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1 Introduction
By C

n×n(Rn×n) we denote the set of all complex (real) matrices of order n. A matrix A =
[aij] ∈C

n×n is called an H-matrix if its comparison matrix 〈A〉 = [mij] ∈R
n×n defined by

mij =

⎧
⎨

⎩

|aii|, i = j,

–|aij|, i �= j,

is a nonsingular M-matrix, i.e., 〈A〉–1 ≥ 0 [1, 8, 20].
It is well known that H-matrices are widely used in many subjects such as numerical al-

gebra, the control system, mathematical physics, economics, and dynamical system theory
[1, 2, 4, 20]. An important problem among them is to find upper bounds for the infinity
norm of the inverse of H-matrices, because it can be used to the convergence analysis
of matrix splitting and matrix multi-splitting iterative methods for solving large sparse
systems of linear equations [18], as well as linear complementarity problems [10–13, 19].
For example, when solving linear systems in practice, it is important to have an economi-
cal method for estimating the condition number κ(A) of the matrix of coefficients, which
shows how ‘ill’ the systems could be. Here, the condition number is defined in the follow-
ing way:

κ(A) = ‖A‖ · ∥∥A–1∥∥,

as the product of a matrix norm and a norm of its inverse. Hence, it can be useful to
determine the upper bound for the norm of the inverse matrix without calculating the
inverse.
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In 1975, Varah provided a simple and elegant upper bound for the infinity norm of the
inverse of strictly diagonally dominant (SDD) matrices as one of the most important sub-
class of H-matrices. Here a matrix A = [aij] ∈ C

n×n is said to be an SDD matrix if, for each
i ∈ N := {1, 2, . . . , n},

|aii| > ri(A),

where ri(A) =
∑

j �=i |aij|.

Theorem 1 ([17]) If A = [aij] ∈C
n×n is SDD, then

∥
∥A–1∥∥∞ ≤ 1

mini∈N (|aii| – ri(A))
. (1)

Bound (1) is usually called Varah’s bound and works only for SDD matrices. Moreover,
when the class of involved matrices is a wider subclass of H-matrices, such as doubly
strictly diagonally dominant (DSDD) matrices, S-SDD matrices, weakly chained diago-
nally dominant matrices, Nekrasov matrices, S-Nekrasov matrices, and DZ-type matrices,
upper bounds for ‖A–1‖∞ are derived, which sometimes are tighter in the SDD case, see
[3, 5, 7, 9, 10, 15, 16, 21] and the references therein. Recently, Cvetković et al. [6] presented
two upper bounds for ‖A–1‖∞ involved with {P1, P2}-Nekrasov matrices, which are only
dependent on the entries of the matrix A.

In this paper, we give a new upper bound for the infinity norm of the inverse of {P1, P2}-
Nekrasov matrices. It is shown by the comparison theorems that the new bound improves
corresponding bounds of Cvetković et al. (2015) for {P1, P2}-Nekrasov matrices and im-
proves well-known Varah’s bound for strictly diagonally dominant matrices. The tested
numerical examples show that the new bound is tighter than those derived recently.

2 Main results
First, some notation and definitions are listed. Given a matrix A = [aij] ∈C

n×n, denote

d(A) =
(|a11|, . . . , |ann|

)T ; (2)

z1(A) = 1, zi(A) =
i–1∑

j=1

|aij|
|ajj| zj(A) + 1, i = 2, 3, . . . , n; (3)

and

h1(A) =
∑

j �=1

|a1j|, hi(A) =
i–1∑

j=1

|aij|
|ajj|hj(A) +

n∑

j=i+1

|aij|, i = 2, 3, . . . , n. (4)

Next, we recall the concept of {P1, P2}-Nekrasov matrices.

Definition 1 ([14]) A matrix A = [aij] ∈C
n×n is called a Nekrasov matrix if, for each i ∈ N ,

|aii| > hi(A).
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Motivated by Definition 1, Cvetković et al. in [6] presented the following new subclass
of H-matrices, called {P1, P2}-Nekrasov matrices, which contains Nekrasov matrices.

