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Abstract
In this paper, multiple stability and instability of Cohen–Grossberg neural network
with unbounded time-varying delays are studied. Based on the geometrical
configuration of activation functions and some rigorous mathematical analysis, some
algebraic criteria are proposed to guarantee coexistence of multiple stable
equilibrium points and multiple unstable equilibrium points in the model. Moreover,
using the partition space method, we prove that the discussed model has at least 3n

equilibrium points, 2n of them are locally μ-stable and others are unstable. Finally, the
numerical example and its simulation show the effectiveness of the proposed results.
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1 Introduction
The Cohen–Grossberg neural network model, proposed by Cohen and Grossberg in 1983
[1], has been attracting much attention because of its wide application in various engi-
neering fields and because of it being highly inclusive of other neural networks such as
Hopfield neural network, cellular neural network, recurrent neural network, and so on.
Hence many scholars devoted themselves to the research of this aspect (see [2–18]). In
some practical applications and hardware implementations of artificial neural networks,
time delays are inevitable due to the finite switching speed of the amplifiers and the in-
terneurons conduction distances, and they are even time-varying and unbounded in some
cases such as the memory activation function of the human brain neural network model.
Therefore, it is more suitable to introduce unbounded time-varying delays to the neural
network, especially to Cohen–Grossberg models, and some results have been reported
recently, for example, [19–28].

In the applications of pattern recognition, the addressable memories of patterns are
stored as stable equilibrium points. Thus it is necessary that there exist multiple stable
equilibrium points for neural networks. The coexistence of multiple equilibrium points
and their local stability, which is usually referred to as the multistability of neural net-
work models, has been reported in depth in the last years (see [29–43] and the references
therein). Wang et al. in [35] studied a class of neural networks with r-level piecewise lin-
ear nondecreasing activation functions and showed that the n-neuron dynamical system
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had exact (2r + 1)n equilibrium points, of which (r + 1)n were locally exponentially stable
and the others were unstable. By using the partition space method, [41] proved that neu-
ral networks with unbounded time-varying delays could exhibit at least 3n equilibrium
points, 2n of them are locally μ-stable and others are unstable. In [43], based on the geo-
metrical configuration of activation functions and mathematic tools, some novel algebraic
criteria were proposed to guarantee the coexistence of 25n equilibrium points, in which 9n

equilibrium points are locally μ-stable, for the memristor-based complex-valued neural
networks with non-monotonic piecewise nonlinear activation functions and unbounded
time-varying delays. From the references mentioned above, we find that the multistability
of Cohen–Grossberg neural networks with unbounded time-varying delays is a challeng-
ing problem.

Motivated by the challenging problem, we investigate the multistability of a Cohen–
Grossberg neural network with unbounded time-varying delay and nondecreasing acti-
vation functions in this paper and prove that the considered model has 3n equilibrium
points, and 2n of them are locally μ-stable, the remaining ones are unstable. Compared
with the literature [41], the results are more general. The rest of this paper is organized
as follows. In Sect. 2, the Cohen–Grossberg model and some preliminaries are given. The
main results are presented and proved in Sect. 3. The corollaries and comparison with
the results of existing literature are presented in Sect. 4. A numerical example with its
simulation is showed in Sect. 5 to illustrate the effectiveness the proposed results. Finally,
conclusions are drawn in Sect. 6.

2 Preliminaries
In this paper, the following Cohen–Grossberg neural network is considered.

dxi(t)
dt

= –ai
(
xi(t)

)
[

bi
(
xi(t)

)
–

n∑

j=1

cijgj
(
xj(t)

)
–

n∑

j=1

dijfj
(
xj

(
t – τ (t)

))
+ Ii

]

, t ≥ 0, (1)

where i = 1, 2, . . . , n, xi(t) denotes the state variable associated with the ith neuron at time
t; ai(xi(t)) represents an amplification function at time t; bi(xi(t)) is an appropriate inhi-
bition behavior function at time t such that the solutions of model (1) remain bounded;
gj(xj(t)) and fj(xj(t – τ (t))) denote the activation functions of the jth neuron unit at time
t without and with time delays, respectively, and C = (cij)n×n and D = (dij)n×n are the cor-
responding connection weights matrices; τ (t) corresponds to the transmission delay and
satisfies τ (t) ≥ 0; Ii is the constant external input of the network on the ith neuron.

