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Abstract
Let X = {X1, . . . ,Xm} be a system of smooth real vector fields satisfying Hörmander’s
rank condition. We consider the interior regularity of weak solutions to an obstacle
problem associated with the nonhomogeneous nondiagonal quasilinear degenerate
elliptic system

X∗
α(Aαβ

ij (x,u)Xβu
j) = Bi(x,u,Xu) + X∗

αg
α
i (x,u,Xu).

After proving the higher integrability and a Campanato type estimate for the weak
solutions to the obstacle problem for the homogeneous nondiagonal quasilinear
degenerate elliptic system, the interior Morrey regularity and Hölder continuity of
weak solutions to the obstacle problem for the nonhomogeneous system are
obtained.
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1 Introduction
Let Ω ⊂R

n be a bounded domain and {X1, . . . , Xm} be a system of smooth real vector fields
in R

n(m ≤ n), satisfying Hörmander’s rank condition [1]:

rank
(
Lie{X1, . . . , Xm}) = n.

The main purpose of this paper is to consider the obstacle problem for the nonhomoge-
neous nondiagonal quasilinear degenerate elliptic system

X∗
α

(
Aαβ

ij (x, u)Xβuj) = Bi(x, u, Xu) + X∗
αgα

i (x, u, Xu), (1.1)

where i, j = 1, 2, . . . , N ; α,β = 1, 2, . . . , m, X∗
α is the formal adjoint of Xα , Bi and gα

i are both
Carathéodory functions from (x, u, ξ ) ∈ Ω × R

N × R
mN into R, the coefficients Aαβ

ij (x, u)
are bounded functions satisfying some assumptions that will be specified later.
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Given an obstacle function ψ = (ψ1, . . . ,ψN ) and a boundary value function θ =
(θ1, . . . , θN ) with θ (x) ≥ ψ(x) a.e. in Ω , we define

K
θ
ψ

(
Ω ,RN)

=
{

v ∈ S1
X
(
Ω ,RN)

: v ≥ ψ a.e. in Ω , v – θ ∈ S1
X,0

(
Ω ,RN)}

.

Here we write θ (x) ≥ ψ(x) to mean θ i(x) ≥ ψ i(x) for i = 1, . . . , N .
A function u ∈ Kθ

ψ (Ω ,RN ) is said to be a weak solution to the Kθ
ψ -obstacle problem for

(1.1) if

ˆ
Ω

Aαβ

ij (x, u)XβujXαφi dx ≥
ˆ

Ω

Bi(x, u, Xu)φi dx +
ˆ

Ω

gα
i (x, u, Xu)Xαφi dx

for all φ ∈ C∞
0 (Ω ,RN ) with φ(x) + u(x) ≥ ψ(x) a.e. x ∈ Ω .

In the classical Euclidean setting, the interior regularity for solutions of elliptic equations
and systems has been extensively investigated. Campanato in [2] and [3] obtained gradient
estimates for solutions to linear elliptic equations and systems in divergence form with
continuous coefficients. Applying Campanato’s approach (see also [4] and [5]), Huang [6]
proved the gradient estimates in the generalized Morrey spaces L2,λ

ϕ of weak solutions to
the linear elliptic systems

–Dα

(
aαβ

ij (x)Dβuj) = gi(x) – div f i(x), i = 1, 2, . . . , N ,

where the coefficients aαβ

ij (x) ∈ L∞ ∩ VMO. Similar results for the nonlinear elliptic sys-
tems of the form (1.1) with X replaced by the usual gradient D = (D1, . . . , Dn) were given
by Daněček and Viszus in [7, 8], and [9]. For more related papers, we refer readers to
[10–12]. Using the techniques that appeared in these papers, the local Morrey regularity
and Hölder continuity of weak solutions to the obstacle problems associated with elliptic
equations with constant coefficients or continuous coefficients have been obtained in [4,
13, 14], and [15].

The study of interior regularity for degenerate elliptic equations and systems has at-
tracted much attention (see, e.g., [16–19], etc.). Di Fazio and Fanciullo in [16] pointed out
that the local gradient estimates in [6] still hold true for the diagonal degenerate elliptic
systems. The Morrey and Campanato regularities for weak solutions to the nondiagonal
degenerate elliptic systems were established by Dong and Niu [19]. Another method of
the so-called A-harmonic approximation for proving partial optimal Hölder regularity for
weak solutions to nonlinear elliptic or subelliptic systems can be found in [20–23] and the
references therein.

Since the degenerate obstacle problem is an important topic in various branches of the
applied sciences, such as mechanical engineering and robotics, mathematical finance, im-
age reconstruction and neurophysiology, a large amount of work has been devoted to the
study of regularity for solutions to the relevant problems (see, for example, [24–29]). Gi-
anazza and Marchi in [28] proved a Wiener criterion and an estimate on the modulus of
continuity for weak solutions to the obstacle problem for a quasilinear degenerate ellip-
tic equation constructed by Hörmander vector fields. Marchi in [29] derived the Hölder
continuity of the horizontal gradient of weak solutions to the double obstacle problem
for subelliptic equations in the Heisenberg group. Du and Li in [25, 26] proved the global
higher integrability and interior regularity for subelliptic obstacle problems.
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However, as far as we know, there is no result concerning the problem of regularity for
solutions to the obstacle problem related to the nondiagonal degenerate elliptic systems. In
this paper, we try to fill this gap. The aim of this paper is to establish the Hölder regularity
results for weak solutions to theKθ