Definition 2 ([6]) Given two permutation matrices P1 and P2, a matrix A = [aij] ∈ Cn×n,
n ≥ 2, is called a {P1, P2}-Nekrasov matrix if

d(A) > min
{

hP1 (A), hP2 (A)
}

,

where

hPk (A) = Pkh
(
PT

k APk
)
, k = 1, 2,

with

h
(
PT

k APk
)

=
[
h1
(
PT

k APk
)
, . . . , hn

(
PT

k APk
)]T ,

in which hi(PT
k APk), i ∈ N , being defined as (4).

Remark here that if P1 = P2 = I , where I is an identity matrix, then hP1 (A) = hP2 (A) = h(A),
which implies that a Nekrasov matrix is a {P1, P2}-Nekrasov matrix for P1 = P2 = I . In
addition, note that for any permutation matrix P, the matrix PT AP has the same set of
diagonal entries as does A and, moreover, the same set of row sums as does A. Hence, if A
is an SDD matrix, then |aii| > ri(A) > hPk

i (A) holds for all i ∈ N , which means that an SDD
matrix is a {P1, P2}-Nekrasov matrix for any {P1, P2}.

Next, we recall two upper bounds for the infinity norm of the inverse of {P1, P2}-
Nekrasov matrices which are given by Cvetković et al. in [6].

Theorem 2 ([6]) Given a set of permutation matrices {P1, P2}, let A = [aij] ∈ C
n×n be a

{P1, P2}-Nekrasov matrix. Then

∥
∥A–1∥∥∞ ≤ maxi∈N ( z

Pki
i (A)
|aii| )

mini∈N (1 – min{ hP1
i (A)
|aii| , hP2

i (A)
|aii| })

, (5)

and

∥
∥A–1∥∥∞ ≤ maxi∈N (z

Pki
i (A))

mini∈N (|aii| – min{hP1
i (A), hP2

i (A)}) , (6)

where zPki (A) = Pki z(PT
ki

APki ) = [z
Pki
i (A), . . . , z

Pki
n (A)]T with z(PT

ki
APki ) being defined as (3),

hP1
i (A) and hP2

i (A) are given by Definition 2, and for each index i, the corresponding index
ki ∈ {1, 2} is chosen in such a way that

min
{

hP1
i (A), hP2

i (A)
}

= h
Pki
i (A).

In what follows, we give a new upper bound for the infinity norm of the inverse of
{P1, P2}-Nekrasov matrices. Before that, some lemmas and notation which will be used
later are listed.
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Given a matrix A = [aij] ∈ C
n×n, by A = D – L – U we denote the standard splitting of

A into its diagonal (D), strictly lower (–L), and strictly upper (–U) triangular parts, and
|A| = [|aij|].

Given a {P1, P2}-Nekrasov matrix A = [aij] ∈C
n×n, n ≥ 2, we recall two special matrices

C ∈ C
n×n and C̃ ∈C

n×n as follows:

C :=

⎡

⎢
⎢
⎢
⎢
⎣

C(1)
C(2)

...
C(n)

⎤

⎥
⎥
⎥
⎥
⎦

and C̃ :=

⎡

⎢
⎢
⎢
⎢
⎣

C̃(1)
C̃(2)

...
C̃(n)

⎤

⎥
⎥
⎥
⎥
⎦

, (7)

where

C(i) = eT
i Pki

(|Dki | – |Lki |
)–1|Uki |PT

ki

and

C̃(i) = eT
i Pki

(|Dki | – |Lki |
)–1PT

ki
,

with ei = (0, . . . , 1, . . . , 0)T and for each index i, the corresponding index ki ∈ {1, 2} is chosen
in the same way given in Theorem 2.

Lemma 1 ([6]) Let A = [aij] ∈C
n×n, n ≥ 2, be a {P1, P2}-Nekrasov matrix, then the matrix

I – C is an SDD matrix, where I is the identify matrix and C is defined as in (7).

Lemma 2 ([1]) Let A = [aij] ∈C
n×n be a nonsingular H-matrix. Then

∣
∣A–1∣∣≤ 〈A〉–1.