The initial conditions of model (1) are assumed to be xi(s) = ϕi(s), s ≤ 0, i = 1, 2, . . . , n,
where ϕi(s) is a real-valued continuous function bounded on (–∞, 0], except that finite
points existing at the left and right limits are continuous to the right. Throughout this
paper, we make the following assumptions.

(H1) For each i ∈ 1, 2, . . . , n, the amplification function ai(u) is nonnegative continuous
and satisfies

0 < ai ≤ ai(u) ≤ āi < ∞, u ∈ R, i = 1, 2, . . . , n.

And let two n-dimensional positive diagonal matrices Â = diag{ā1, ā2, . . . , ān} and
Ǎ = diag{a1, a2, . . . , an}.
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(H2) bi(u) is an odd function and monotone increasing, and there exists an
n-dimensional positive diagonal matrix B = diag{b1, b2, . . . , bn} such that

bi(u) – bi(v)
u – v

≥ bi, u, v ∈ R, u �= v, i = 1, 2, . . . , n.

(H3) gj(·) and fj(·) are nondecreasing sigmoid continuous nonlinear function or
nondecreasing piecewise continuous linear function, and there exist constants
pj ≤ qj, mj ≤ Mj, m′

j ≤ M′
j , m′′

j ≤ M′′
j , so that

m′
j = lim

x→–∞gj(x), M′
j = lim

x→+∞gj(x),

m′′
j = lim

x→–∞fj(x), M′′
j = lim

x→+∞fj(x),

0 ≤ σ l
j ≤ gj(u) – gj(v)

u – v
≤ σ̄ l

j , 0 ≤ δl
j ≤ fj(u) – fj(v)

u – v
≤ δ̄l

j , ∀u, v ∈ (–∞, pj),

0 ≤ σ m
j ≤ gj(u) – gj(v)

u – v
≤ σ̄ m

j , 0 ≤ δm
j ≤ fj(u) – fj(v)

u – v
≤ δ̄m

j , ∀u, v ∈ [pj, qj],

0 ≤ σ r
i ≤ gj(u) – gj(v)

u – v
≤ σ̄ r

j , 0 ≤ δr
j ≤ fj(u) – fj(v)

u – v
≤ δ̄r

j , ∀u, v ∈ (pj, +∞),

where mj = min{m′
j, m′′

j }, Mj = min{M′
j , M′′

j }, σ̄j = max{σ̄ l
j , σ̄ m

j , σ̄ r
j },

δ̄j = max{δ̄l
j , δ̄m

j , δ̄r
j }, j = 1, 2, . . . , n, and define two n-dimensional positive diagonal

matrices Σ g = diag{σ̄1, σ̄2, . . . , σ̄n} and �f = diag{δ̄1, δ̄2, . . . , δ̄n}. The superscripts “l”,
“m”, “r” denote “left”, “middle”, and “right”, respectively.

It is not hard to find such activation functions as the sigmoid continuous nonlinear func-
tion f (x) = tanh(x) = ex–e–x

ex+e–x , piecewise continuous linear function g(x) = |x+1|–|x+1|
2 , which

are different functions, but the properties of the functions can be discussed by common
interval separation points. Based on the geometric structure of the activation function, we
can define the interval of a one-dimensional real number space as follows:

(–∞, +∞) = (–∞, pi) ∪ [pi, qi] ∪ (qi, +∞), i = 1, 2, . . . , n,

then the n-dimensional real number space Rn can be divided into 3n non-intersection
subregions. For convenience, let Φ denote the set of these subregions, and so

Φ =

{ n∏

i=1

wi | wi = (–∞, pi), [pi, qi] or (qi, +∞)

}

.