ψ -obstacle problem for (1.1). In order to state our results,
we make the following hypotheses:

(H1) The coefficients Aαβ

ij (x, u) = aαβ(x)δij + Bαβ

ij (x, u), where aαβ (x) ∈ L∞(Ω)∩VMO(Ω)
satisfying the strong ellipticity condition

aαβ (x)ξαξβ ≥ ν|ξ |2, a.e. x ∈ Ω ,∀ξ ∈R
m (1.2)

for some ν > 0, and Bαβ

ij are measurable and there exists a constant 0 < δ < 1
2 small

enough such that, for any (x, u) ∈ Ω ×R
N ,

∣∣Bαβ

ij (x, u)
∣∣ ≤ δν;

(H2) For any (x, u, ξ ) ∈ Ω ×R
N ×R

mN ,

∣
∣Bi(x, u, ξ )

∣
∣ ≤ fi(x) + L|ξ |γ0 ,

∣∣gα
i (x, u, ξ )

∣∣ ≤ f α
i (x) + L|ξ |γ ,

where 1 ≤ γ0 < 1/q0, q0 = Q/(Q + 2), 0 ≤ γ < 1, L > 0 is a constant, and

fi ∈ L2q0,λq0
X (Ω), f α

i ∈ L2,λ
X (Ω), 0 < λ < Q.

Here Q is the homogeneous dimension relative to Ω and in the sequel we set f = (fi),
f̃ = (f α

i ).
Now we state our main results.

Theorem 1.1 Suppose that (H1) and (H2) hold and Xψ ∈ Lσ ,λ
X (Ω ,RmN ), σ > 2. Let u ∈

S1
X,loc(Ω ,RN ) be a weak solution to the Kθ

ψ -obstacle problem for system (1.1), then Xu ∈
L2,λ

X,loc(Ω ,RmN ).

Theorem 1.2 Suppose that (H1) and (H2) hold and Xψ ∈ Lσ ,λ
X (Ω ,RmN ), σ > 2. If u ∈

S1
X,loc(Ω ,RN ) is a weak solution to the Kθ

ψ -obstacle problem for (1.1) and 0 < λ < 2, then
u ∈ C0,α

X (Ω ,RN ) with α = 1 – λ
2 .

We apply the idea in [13] for proving the Hölder continuity of weak solutions to the
obstacle problem for elliptic equation with continuous coefficients to the obstacle problem
associated with a nondiagonal degenerate elliptic system with VMO coefficients. Inspired
by the way in [16] and [19], we divide (1.1) into a nondiagonal homogeneous system and a
nondiagonal nonhomogeneous system and then consider respectively the corresponding
obstacle problem to prove our main results.

The paper is organized as follows. In Sect. 2, we present some concepts and results re-
lated to Carnot–Carathéodory spaces that will be used in our proof. In Sect. 3, we first
prove the higher integrability for gradients of weak solutions to the Kθ

ψ -obstacle prob-
lem for the homogeneous system (see (3.1) below) by constructing suitable test functions
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and using the Gehring lemma on the metric measure space. Based on this result, a Cam-
panato type estimate for gradients of weak solutions to the Kθ

ψ -obstacle problem for (3.1)
is obtained. Section 4 is devoted to the proofs of our main results. We prove Theorem 1.1
by applying the Campanato type estimate established in Sect. 3 and an iteration lemma
(Lemma 2.7 below). Theorem 1.2 is a direct consequence of Theorem 1.1 and the integral
characterization of Hölder continuous functions.

2 Preliminaries
Let

Xα =
n∑

k=1

bαk
∂

∂xk
, bαk ∈ C∞,α = 1, 2, . . . , m,

be a family of vector fields in R
n satisfying the Hörmander’s condition. We consider Xα as

a first order differential operator acting on u ∈ Lip(Rn) defined by

Xαu(x) =
〈
Xα(x),∇u(x)

〉
, α = 1, 2, . . . , m.

We denote by Xu = (X1u, . . . , Xmu) the gradient of u with respect to the system X =
{X1, . . . , Xm}, and hence

∣
∣Xu(x)

∣
∣ =

( m∑

α=1

∣
∣Xαu(x)

∣
∣2

) 1
2

.

An absolutely continuous curve γ : [a, b] → R
n is said to be admissible for the family X if

there exist functions cα(t), a ≤ t ≤ b, satisfying

m∑

α=1

cα(t)2 ≤ 1 and γ ′(t) =
m∑

α=1

cα(t)Xα

(
γ (t)

)
, a.e. t ∈ [a, b].

The Carnot–Carathéodory distance d(x, y) generated by X is defined by

d(x, y) = inf
{

T > 0 : there is an admissible curve γ ,γ (0) = x,γ (T) = y
}

.

Following the accessibility theorem of Chow [30], the distance d is a metric and therefore
(Rn, d) is a metric space which is called Carnot–Carathéodory space associated with the
system X. The metric ball is denoted by

BR(x0) = B(x0, R) =
{

x ∈R
n : d(x, x0) < R

}
.

If σ > 0 and B = B(x0, R), we will write σB to indicate B(x0,σR).