Lemma 3 ([6]) Given any A = [aij] ∈ C
n×n, n ≥ 2, with aii �= 0 for all i ∈ N , and given a

permutation matrix P ∈R
n×n, then

hP
i (A) = |aii|

[
P
(|D̃| – |̃L|)–1|Ũ|e]i,

where e = (1, 1, . . . , 1)T and PT AP = D̃ – L̃ – Ũ is the standard splitting of the matrix PT AP.

The following lemma will be used in the proof of Theorem 3.

Lemma 4 Let A = [aij] ∈ C
n×n with aii �= 0 for all i ∈ N , and P ∈ R

n×n is a permutation
matrix. Then

zP(A) = |D|[P(|D̃| – |̃L|)–1]e,

where zP(A) = Pz(PT AP) with z(PT AP) being defined as (3), PT AP = D̃ – L̃ – Ũ is the stan-
dard splitting of the matrix PT AP, and e = (1, 1, . . . , 1)T .
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Proof Let x := (D̃ – L̃)–1e = (x1, x2, . . . , xn)T . Then

e = (D̃ – L̃)x,

i.e.,

D̃x = L̃x + e. (8)

By (8), we have

|̃a11|x1 = 1, |̃aii|xi = 1 +
i–1∑

j=1

|aij|xj, i = 2, . . . , n,

which implies that

|D̃|(|D̃| – |̃L|)–1e = z
(
PT AP

)
.

Therefore,

P|D̃|(|D̃| – |̃L|)–1e = Pz
(
PT AP

)
.

Note that |D̃| = PT |D|P and PT P = I , we can see that

|D|[P(|D̃| – |̃L|)–1]e = zP(A).

This completes the proof. �

Now, we give the main result of this paper by Lemmas 1, 2, 3, and 4.

Theorem 3 Let A = [aij] ∈C
n×n, n ≥ 2, be a {P1, P2}-Nekrasov matrix. Then

∥
∥A–1∥∥∞ ≤ max

i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} , (9)

where z
Pki
i (A) and h

Pki
i (A), i ∈ N , ki ∈ {1, 2} are given by Theorem 2.

Proof Since A = [aij] ∈C
n×n is a {P1, P2}-Nekrasov matrix, then from Lemma 1 we have

B := I – C

is an SDD matrix, where C is given by (7). By the proof of Theorem 3.1 (see[6]), we have
that, for a fixed k ∈ {1, 2},

I – Pk
(|Dk| – |Lk|

)–1|Uk|PT
k = Pk

(|Dk| – |Lk|
)–1PT

k 〈A〉. (10)

By (7) and (10), we have

B := I – C = C̃〈A〉,
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which implies that

〈A〉–1 = B–1C̃ = B–1
 · 
–1C̃,

where


 = diag(δ1, δ2, . . . , δn), δi > 0, i = 1, 2, . . . , n.

Since a {P1, P2}-Nekrasov matrix is an H-matrix, we have from Lemma 2 that

∥
∥A–1∥∥∞ ≤ ∥∥〈A〉–1∥∥∞ ≤ ∥∥B–1
∥∥∞ · ∥∥
–1C̃

∥
∥∞. (11)

First, we estimate ‖
–1C̃‖∞. Because |Dki | – |Lki | for ki ∈ {1, 2} is an M-matrix, so we
can take a positive diagonal matrix 
 = diag(δ1, δ2, . . . , δn) with

δi =
[
Pki

(|Dki | – |Lki |
)–1e

]

i for all i ∈ N . (12)

Note that

C̃ :=

⎡

⎢
⎢
⎢
⎢
⎣

C̃(1)
C̃(2)

...
C̃(n)

⎤

⎥
⎥
⎥
⎥
⎦

∈ C
n×n,

where

C̃(i) = eT
i Pki

(|Dki | – |Lki |
)–1PT

ki
, ki ∈ {1, 2}.