For each
∏n

i=1 wi ∈ Φ , we define the following index subsets with respect to different in-
terval as N1 = {i | wi = (–∞, pi), i = 1, 2, . . . , n}, N2 = {i | wi = [pi, qi], i = 1, 2, . . . , n}, N3 = {i |
wi = (qi, +∞), i = 1, 2, . . . , n}.

Furthermore, Φ can be separated into two parts: Φ1 = {∏n
i=1 wi | wi = (–∞, pi) or (qi,

+∞)}, Φ2 = Φ – Φ1. Obviously, Φ1 is composed of 2n subregions and Φ2 contains 3n – 2n

subregions.
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To facilitate showing the existence of equilibrium points of model (1), we define new
sets

Ω =

{ n∏

i=1

vi | vi = [–Ei, pi], [pi, qi] or [qi, Ei]

}

,

Ω1 =

{ n∏

i=1

vi | vi = [–Ei, pi] or [qi, Ei]

}

,

where Ei = 2b–1
i [

∑n
j=1(|cij| + |dij|) max{mj, Mj} + |Ii| + max{|bi(pi)|, |bi(qi|}], i = 1, 2, . . . , n.

For each
∏n

i=1 vi ∈ Ω , we can similarly define its index subsets: N ′
1 = {i | vi = [–Ei, pi], i =

1, 2, . . . , n}, N ′
2 = {i | vi = [pi, qi], i = 1, 2, . . . , n}, N ′

3 = {i | vi = [qi, Ei], i = 1, 2, . . . , n}.

3 Main results
Because an equilibrium point of system (1) is a constant satisfying the equation bi(xi(t)) –
∑n

j=1 cijgj(xj(t)) –
∑n

j=1 dijfj(xj(t)) + Ii = 0, it is obvious that of model (1) has the same equi-
librium point with the following system:

dxi(t)
dt

= –ai
(
xi(t)

)
[

bi
(
xi(t)

)
–

n∑

j=1

cijgj
(
xj(t)

)
–

n∑

j=1

dijfj(xj(t) + Ii

]

, t ≥ 0, (2)

for i = 1, 2, . . . , n. Therefore, we can investigate the existence of multiple equilibrium points
of model (2) instead of (1).

Theorem 1 For any
∏n

i=1 wi ∈ Φ , if

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

–bi(pi) + ciigi(pi) + diifi(pi) +
∑n

j=1
j �=i

max{(cij + dij)mj, (cij + dij)Mj} – Ii < 0,

i ∈ N1 ∪ N2,

–bi(qi) + ciigi(qi) + diifi(qi) +
∑n

j=1
j �=i

min{(cij + dij)mj, (cij + dij)Mj} – Ii > 0,

i ∈ N2 ∪ N3,

(3)

where Ni ∩ Nj = φ, i �= j, i, j = 1, 2, 3, N1 ∪ N2 ∪ N3 = {1, 2, . . . , n}, then there is at least one
equilibrium point of model (1) in

∏n
i=1 wi.

Proof Let (x1, x2, . . . , xn) be a point of
∏n

i=1 vi ∈ Ω . Then, for the ith component xi, fixing
other components x1, . . . , xi–1, xi+1, . . . , xn, we can define a function as follows:

Fi(u) = –bi(u) + ciigi(u) + diifi(u) +
n∑

j=1
j �=i

cijgj(xj) +
n∑

j=1
j �=i

dijfj(xj) – Ii,

where i = 1, 2, . . . , n. Then, by (3), we can deduce the following:
(1) The function Fi(u) is continuous in the interval [–Ei, pi], and Fi(–Ei) > 0, Fi(pi) < 0.