Theorem 2.1 ([31, 32]) For every compact set K ⊂ Ω , there exist constants C1, C2 > 0 and
0 < λ < 1 such that

C1|x – y| ≤ d(x, y) ≤ C2|x – y|λ
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for every x, y ∈ K . Moreover, there are Rd > 0 and Cd ≥ 1 such that

∣∣B(x, 2R)
∣∣ ≤ Cd

∣∣B(x, R)
∣∣ (2.1)

whenever x ∈ K and R ≤ Rd .

Here, |B(x, R)| denotes the Lebesgue measure of B(x, R). The best constant Cd in (2.1)
is called the doubling constant. We say that Q = log2 Cd is the homogeneous dimension
relative to Ω . As a consequence of doubling condition (2.1), we have

|BtR| ≥ CtQ|BR|, ∀R ≤ Rd, t ∈ (0, 1), (2.2)

where C = C–2
d .

Now we introduce the Sobolev spaces associated with X = {X1, . . . , Xm}. Given 1 ≤ p <
∞, we define the Sobolev space by

S1,p
X

(
Ω ,RN)

=
{

u ∈ Lp(Ω ,RN)
: Xαu ∈ Lp(Ω ,RN)

,α = 1, 2, . . . , m
}

with the norm

‖u‖S1,p
X (Ω ,RN ) = ‖u‖Lp(Ω ,RN ) +

m∑

α=1

‖Xαu‖Lp(Ω ,RN ).

Here, Xαu is the distributional derivative of u ∈ L1
loc(Ω ,RN ) defined by the identity

ˆ
Ω

Xαu · φ dx =
ˆ

Ω

u · X∗
αφ dx, ∀φ ∈ C∞

0
(
Ω ,RN)

,

where X∗
α = –

∑n
k=1

∂
∂xk

(bαk·) is the formal adjoint of Xα , not necessarily a vector field
in general. The space S1,p

X,0(Ω ,RN ) is defined as the completion of C∞
0 (Ω ,RN ) under the

norm ‖ · ‖S1,p
X (Ω ,RN ). In particular, we denote S1,2

X (Ω ,RN ) and S1,2
X,0(Ω ,RN ) by S1

X(Ω ,RN )
and S1

X,0(Ω ,RN ), respectively.
The following Sobolev inequalities for vector fields can be found in [33] and [32].

Theorem 2.2 For every compact set K ⊂ Ω , there exist constants C > 0 and R̄ > 0 such that,
for any metric ball B = B(x0, R) with x0 ∈ K and 0 < R ≤ R̄, it holds that, for any f ∈ S1,p

X (BR),

( 
BR

|f – fR|κp dx
) 1

κp
≤ CR

( 
BR

|Xf |p dx
) 1

p
,

where fR =
ffl

BR
f dx is the integral average of f on BR, and 1 ≤ κ ≤ Q/(Q – p), if 1 ≤ p < Q;

1 ≤ κ < ∞, if p ≥ Q. Moreover,

( 
BR

|f |κp dx
) 1

κp
≤ CR

( 
BR

|Xf |p dx
) 1

p
,

whenever f ∈ S1,p
X,0(BR).
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Now we define the Morrey spaces, the Campanato spaces, VMO, and the Hölder spaces
with respect to the Carnot–Caratheodory metric [16, 34]. To simplify our description, we
introduce the following notations:

Ω(x, R) = Ω ∩ B(x, R), fx,R =
1

|Ω(x, R)|
ˆ

Ω(x,R)
f (y) dy

and

d0 = min{diamΩ , Rd}.

Definition 2.3 For 1 < p < ∞ and λ ≤ Q, we say that f ∈ Lp
loc(Ω ,RN ) belongs to the Mor-

rey space Lp,λ
X (Ω ,RN ) if

‖f ‖Lp,λ
X (Ω ,RN ) = sup

x∈Ω ,0<ρ<d0

(
ρλ

|Ω(x,ρ)|
ˆ

Ω(x,ρ)

∣∣f (y)
∣∣p dy

) 1
p

< ∞;

f ∈ Lp
loc(Ω ,RN ) belongs to the Campanato space Lp,λ

X (Ω ,RN ) if

‖f ‖Lp,λ
X (Ω ,RN ) = sup

x∈Ω ,0<ρ<d0

(
ρλ

|Ω(x,ρ)|
ˆ

Ω(x,ρ)

∣
∣f (y) – fx,ρ

∣
∣p dy

) 1
p

< ∞.

Definition 2.4 For α ∈ (0, 1), the Hölder space C0,α
X (Ω̄ ,RN ) is the collection of functions

f : Ω̄ →R
N satisfying

‖f ‖C0,α
X (Ω̄ ,RN ) = sup

Ω

|f | + sup
Ω̄

|f (x) – f (y)|
d(x, y)α

< ∞.

We say that f ∈ C0,α
X (Ω ,RN ) if f ∈ C0,α

X (K ,RN ) for every compact set K ⊂ Ω .

Definition 2.5 We say that f ∈ L1
loc(Ω ,RN ) belongs to BMO(Ω ,RN ) if

‖f ‖∗ = sup
x∈Ω ,0<ρ<d0

1
|Ω(x,ρ)|

ˆ
Ω(x,ρ)

∣
∣f (y) – fx,ρ

∣
∣dy < ∞;

f belongs to VMO(Ω ,RN ) if f ∈ BMO(Ω ,RN ) and

ηr(f ) = sup
x∈Ω ,0<ρ<r

1
|Ω(x,ρ)|

ˆ
Ω(x,ρ)

∣∣f (y) – fx,ρ
∣∣dy → 0, r → 0.