It follows from (12) that

∥
∥
–1C̃

∥
∥∞ = max

i∈N

{[
–1C̃e
]

i

}
= max

i∈N

{ [Pki (|Dki | – |Lki |)–1PT
ki

e]i

δi

}

= max
i∈N

{
[Pki (|Dki | – |Lki |)–1e]i

δi

}

= 1. (13)

Next, we estimate ‖B–1
‖∞. Observe that B := I – C, where C is given by (7). Then, for
each i ∈ N , we have

[Be]i =
[
(I – C)e

]

i = 1 –
[
Pki

(|Dki | – |Lki |
)–1|Uki |PT

ki
e
]

i

= 1 –
[
Pki

(|Dki | – |Lki |
)–1|Uki |e

]

i

= 1 –
h

Pki
i (A)
|aii| (by Lemma 3)

= 1 – min

{
hP1

i (A)
|aii| ,

hP2
i (A)
|aii|

}

.
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By Lemma 1, we have B is an SDD matrix. Since 
–1 is a positive diagonal matrix, it holds
that 
–1B is also an SDD matrix. Hence, applying Varah’s bound (1), we have

∥
∥B–1
∥∥∞ ≤ 1

mini∈N (
–1Be)i
=

1
mini∈N [ 1

δi
· (Be)i]

= max
i∈N

δi

1 – min{ hP1
i (A)
|aii| , hP2

i (A)
|aii| }

= max
i∈N

δi|aii|
|aii| – min{hP1

i (A), hP2
i (A)} .

By Lemma 4, we have

z
Pki
i (A) = |aii|

[
Pki

(|Dki | – |Lki |
)–1e

]

i, i ∈ N ,

which together with (12) implies that

δi|aii| = z
Pki
i (A), i ∈ N .

Hence,

∥
∥B–1
∥∥∞ ≤ max

i∈N

δi|aii|
|aii| – min{hP1

i (A), hP2
i (A)} = max

i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} , (14)

where ki ∈ {1, 2} is chosen in such a way that

min
{

hP1
i (A), hP2

i (A)
}

= h
Pki
i (A) for each i ∈ N .

Now, the conclusion follows from (11), (13), and (14). �

The following comparison theorem shows that bound (9) of Theorem 3 is better than
bounds (5) and (6) of Theorem 2 (bound (8) of Theorem 3.1 and bound (10) of Theorem 3.2
in [6]).

Theorem 4 Let A = [aij] ∈C
n×n, n ≥ 2, be a {P1, P2}-Nekrasov matrix. Then

max
i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} ≤ maxi∈N ( z
Pki
i (A)
|aii| )

mini∈N (1 – min{ hP1
i (A)
|aii| , hP2

i (A)
|aii| })

(15)

and

max
i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} ≤ maxi∈N (z
Pki
i (A))

mini∈N (|aii| – min{hP1
i (A), hP2

i (A)}) . (16)

Furthermore, equality in (15) holds if and only if, for certain l ∈ N , the following two con-
ditions hold:

max
i∈N

(
z

Pki
i (A)
|aii|

)

=
z

Pkl
l (A)
|all|
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and

max
i∈N

(

min

{
hP1

i (A)
|aii| ,

hP2
i (A)
|aii|

})

= min

{
hP1

l (A)
|all| ,

hP2
l (A)
|all|

}

.

Similarly, equality in (16) holds if and only if, for certain l ∈ N , the following two conditions
hold:

max
i∈N

(
z

Pki
i (A)

)
= z

Pkl
l (A) (17)

and

min
i∈N

(|aii| – min
{

hP1
i (A), hP2

i (A)
})

= |all| – min
{

hP1
l (A), hP2

l (A)
}

. (18)

Proof It is easy to see that inequality in (15) holds, and the inequality in (16) also holds if
we use the following relation:

max
i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} = max
i∈N

z
Pki
i (A)
|aii|

1 – min{ hP1
i (A)
|aii| , hP2

i (A)
|aii| }

.

Next, we prove that the case of equality in (16) holds if and only if (17) and (18) hold.
Suppose that

max
i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} =
maxi∈N (z

Pki
i (A))

mini∈N (|aii| – min{hP1
i (A), hP2

i (A)}) .