Then by the zero point theorem, there exists at least a point x̄i ∈ (–Ei, pi) such that
Fi(x̄i) = 0. On account of ai(xi) > 0, by (H1), x̄i is the equilibrium point of system (2)
for the state component xi(t) of the ith neuron in the interval (–Ei, pi).
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(2) If u ∈ [pi, qi], then we have Fi(pi) > 0, Fi(qi) < 0. In view of ai(xi) > 0, there exists at
least a point x̄i ∈ (pi, qi), which is the equilibrium point of system (2) for the state
component xi(t) of the ith neuron in the interval (pi, qi).

(3) There exists at least a point x̄i ∈ (qi, Ei), which is the equilibrium point of system (2)
for the state component xi(t) of the ith neuron in the interval (qi, Ei) because of
Fi(qi) > 0, Fi(Ei) < 0, and ai(xi) > 0.

Above all, the function Fi(u) has at least one zero point in any subinterval. It follows that
there is at least one equilibrium point of system (2) in

∏n
i=1 vi ∈ Ω .

In addition, we can define a mapping ℘ :
∏n

i=1 vi → ∏n
i=1 vi for any given x = (x1, x2, . . . ,

xn) ∈ ∏n
i=1 vi such that ℘(x1, x2, . . . , xn) = (x̄1, x̄2, . . . , x̄n), where x̄i is a solution of equation

Fi(u) = 0, j = 1, 2, . . . , n. Since fj(·), gj(·), j = 1, 2, . . . , n, are continuous by assumption (H3),
the mapping ℘ is also continuous, then by Brouwer’s fixed point theorem, there exists
at least one fixed equilibrium point, denoted as x� = (x�

1, x�
2, . . . , x�

n), such that ℘(x�) = x�.
Furthermore, components of the equilibrium point x� satisfy –Ei < x�

i < pi for i ∈ N ′
1,

pi < x�
i < qi for i ∈ N ′

2, qi < x�
i < Ei for i ∈ N ′

3. It means that all the equilibrium points in
∏n

i=1 vi are located in its interior. In view of the arbitrariness of the region
∏n

i=1 vi and the
sameness of the equilibrium points between model (1) and model (2), model (1) has at
least 3n equilibrium points in Ω . From the definition of set Φ and Ω , we know that the
corresponding region of

∏n
i=1 vi is

∏n
i=1 wi and satisfies

∏n
i=1 vi ⊆ ∏n

i=1 wi. Hence it is easy
to see that x� is also an equilibrium of model (1) in

∏n
i=1 wi, and so there is at least one

equilibrium point of model (1) in
∏n

i=1 wi. �

For each equilibrium point x� = (x�
1, . . . , x�

n) of
∏n

i=1 wi ∈ Φ1, we define its μ-stability in
∏n

i=1 wi (local μ-stability in Φ1), and prove the μ-stability of all equilibrium points in Φ1

in the following Definition 1 and Theorem 2, respectively.

Definition 1 Let (x1(t), x2(t), . . . , xn(t)) be an arbitrary solution of model (1) located in
∏n

i=1 wi ∈ Φ1 with the initial state xi(s) = ϕi(s), s ∈ (–∞, 0], i = 1, 2, . . . , n, and μ(t) be a
nondecreasing function with μ(t) → +∞ (t → +∞). Then x� is said to be μ-stable in
∏n

i=1 wi (locally μ-stable in Φ1) if there is a positive constant M such that

∣
∣xi(t) – x�

i
∣
∣ ≤ M

μ(t)
.