The integral characterization for a Hölder continuous function was shown in [34] and
[35].

Lemma 2.6 If –p < λ < 0, then Lp,λ
X (Ω ,RN ) � C0,α

X (Ω ,RN ), α = – λ
p .

We end this section with a generalized iteration lemma, see [6, Proposition 2.1].

Lemma 2.7 Let H be a nonnegative almost increasing function on the interval [0, T] and
F be a positive function on (0, T]. Suppose that
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(1) for any 0 < ρ ≤ R ≤ T , there exist A, B, ε and a > 0 such that

H(ρ) ≤
(

A
(

ρ

R

)a

+ ε

)
H(R) + BF(R);

(2) there exists τ ∈ (0, a) such that ρτ

F(ρ) is almost increasing in (0, T]. Then there exist
positive constants ε0 and C such that, for any 0 ≤ ε ≤ ε0,

H(ρ) ≤ C
F(ρ)
F(R)

H(R) + CB · F(ρ), 0 < ρ ≤ R ≤ T ,

where ε0 depends only on A, a and τ .

3 Obstacle problem for homogeneous systems
In this section, we deal with the Kθ

ψ -obstacle problem related to the homogeneous nondi-
agonal quasilinear degenerate elliptic system

X∗
α

(
Aαβ

ij (x, u)Xβuj) = 0, (3.1)

where i, j = 1, 2, . . . , N , α,β = 1, 2, . . . , m, coefficients Aαβ

ij (x, u) satisfy (H1). The main re-
sults are the higher integrability and a Campanato type estimate for the gradients of weak
solutions. Let us recall that a function u ∈ S1

X,loc(Ω ,RN ) is called a weak solution to (3.1) if

ˆ
Ω

Aαβ

ij (x, u)XβujXαφi dx = 0

for all φ ∈ C∞
0 (Ω ,RN ); a function u ∈ Kθ

ψ (Ω ,RN ) is called a weak solution to the Kθ
ψ -

obstacle problem for (3.1) if
ˆ

Ω

Aαβ

ij (x, u)XβujXαφi dx ≥ 0 (3.2)

for all φ ∈ C∞
0 (Ω ,RN ) with φ + u ≥ ψ a.e. Ω .

For the diagonal homogeneous linear degenerate elliptic system with constant coeffi-
cients, we have the following estimates (see [35, Theorem 3.2]).

Lemma 3.1 Let u ∈ S1
X,loc(Ω ,RN ) be a weak solution to the linear system

X∗
α

(
aαβXβui) = 0, i = 1, 2, . . . , N ,

with constant coefficients aαβ ∈ R for which (1.2) holds. Then, for any x0 ∈ Ω , there exist
c > 0 and 0 < R0 < min{d0, dist(x0, ∂Ω)}/2 such that, for any ρ , R with 0 < ρ ≤ R ≤ R0, it
follows

ˆ
Bρ (x0)

|Xu|2 dx ≤ c
(

ρ

R

)Q ˆ
BR(x0)

|Xu|2 dx. (3.3)

In order to prove the higher integrability for gradients of weak solutions to the Kθ
ψ -

obstacle problem for (3.1), we need the Gehring lemma on the metric measure space
(Y , d,μ), where d is a metric and μ is a doubling measure (see [36]).
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Lemma 3.2 Let q ∈ [q̄, 2Q], where q̄ > 1 is fixed. Assume that functions F , G are nonnega-
tive and G ∈ Lq

loc(Y ,μ), F ∈ Lr0
loc(Y ,μ) for some r0 > q. If there exists a constant b > 1 such

that, for every ball B ⊂ σB ⊂ Y , the following inequality holds:

 
B

Gqdμ ≤ b
[( 

σB
Gdμ

)q

+
 

σB
Fq dμ

]
,

then there exists a nonnegative constant ε0 = ε0(b, q̄, Q, Cd,σ ) such that G ∈ Lp
loc(Y ,μ) for

p ∈ [q, q + ε0). Moreover,

( 
B

Gpdμ

) 1
p

≤ C
[( 

σB
Gq dμ

) 1
q

+
( 

σB
Fp dμ

) 1
p
]

for some positive constant C = C(b, q̄, Q, Cd,σ ).

Theorem 3.3 (Higher integrability) Let u ∈ S1
X,loc(Ω ,RN ) be a weak solution to the Kθ

ψ -
obstacle problem for (3.1) and Xψ ∈ Lσ

X(Ω ,RmN )(σ > 2). Then there exists p > 2 such that
u ∈ S1,p

X,loc(Ω ,RN ). Furthermore, for any BR ⊂⊂ Ω , we have

( 
BR/2

|Xu|p dx
) 1

p
≤ c

[( 
BR

|Xu|2 dx
) 1

2
+

( 
BR

|Xψ |p dx
) 1

p
]

, (3.4)

where the constant c > 0 does not depend on R.

