 1. The equivalent state-
ments of the best possible constant factor related to a few parameters and some particular
cases are considered in Theorem 2 and Remarks 1-2. The lemmas and theorems provide

an extensive account of this type of inequalities.
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