Theorem 2 For any
∏n

i=1 wi ∈ Φ1, given that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

–bi(pi) + ciigi(pi) +
∑n

j=1
j �=i

max{cijmj, cijMj} +
∑n

j=1 max{dijmj, dijMj} – Ii < 0,

i ∈ N1,

–bi(qi) + ciigi(qi) +
∑n

j=1
j �=i

min{cijmj, cijMj} +
∑n

j=1 min{dijmj, dijMj} – Ii > 0,

i ∈ N3,

(4)

and the nondecreasing function μ(t) > 0 with

lim
t→+∞μ(t) = +∞, 0 ≤ sup

t≥T∗
μ̇(t)
μ(t)

≤ α, sup
t≥T∗

μ(t)
μ(t – τ (t))

≤ 1 + β , (5)
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where α, β , T∗ are nonnegative constants, N1 ∩ N3 = φ, N1 ∪ N3 = {1, 2, . . . , n}. Then the
equilibrium point x� = (x�

1, . . . , x�
n) is μ-stable in

∏n
i=1 wi (locally μ-stable in Φ1) if there are

positive constants ζ1, ζ2, . . . , ζn such that

(–aiβi + α)ζi +
∑

j∈N1

ζjāiσ̄
l
j |cij| +

∑

j∈N3

ζjāiσ̄
r
j |cij|

+ (1 + β)
(∑

j∈N1

ζjāiδ̄
l
j |dij| +

∑

j∈N3

ζjāiδ̄
r
j |dij|

)
< 0, (6)

where i = 1, 2, . . . , n.

Proof From the comparison of (3) and (4), we know that there is at least one equilibrium
point in

∏n
i=1 wi for model (1). The following proof will show that the equilibrium point is

unique and μ-stable in
∏n

i=1 wi ∈ Φ1.
Let x(t) = (x1(t), x2(t), . . . , xn(t)) be an arbitrary solution of model (1) in

∏n
i=1 vi ∈ Ω1 with

the initial condition xi(s) = ϕi(s), s ∈ (–∞, 0]. We claim that x(t) would remain in
∏n

i=1 vi

for all t ≥ 0.
For xi(t), suppose that i ∈ N ′

1. Then i ∈ N1 on account of [–Ei, pi] ⊂ (–∞, pi]. Further, by
(4), one has ε > 0 small enough such that

–bi(pi – ε) + ciigi(pi – ε) +
n∑

j=1
j �=i

max{cijmj, cijMj} +
n∑

j=1

max{dijmj, dijMj} – Ii < 0. (7)

And for ε above, we can find some t∗ ≥ 0 such that pi – ε ≤ xi(t∗) ≤ pi. It follows that

dxi(t)
dt

∣∣
∣∣
t=t∗

= –ai
(
xi

(
t∗))

[

bi
(
xi

(
t∗)) –

n∑

j=1

cijgj
(
xj

(
t∗)) –

n∑

j=1

dijfj
(
xj

(
t∗ – τ

(
t∗))) + Ii

]

≤ ai
(
xi

(
t∗))

[

–bi(pi – ε)

+ ciigi(pi – ε) +
n∑

j=1
j �=i

max{cijmj, cijMj} +
n∑

j=1

max{dijmj, dijMj} – Ii

]

< 0. (8)

On the other hand, we also can find some t∗ ≥ 0 such that xi(t∗) = –Ei. By (H1), we get
that

dxi(t)
dt

∣
∣∣
∣
t=t∗

≥ ai(–Ei)

[

bi(Ei) + ciigi(–Ei) +
n∑

j=1
j �=i

min{cijmj, cijMj}

+
n∑

j=1

min{dijmj, dijMj} – Ii

]

> 0. (9)
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Similarly, for xi(t), i ∈ N ′
3, there exists ε > 0 small enough such that

–bi(qi + ε) + ciigi(qi + ε) +
n∑

j=1
j �=i

min{cijmj, cijMj} +
n∑

j=1

min{dijmj, dijMj} – Ii > 0.