Proof For the weak solution u ∈ S1
X,loc(Ω ,RN ) and BR ⊂⊂ Ω , consider the function

φ = –η2(u – ψ – (u – ψ)R
)
,

where η is a cutoff function on BR, i.e., η ∈ C∞
0 (BR) such that 0 ≤ η ≤ 1, η = 1 in BR/2, and

|Xη| ≤ c/R. Since uR ≥ ψR, we have

φ = η2(ψ – u) + η2(uR – ψR) ≥ η2(ψ – u) + η2(ψR – ψR) ≥ ψ – u

a.e. in Ω and it is an admissible function for (3.2). Taking φ = –η2(u – ψ – (u – ψ)R) in
(3.2), we immediately get

ˆ
BR

aαβ (x)δijη
2XβujXαui dx

≤ –
ˆ

BR

Bαβ

ij (x, u)η2XβujXαui dx

+
ˆ

BR

Aαβ

ij (x, u)η2XβujXαψ i dx

+ 2
ˆ

BR

Aαβ

ij (x, u)η(ψ – ψR)iXβujXαη dx

– 2
ˆ

BR

Aαβ

ij (x, u)η(u – uR)iXβujXαη dx.
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By means of assumption (H1), Young and Sobolev inequalities, we see that

ν

ˆ
BR

η2|Xu|2 dx ≤ (ε + δν)
ˆ

BR

η2|Xu|2 dx +
cε|BR|

R2

 
BR

|u – uR|2 dx

+
cε

R2

ˆ
BR

|ψ – ψR|2 dx + cε

ˆ
BR

|Xψ |2 dx

≤ (ε + δν)
ˆ

BR

η2|Xu|2 dx + cε|BR|
( 

BR

|Xu|2q0 dx
) 1

q0

+ cε

ˆ
BR

|Xψ |2 dx.

Choosing ε = ν/3 and noting η = 1 on BR/2, it follows

ˆ
BR/2

|Xu|2 dx ≤ c|BR|
( 

BR

|Xu|2q0 dx
) 1

q0
+ c

ˆ
BR

|Xψ |2 dx.

Dividing by |BR/2| on both sides, we get

 
BR/2

|Xu|2 dx ≤ c
( 

BR

|Xu|2q0 dx
) 1

q0
+ c

 
BR

|Xψ |2 dx.

Now in Lemma 3.2 we set G = |Xu|2q0 , F = |Xψ |2q0 and q = 1/q0. Then

|Xu|2q0 ∈ Lr
loc(Ω), ∀r ∈ [1/q0, 1/q0 + ε0),

and

( 
BR/2

|Xu|2q0r dx
) 1

r
≤ c

( 
BR

|Xu|2 dx
)q0

+ c
( 

BR

|Xψ |2q0r dx
) 1

r
.

If we set p = 2q0r, then p ∈ [2, 2 + 2q0ε0), and

( 
BR/2

|Xu|p dx
) 1

p
≤ c

[( 
BR

|Xu|2 dx
) 1

2
+

( 
BR

|Xψ |p dx
) 1

p
]

,

where c does not depend on R. The proof is complete. �

By virtue of the above result, we can establish a Campanato type estimate for the gradi-
ents of weak solutions to the Kθ

ψ -obstacle problem for (3.1).

Theorem 3.4 Let u ∈ S1
X,loc(Ω ,RN ) be a weak solution to the Kθ

ψ -obstacle problem for
(3.1) and Xψ ∈ Lσ ,λ

X (Ω ,RmN ), σ > 2. Then, for any x0 ∈ Ω , there exist c > 0 and 0 < R0 <
min{d0, dist(x0, ∂Ω)}/2 such that, for any ρ , R with 0 < ρ ≤ R ≤ R0, it follows

ˆ
Bρ

|Xu|2 dx ≤ c
[(

ρ

R

)Q

+
(
ηR

(
aαβ

)) p–2
p + δ

]ˆ
BR

|Xu|2 dx + c
|BR|
Rλ

‖Xψ‖2
Lp,λ , (3.5)

where 2 < p < σ .
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Proof Let BR = B(x0, R) ⊂⊂ Ω . In BR/2 we split u as u = U + w, where U ∈ S1
X(BR/2,RN ) is

the weak solution to the following boundary value problem for homogeneous system with
constant coefficients:

⎧
⎨

⎩
X∗

α((aαβ(x))R/2δijXβUj) = 0, in BR/2,

U – u ∈ S1
X,0(BR/2,RN ).

(3.6)

Denote (aαβ)R/2 := (aαβ(x))R/2. Therefore, by Lemma 3.1, there exist c > 0 and 0 < R0 <
min{d0, dist(x0, ∂Ω)}/2 such that, for all 0 < ρ < R/2,

ˆ
Bρ

|XU|2 dx ≤ c
(

ρ

R

)Q ˆ
BR/2

|XU|2 dx. (3.7)

Using (3.6), we know from (3.2) that, for all φ ∈ S1
X,0(BR/2,RN ) with φ + u ≥ ψ a.e. BR/2,

ˆ
BR/2

(
aαβ

)
R/2δijXβwjXαφi dx ≥

ˆ
BR/2

((
aαβ

)
R/2 – aαβ (x)

)
δijXβujXαφi dx

–
ˆ

BR/2

Bαβ

ij (x, u)XβujXαφi dx. (3.8)