Note that

max
i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} =
z

Pkl
l (A)

|all| – min{hP1
l (A), hP2

l (A)} for some l ∈ N .

Therefore,

maxi∈N (z
Pki
i (A))

mini∈N (|aii| – min{hP1
i (A), hP2

i (A)}) =
z

Pkl
l (A)

|all| – min{hP1
l (A), hP2

l (A)} . (19)

Since

|all| – min
{

hP1
l (A), hP2

l (A)
}≥ min

i∈N

(|aii| – min
{

hP1
i (A), hP2

i (A)
})

,

it follows from (21) that

z
Pkl
l (A) ≥ max

i∈N

(
z

Pki
i (A)

)
,

which implies (17) holds, and thus (18) holds from (17) and (19).
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Conversely, if conditions (17) and (18) hold for some l ∈ N , then we have

maxi∈N (z
Pki
i (A))

mini∈N (|aii| – min{hP1
i (A), hP2

i (A)}) =
z

Pkl
l (A)

|all| – min{hP1
l (A), hP2

l (A)}

≤ max
i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)}

≤ maxi∈N (z
Pki
i (A))

mini∈N (|aii| – min{hP1
i (A), hP2

i (A)}) ,

this implies that the equality in (16) holds. The equality in (15) can also be proved in a
similar way. The proof is completed. �

Since an SDD matrix is a {P1, P2}-Nekrasov matrix, by Theorem 3, a new upper bound
for ‖A–1‖∞ when A is an SDD matrix can be obtained. As expected, the following theorem
shows that this new bound works better than Varah’s bound of Theorem 1.

Theorem 5 Let A = [aij] ∈Cn×n be an SDD matrix. Then, for any set of permutation ma-
trices {P1, P2},

∥
∥A–1∥∥∞ ≤ max

i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} . (20)

Furthermore,

max
i∈N

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} ≤ 1
mini∈N {|aii| – ri(A)} . (21)

Proof Since an SDD matrix is a {P1, P2}-Nekrasov matrix for any permutation matrices P1

and P2, so (20) directly follows from Theorem 2. We next prove that (21) holds.
Let d := d(A)e = |D|e and PT

ki
APki = Dki – Uki – Lki be the standard splitting of the matrix

PT
ki

APki for ki ∈ {1, 2}. Then, by Lemma 3, Lemma 4, and 〈PT
ki

APki〉 = |Dki | – |Uki | – |Lki |, we
have

d – hPki (A) = |D|e – Pki |Dki |
(|Dki | – |Lki |

)–1|Uki |e
= Pki |Dki |PT

ki
e – Pki |Dki |

(|Dki | – |Lki |
)–1|Uki |e

= Pki |Dki |e – Pki |Dki |
(|Dki | – |Lki |

)–1|Uki |e
= Pki |Dki |

(
I –
(|Dki | – |Lki |

)–1|Uki |
)
e

= Pki |Dki |
(|Dki | – |Lki |

)–1 · 〈PT
ki

APki

〉
e

≥ min
i∈N

{〈
PT

ki
APki

〉
e
}

i · Pki |Dki |
(|Dki | – |Lki |

)–1e

= min
i∈N

{〈
PT

ki
APki

〉
e
}

i · |D|Pki

(|Dki | – |Lki |
)–1e

= min
i∈N

{〈
PT

ki
APki

〉
e
}

i · zPki (A),
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which implies that

|aii| – h
Pki
i (A) ≥ min

i∈N

{〈
PT

ki
APki

〉
e
}

i · z
Pki
i (A)

= min
i∈N

{∣
∣
(
PT

ki
APki

)

ii

∣
∣ – ri

(
PT

ki
APki

)} · z
Pki
i (A), i ∈ N . (22)

It is easy to see that, for a given permutation matrix Pki , the matrix PT
ki

APki has the same
set of diagonal entries as does A and the same set of row (and column) sums as does A.
Therefore,

min
i∈N

{∣
∣
(
PT

ki
APki

)

ii

∣
∣ – ri

(
PT

ki
APki

)}
= min

i∈N

{|aii| – ri(A)
}

,

which together with (22) implies that

z
Pki
i (A)

|aii| – min{hP1
i (A), hP2

i (A)} ≤ z
Pki
i (A)

|aii| – h
Pki
i (A)

≤ 1
mini∈N (|aii| – ri(A))

, i ∈ N .