And for ε above, we can discover some t∗ ≥ 0 such that qi ≤ xi(t∗) ≤ qi + ε. It follows that

dxi(t)
dt

∣∣
∣∣
t=t∗

≥ ai
(
xi

(
t∗))

[

–bi(qi + ε) + ciigi(qi + ε) +
n∑

j=1
j �=i

min{cijmj, cijMj}

+
n∑

j=1

min{dijmj, dijMj} – Ii

]

> 0. (10)

We also can find some t∗ ≥ 0 so that xi(t∗) = Ei and obtain the following inequality:

dxi(t)
dt

∣
∣∣
∣
t=t∗

≤ ai(Ei)

[

–bi(Ei) + ciigi(–Ei) +
n∑

j=1
j �=i

max{cijmj, cijMj}

+
n∑

j=1

max{dijmj, dijMj} – Ii

]

< 0. (11)

From (8)–(11), we see that xi(t) would not escape from [–Ei, pi] when i ∈ N ′
1, and xi(t)

would remain in [qi, Ei] when i ∈ N ′
3. Let i go through 1, 2, . . . , n, we get x(t) is located in

Ω1. In view of Ω1 ⊆ Φ1, it implies that
∏n

i=1 wi ∈ Φ1 is an invariant set of model (1) with
the initial condition xi(s) = ϕi(s), s ∈ (–∞, 0].

Denote ui(t) = xi(t) – x�
i , i = 1, 2, . . . , n, then we have

dui(t)
dt

= –ai
(
xi(t)

)
[
(
bi

(
xi(t)

)
– bi

(
x�

i
))

–
n∑

j=1

cij
(
gj
(
xj(t)

)
– gj

(
x�

j
))

–
n∑

j=1

dij
(
fj
(
xj

(
t – τ (t)

))
– fj

(
x�

j
))

]

. (12)

Let Ui(t) = μ(t)ui(t) and U(t) = sups≤t(maxi=1,2,...,n(ζ –1
i |Ui(s)|)), t ≥ T ≥ T∗. Then, for

any t∗, t∗ ≥ T ≥ T∗, we have maxi=1,2,...,n(ζ –1
i |Ui(t∗)|) ≤ U(t∗), which implies that U(t) is

bounded.
Let it∗ = it∗ (t∗) when maxi=1,2,...,n(ζ –1

i |Ui(t∗)|) = U(t∗) holds. Differentiating |Uit∗ (t)| at
time t∗, we can deduce that

d|Uit∗ (t)|
dt

∣
∣∣
∣
t=t∗

= sign
(
Uit∗

(
t∗))μ̇

(
t∗)uit∗

(
t∗) + sign

(
Uit∗

(
t∗))μ

(
t∗)

·
{

–ait∗
(
xit∗

(
t∗))

[
(
bit∗

(
xit∗

(
t∗)) – bit∗

(
x�

it∗
))
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–
n∑

j=1

cit∗ j
(
gj
(
xj

(
t∗)) – gj

(
x�

j
))

–
n∑

j=1

dit∗ j
(
fj
(
xj

(
t∗ – τ

(
t∗))) – fj

(
x�

j
))

]}

. (13)

By hypothesis (H2), there exists a positive constant βi, so that

bi(xi) – bi(yi) = βi(xi – yi), (14)

where βi ≥ bi, i = 1, 2, . . . , n. Substituting (5), (6), (14) into (13) and applying (H1) and (H3),
we can obtain the following inequality.

d|Uit∗ (t)|
dt

∣∣
∣∣
t=t∗

= sign
(
Uit∗

(
t∗))μ̇

(
t∗)uit∗

(
t∗) + sign

(
Uit∗

(
t∗))μ

(
t∗)

·
{

–ait∗
(
xit∗

(
t∗))

[
(
bit∗

(
xit∗

(
t∗)) – bit∗

(
x�

it∗
))

–
n∑

j=1

cit∗ j
(
gj
(
xj

(
t∗)) – gj

(
x�

j
))

–
n∑

j=1

dit∗ j
(
fj
(
xj

(
t∗ – τ

(
t∗))) – fj

(
x�

j
))