Since U –u ∈ S1
X,0(BR/2,RN ), we can choose φ = U ∨ψ –u ∈ S1

X,0(BR/2,RN ) as a test function
in (3.8), where U ∨ψ is a vector-valued function with components Ui ∨ψ i = max{Ui,ψ i}.
Then

ˆ
BR/2

(
aαβ

)
R/2δijXβwjXα(u – U ∨ ψ)i dx

≤
ˆ

BR/2

((
aαβ

)
R/2 – aαβ(x)

)
δijXβujXα(u – U ∨ ψ)i dx

–
ˆ

BR/2

Bαβ

ij (x, u)XβujXα(u – U ∨ ψ)i dx. (3.9)

Noting (u – U ∨ ψ)i = wi + (U – U ∨ ψ)i, it follows by using the Hölder inequality that
ˆ

BR/2

(
aαβ

)
R/2δijXβwjXαwi dx

≤
ˆ

BR/2

(
aαβ

)
R/2δijXβwjXα(U ∨ ψ – U)i dx

+
ˆ

BR/2

((
aαβ

)
R/2 – aαβ (x)

)
δijXβujXαwi dx

+
ˆ

BR/2

((
aαβ

)
R/2 – aαβ (x)

)
δijXβujXα(U – U ∨ ψ)i dx

–
ˆ

BR/2

Bαβ

ij XβujXαwi dx –
ˆ

BR/2

Bαβ

ij XβujXα(U – U ∨ ψ)i dx

≤
(

ε +
δν

2

)ˆ
BR/2

|Xw|2 dx +
(

cε +
δν

2

)ˆ
BR/2

∣
∣X(U – U ∨ ψ)

∣
∣2 dx

+ cε

ˆ
BR/2

∣
∣(aαβ

)
R/2 – aαβ (x)

∣
∣2|Xu|2 dx + δν

ˆ
BR/2

|Xu|2 dx. (3.10)
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Recalling (1.2) and taking ε = ν
3 , we have

ˆ
BR/2

|Xw|2 dx ≤ c
ˆ

BR/2

∣∣X(U – U ∨ ψ)
∣∣2 dx

+ c
ˆ

BR/2

∣∣(aαβ
)

R/2 – aαβ (x)
∣∣2|Xu|2 dx + δ

ˆ
BR/2

|Xu|2 dx. (3.11)

Since aαβ(x) ∈ L∞ ∩VMO and invoking (3.4) in Theorem 3.3, we conclude that there exists
p > 2 such that

ˆ
BR/2

∣∣(aαβ
)

R/2 – aαβ(x)
∣∣2|Xu|2 dx

≤ |BR/2|
( 

BR/2

∣∣(aαβ
)

R/2 – aαβ (x)
∣∣

2p
p–2 dx

) p–2
p

( 
BR/2

|Xu|p dx
) 2

p

≤ c
(
ηR

(
aαβ

)) p–2
p |BR/2|

( 
BR/2

|Xu|p dx
) 2

p

≤ c
(
ηR

(
aαβ

)) p–2
p

ˆ
BR

|Xu|2 dx + c|BR|
( 

BR

|Xψ |p dx
) 2

p
. (3.12)

On the other hand, U – U ∨ ψ ∈ S1
X,0(BR/2,RN ) satisfies

ˆ
BR/2

(
aαβ

)
R/2δijXβ (U – U ∨ ψ)jXαϕi dx

= –
ˆ

BR/2

(
aαβ

)
R/2δijXβ (U ∨ ψ)jXαϕi dx (3.13)

for all ϕ ∈ S1
X,0(BR/2,RN ). Thus choosing ϕ = U – U ∨ψ in (3.13) and noting (U ∨ψ)i = ψ i

for x ∈ supp(U – U ∨ ψ)i, we obtain from (1.2) that

ν

ˆ
BR/2

∣
∣X(U – U ∨ ψ)

∣
∣2 dx ≤

ˆ
BR/2

(
aαβ

)
R/2Xβ (U – U ∨ ψ)iXα(U – U ∨ ψ)i dx

= –
ˆ

BR/2

(
aαβ

)
R/2Xβ (U ∨ ψ)iXα(U – U ∨ ψ)i dx

= –
ˆ

supp(U–U∨ψ)i

(
aαβ

)
R/2Xβψ iXα(U – U ∨ ψ)i dx

≤ ε

ˆ
BR/2

∣∣X(U – U ∨ ψ)
∣∣2 dx + cε

ˆ
BR/2

|Xψ |2 dx.

Letting ε = ν
2 , we get

ˆ
BR/2

∣∣X(U – U ∨ ψ)
∣∣2 dx ≤ c

ˆ
BR/2

|Xψ |2 dx. (3.14)

Inserting (3.12) and (3.14) into (3.11), we have

ˆ
BR/2

|Xw|2 dx ≤ c
[(

ηR
(
aαβ

)) p–2
p + δ

]ˆ
BR

|Xu|2 dx + c|BR|
( 

BR

|Xψ |p dx
) 2

p
. (3.15)
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Then it follows by using (3.7) and (3.15) that, for any 0 < ρ < R/2,