This completes the proof. �

3 Numerical examples
In this section, we give the numerical example to show that bound (9) in Theorem 3 im-
proves bounds (5) and (6) of Theorem 2, and Varah’s bound of Theorem 1.

Example 1 Consider the following matrices in [6]:

A1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

12 2 0 0 0 0 0 0 0 0 0 0
2 12 2 0 0 0 0 0 0 0 0 0
0 0 12 0 1 0 0 0 0 0 0 0
1 0 1 8 0 0 0 0 0 1 0 0
0 0 0 1 12 1 0 0 2 2 0 0
0 0 2 2 2 12 0 0 0 0 0 0
0 0 0 0 0 0 12 2 0 0 0 0
0 0 0 0 0 0 2 114 2 0 0 0
0 0 0 0 0 1 0 0 14 0 1 0
0 0 0 0 2 2 1 0 1 814 0 0
0 0 0 0 0 0 0 0 0 3 8 1
0 0 0 0 0 0 0 0 2 2 2 8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

A2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

7 –2 1 –2 0 0 0 0 0 0
–1 7 0 0 0 0 0 0 0 0
0 1 8 4 1 –2 0 0 0 0

–2 0 1 7 0 0 0 0 0 0
0 0 0 1 8 1 0 0 0 0
0 0 2 2 2 7 0 0 0 0
0 0 0 0 0 0 6 2 0 0

–2 0 0 0 0 0 2 8 0 0
0 –2 0 0 0 1 0 0 5 0
0 0 –2 0 0 –1 0 –1 0 8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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Table 1 The upper bounds for ‖A–1i ‖∞ , i = 1, 2, 3

Matrix Exact ‖A–1i ‖∞ Varah’s bound {P1,P2}-Nek I {P1,P2}-Nek II Bound (9)

A1 0.1796 0.5000 0.2132 0.2433 0.1869
A2 0.3455 – 0.7726 0.5992 0.5989
A3 1.0578 – 1.1140 1.1255 1.0646

A3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–1.5 –0.1 0 –0.1 0 0
–0.1 2 –0.1 –1.9 0 0

0 –0.1 23 –0.1 –0.1 –0.1
0 0 –0.5 44 0 0
0 0 0 –0.1 44 –0.4
0 0 –0.5 0 –1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Obviously, A1 is an SDD matrix, and thus it is a {P1, P2}-Nekrasov matrix for any set of
permutations {P1, P2}. As reported in [6], A2 is a Nekrasov matrix and A3 is neither SDD
nor Nekrasov matrix, but they are both {P1, P2}-Nekrasov matrices for choosing identical
permutation P1 and counteridentical permutation P2. Hence, by bound (1) of Theorem 1,
bounds (5) and (6) of Theorem 2, and bound (9) of Theorem 3, we can compute the upper
bounds for the infinity norm of the inverse of Ai, i = 1, 2, 3, which are shown in Table 1 (in
Table 1 we call bounds (5) and (6) {P1, P2}-Nek I and {P1, P2}-Nek II).

It can be seen from Table 1 that bound (9) in Theorem 3 is better than Varah’s bound for
strictly diagonally dominant matrices, and it is also better than (5) and (6) in Theorem 2
(Theorem 3.1 and Theorem 3.2 in [6]) for {P1, P2}-Nekrasov matrices.

4 Conclusions
In this paper, we presented a new upper bound for the infinity norm of the inverse of
{P1, P2}-Nekrasov matrices and proved that the new bound improves those bounds ob-
tained in [6] for {P1, P2}-Nekrasov matrices and well-known Varah’s bound for strictly
diagonally dominant matrices. Numerical examples were included to illustrate the corre-
sponding results.
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