]}

≤
(

–ait∗ βit∗ +
μ̇(t∗)
μ(t∗)

)∣∣Uit∗
(
t∗)∣∣ +

∑

j∈N1

āit∗ |cit∗ j|σ̄ l
j
∣∣Uj

(
t∗)∣∣

+
∑

j∈N3

āit∗ |cit∗ j|σ̄ r
j
∣∣Uj

(
t∗)∣∣

+
∑

j∈N1

āit∗
μ(t∗)

μ(t∗ – τ (t∗))
|dit∗ j|δ̄l

j
∣
∣Uj

(
t∗ – τ

(
t∗))∣∣

+
∑

j∈N3

āit∗
μ(t∗)

μ(t∗ – τ (t∗))
|dit∗ j|δ̄r

j
∣∣Uj

(
t∗ – τ

(
t∗))∣∣

≤
{(

–ait∗ βit∗ +
μ̇(t∗)
μ(t∗)

)
ζit∗ +

∑

j∈N1

āit∗ |cit∗ j|σ̄ l
j ζj +

∑

j∈N3

āit∗ |cit∗ j|σ̄ r
j ζj

+
μ(t∗)

μ(t∗ – τ (t∗))

(∑

j∈N1

āit∗ |dit∗ j|δ̄l
jζj +

∑

j∈N3

āit∗ |dit∗ j|δ̄r
j ζj

)}
· U

(
t∗)

< 0. (15)

From (15), we can see that there exists a positive constant δ1 such that U(t) = U(t∗) for
t ∈ (t∗, t∗ + δ1). Because of the arbitrariness of t∗, we can get that U(t) = U(T) for all t ≥
T ≥ T∗, which implies ζ –1

i |μ(t)(xi(t) – x�
i )| < maxi=1,2,...,n(ζ –1

i |Ui(t)|) < U(t). Therefore, by
Definition 1, the equilibrium x� is μ-stable in

∏n
i=1 wi ∈ Φ1. �

Next, we show that there exists an unstable equilibrium point in Φ2.
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Theorem 3 For any
∏n

i=1 wi ∈ Φ2, given that (3) holds. If there are positive constants
ξ1, . . . , ξn such that

min
i∈N2

{(
–βi + ciiσ

m∗
i

)
ξi –

∑

j∈N1

ξj|cij|σ̄ l
j –

∑

j∈N2

ξj|cij|σ̄ m
j –

∑

j∈N3

ξj|cij|σ̄ r
j

–
∑

j∈N1

ξj|dij|δ̄l
j –

∑

j∈N2

ξj|dij|δ̄m
j –

∑

j∈N3

ξj|dij|δ̄r
j

}
> max{λ, 0}, (16)

where

λ � max
i∈N1∪N3

{
(–βiξi +

∑

j∈N1

ξj|cij|σ̄ l
j +

∑

j∈N2

ξj|cij|σ̄ m
j +

∑

j∈N3

ξj|cij|σ̄ r
j

+
∑

j∈N1

ξj|dij|δ̄l
j +

∑

j∈N2

ξj|dij|δ̄m
j +

∑

j∈N3

ξj|dij|δ̄r
j

}
, (17)

then the equilibrium point x� of model (1) in
∏n

i=1 wi ∈ Φ2 is unstable.