ˆ
Bρ

|Xu|2 dx ≤ 2
ˆ

Bρ

|XU|2 dx + 2
ˆ

Bρ

|Xw|2 dx

≤ c
(

ρ

R

)Q ˆ
BR/2

|XU|2 dx + 2
ˆ

BR/2

|Xw|2 dx

≤ c
(

ρ

R

)Q ˆ
BR/2

|Xu|2 dx + c
ˆ

BR/2

|Xw|2 dx

≤ c
[(

ρ

R

)Q

+
(
ηR

(
aαβ

)) p–2
p + δ

]ˆ
BR

|Xu|2 dx + c|BR|
( 

BR

|Xψ |p dx
) 2

p

≤ c
[(

ρ

R

)Q

+
(
ηR

(
aαβ

)) p–2
p + δ

]ˆ
BR

|Xu|2 dx + c
|BR|
Rλ

‖Xψ‖2
Lp,λ . (3.16)

It is obvious that the above inequality is valid for R/2 ≤ ρ ≤ R. Thus, for all 0 < ρ ≤ R, we
have

ˆ
Bρ

|Xu|2 dx ≤ c
[(

ρ

R

)Q

+
(
ηR

(
aαβ

)) p–2
p + δ

]ˆ
BR

|Xu|2 dx + c
|BR|
Rλ

‖Xψ‖2
Lp,λ . �

4 Proofs of the main results
In this section, we prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1 For fixed x0 ∈ Ω , let BR = B(x0, R) ⊂⊂ Ω . Assume that the function
u is a weak solution to the Kθ

ψ -obstacle problem for (1.1), i.e., for any φ ∈ C∞
0 (Ω ,RN ) with

φ + u ≥ ψ a.e. Ω ,

ˆ
Ω

Aαβ

ij (x, u)XβujXαφi dx ≥
ˆ

Ω

Bi(x, u, Xu)φi dx +
ˆ

Ω

gα
i (x, u, Xu)Xαφi dx. (4.1)

Let U0 ∈ Ku
ψ (BR,RN ) be a weak solution to the Ku

ψ -obstacle problem for (3.1), i.e.,

ˆ
BR

Aαβ

ij (x, u)XβUj
0Xαφ̄i dx ≥ 0 (4.2)

for any φ̄ ∈ C∞
0 (BR,RN ) with φ̄ + U0 ≥ ψ a.e. BR.

Since U0 – u ∈ S1
X,0(BR,RN ), we can take φ = U0 – u := –w0 in (4.1) and hence

ˆ
BR

Aαβ

ij (x, u)Xβ (U0 + w0)jXαwi
0 dx

≤
ˆ

BR

Bi(x, u, Xu)wi
0 dx +

ˆ
BR

gα
i (x, u, Xu)Xαwi

0 dx. (4.3)

Noting that w0 + U0 = u ≥ ψ a.e. BR, we obtain from (4.2) that

–
ˆ

BR

Aαβ

ij (x, u)XβUj
0Xαwi

0 dx ≤ 0. (4.4)
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Using (H1)–(H2), Hölder and Sobolev inequalities, (4.3) becomes

ν

ˆ
BR

|Xw0|2 dx

≤
ˆ

BR

aαβ (x)δijXβwj
0Xαwi

0 dx

≤ –
ˆ

BR

Bαβ

ij (x, u)Xβwj
0Xαwi

0 dx

+
ˆ

BR

Bi(x, u, Xu)wi
0 dx +

ˆ
BR

gα
i (x, u, Xu)Xαwi

0 dx

≤ νδ

ˆ
BR

|Xw0|2 dx +
ˆ

BR

(|f | + L|Xu|γ0
)∣∣wi

0
∣
∣dx +

ˆ
BR

(|f̃ | + L|Xu|γ )∣∣Xαwi
0
∣
∣dx

≤ νδ

ˆ
BR

|Xw0|2 dx + c
(ˆ

BR

|w0|2∗
dx

) 1
2∗ (ˆ

BR

(|f | + |Xu|γ0
)2q0 dx

) 1
2q0

+ c
(ˆ

BR

|Xw0|2 dx
) 1

2
(ˆ

BR

(|f̃ | + |Xu|γ )2 dx
) 1

2

≤ (ε + νδ)
ˆ

BR

|Xw0|2 dx

+ cε

[(ˆ
BR

(|f | + |Xu|γ0
)2q0 dx

) 1
q0

+
ˆ

BR

(|f̃ | + |Xu|γ )2 dx
]

, (4.5)

where 2∗ = 2Q
Q–2 . Choosing ε > 0 such that ε + νδ < ν , we have

ˆ
BR

|Xw0|2 dx ≤ c
(ˆ

BR

(|f | + |Xu|γ0
)2q0 dx

) 1
q0

+ c
ˆ

BR

(|f̃ | + |Xu|γ )2 dx. (4.6)

On the other hand, since 1 ≤ γ0 < 1
q0

and 0 ≤ γ < 1, the Hölder inequality implies that

(ˆ
BR

|Xu|2γ0q0 dx
) 1

q0 ≤ |BR|
1–γ0q0

q0

(ˆ
BR

|Xu|2 dx
)γ0

(4.7)

and

ˆ
BR

|Xu|2γ dx ≤ |BR|1–γ

(ˆ
BR

|Xu|2 dx
)γ

≤ ε

ˆ
BR

|Xu|2 dx + cε|BR|. (4.8)

Putting (4.7) and (4.8) into (4.6), it follows

ˆ
BR

|Xw0|2 dx ≤ c
(
ω(R) + ε

)ˆ
BR

|Xu|2 dx + c
(ˆ

BR

|f |2q0 dx
) 1

q0

+ c
ˆ

BR

|f̃ |2 dx + cε|BR|, (4.9)

where ω(R) = |BR|
1–γ0q0

q0 (
´

BR
|Xu|2 dx)γ0–1.
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Consequently, we have by using (3.5) and (4.9) that, for any 0 < ρ ≤ R,

ˆ
Bρ

|Xu|2 dx

≤ 2
ˆ

Bρ

|XU0|2 dx + 2
ˆ

Bρ

|Xw0|2 dx

≤ c
[(

ρ

R

)Q

+
(
ηR

(
aαβ

)) p–2
p + δ

]ˆ
BR

|XU0|2 dx + c
|BR|
Rλ

‖Xψ‖2
Lp,λ + c

ˆ
Bρ

|Xw0|2 dx

≤ c
[(

ρ

R

)Q

+
(
ηR

(
aαβ

)) p–2
p + δ

]ˆ
BR

|Xu|2 dx + c
|BR|
Rλ

‖Xψ‖2
Lp,λ + c

ˆ
BR

|Xw0|2 dx

≤ c
[(

ρ

R

)Q

+
(
ηR

(
aαβ

)) p–2
p + δ + ω(R) + ε

]ˆ
BR

|Xu|2 dx

+ c
(ˆ

BR

|f |2q0 dx
) 1

q0
+ c

ˆ
BR

|f̃ |2 dx + cε|BR| + c
|BR|
Rλ

‖Xψ‖2
Lp,λ

≤ c
[(

ρ

R

)Q

+
(
ηR

(
aαβ

)) p–2
p + δ + ω(R) + ε

]ˆ
BR

|Xu|2 dx

+ c
|BR| Q+2

Q

Rλ
‖f ‖2

L2q0,λq0 + c
|BR|
Rλ

‖f̃ ‖2
L2,λ + c

|BR|
Rλ

‖Xψ‖2
Lp,λ + c

|BR|
Rλ

≤ c
[(

ρ

R

)Q

+ ϑ

]ˆ
BR

|Xu|2 dx + c
|BR|
Rλ

[‖f ‖2
L2q0,λq0 + ‖f̃ ‖2

L2,λ + ‖Xψ‖2
Lp,λ + 1

]
, (4.10)

where ϑ = (ηR(aαβ ))
p–2

p + δ + ω(R) + ε. By the absolute continuity of Lebesgue integral, we
see that ω(R) → 0 as R → 0. Making use of the VMO hypothesis on the coefficients aαβ(x),
we know that there exists 0 < R0 ≤ d0 such that ϑ is small enough for any 0 < R ≤ R0. Taking

F(ρ) =
|Bρ |
ρλ

and Q – λ < τ < Q,

we claim that ρτ

F(ρ) is almost increasing and it follows from (2.2) that

(tρ)τ

F(tρ)

/
ρτ

F(ρ)
=

tτ+λ|Bρ |
|Btρ | ≤ C2

d · tτ+λ–Q ≤ C2
d, ∀t ∈ (0, 1).

Thus we obtain by Lemma 2.7 that, for any 0 < ρ ≤ R,

ˆ
Bρ

|Xu|2 dx ≤ c
|Bρ |
ρλ

[
Rλ

|BR|
ˆ

BR

|Xu|2 dx + ‖f ‖2
L2q0,λq0 + ‖f̃ ‖2

L2,λ + ‖Xψ‖2
Lp,λ + 1

]
, (4.11)

which implies Xu ∈ L2,λ
X,loc(Ω ,RmN ). The proof is finished. �

From Theorem 1.1 and Lemma 2.6, we can prove the Hölder continuity for the weak
solutions.
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Proof of Theorem 1.2 Let u ∈ S1
X,loc(Ω ,RN ) be a weak solution to the Kθ

ψ -obstacle problem
for (1.1) and 0 < λ < 2. For any Bρ ⊂ BR ⊂⊂ Ω , it follows by Theorem 2.2 and (4.11) that

ˆ
Bρ

|u – uρ |2 dx ≤ cρ2
ˆ

Bρ

|Xu|2 dx

≤ c
|Bρ |
ρλ–2

[
Rλ

|BR|
ˆ

BR

|Xu|2 dx + ‖f ‖2
L2q0,λq0 + ‖f̃ ‖2

L2,λ + ‖Xψ‖2
Lp,λ + 1

]
,

which implies u ∈L2,λ–2
X,loc (Ω ,RN ). Noting 0 < λ < 2, Theorem 1.2 follows immediately from

Lemma 2.6. �
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9. Daněček, J., Viszus, E.: L2,Φ regularity for nonlinear elliptic systems of second order. Electron. J. Differ. Equ. 2002, 20

(2002)
10. Zheng, S., Feng, Z.: Regularity for quasi-linear elliptic systems with discontinuous coefficients. Dyn. Partial Differ. Equ.

5(1), 87–99 (2008)



Du et al. Journal of Inequalities and Applications        (2019) 2019:184 Page 16 of 16

11. Zheng, S., Zheng, X., Feng, Z.: Regularity for a class of degenerate elliptic equations with discontinuous coefficients
under natural growth. J. Math. Anal. Appl. 346(2), 359–373 (2008)
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