Proof Let x(t) = (x1(t), x2(t), . . . , xn(t)) be an arbitrary solution of model (1) with the ini-
tial condition x(s) = ϕ(s) ∈ Φ2, s ∈ (–∞, 0], and let ui(t) = xi(t) – x�

i , i = 1, 2, . . . , n, t ≥ 0,
where x� = (x�

1, . . . , x�
n) is one equilibrium point of model (1) in

∏n
i=1 wi ∈ Φ2. With-

out loss of generality, suppose that x(t) remains in
∏n

i=1 wi ∈ Φ2. And we define H(t) =
supt–τ (t)≤s≤t{maxi=1,2,...,n ξ–1

i |ui(s)|}, t ≥ 0. If maxi∈N2 ξ–1
i |ui(t)| = H(t) holds, denote a se-

quence item it of N2 such that ξ–1
it |uit (t)| = maxi∈N2 ξ–1

i |ui(t)|, and differentiate |uit (t)| at
time t, then we can deduce

d|uit (t)|
dt

∣∣
∣∣
(1)

= sign
(
xit (t) – x�

it

) ·
{

–ait
(
xit (t)

)
[
(
bit

(
xit (t)

)
– bit

(
x�

it

))

–
n∑

j=1

cit j
(
gj
(
xj(t)

)
– gj

(
x�

j
))

–
n∑

j=1

dit j
(
fj
(
xj

(
t – τij(t)

))
– fj

(
x�

j
))

]}

.

On account of hypothesis (H3), that is, 0 ≤ σ m
i ≤ gi(u)–gi(v)

u–v ≤ σ̄ m
i , ∀u, v ∈ [pi, qi], we can

find a positive constant σ m∗
i such that

gi(u) – gi(v)
u – v

= σ m∗
i . (18)

Therefore by (14), (18), hypothesis (H1) and (H3), Eq. (17) can be further converted to

d|uit (t)|
dt

∣
∣∣
∣
(1)

=

{

ait
(
xit (t)

)
[

– sign
(
uit (t)

) · βit · uit (t) + sign
(
uit (t)

) · cit it
(
σ m∗

i · uit (t)
)

+ sign
(
uit (t)

) ·
n∑

j=1
j �=it

cit j
(
gj
(
uj(t) + x�

j
)

– gj
(
x�

j
))

+ sign
(
uit (t)

) ·
n∑

j=1

dit j
(
fj
(
uj

(
t – τij(t)

)
+ x�

j
)

– fj
(
x�

j
))

]}
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≥
{

ait
(
xit (t)

)[(
–βit + cit it σ

m∗
i

)∣∣uit (t)
∣
∣ –

∑

j∈N1

|cit j|σ̄ l
j
∣
∣uj(t)

∣
∣

–
∑

j∈N2
j �=it

|cit j|σ̄ m
j

∣
∣uj(t)

∣
∣ –

∑

j∈N3

|cit j|σ̄ r
j
∣
∣uj(t)

∣
∣ –

∑

j∈N1

|dit j|δ̄l
j
∣
∣uj

(
t – τij(t)

)∣∣

–
∑

j∈N2

|dit j|δ̄m
j

∣∣uj
(
t – τij(t)

)∣∣ –
∑

j∈N3

|dit j|δ̄r
j
∣∣uj

(
t – τij(t)

)∣∣
]}

≥ ait
(
xit (t)

)
{
(
–βit + cit it σ

m∗
i

)
ξit –

[∑

j∈N1
j �=it

ξj|cit j|σ̄ m
j +

∑

j∈N2

ξj|dit j|δ̄m
j

]

–
[∑

j∈N1

ξj|cit j|σ̄ l
j +

∑

j∈N3

ξj|cit j|σ̄ r
j +

∑

j∈N1

ξj|dit j|δ̄l
j +

∑

j∈N3

ξj|dit j|δ̄r
j

]}
H(t)

> ait
(
xit (t)

)
max{λ, 0}H(t). (19)

Inequality (19) implies that there exists a number r > 0 such that |uit (s)| > |uit (t)|, s ∈ (t,
t + r).

Besides, suppose that there exists some time point t′ such that

sup
t′–τ (t′)≤s≤t′

{
max

i∈N1∪N3
ξ–1

i
∣∣ui(s)

∣∣
}

= sup
t′–τ (t′)≤s≤t′

{
max
i∈N2

ξ–1
i

∣∣ui(s)
∣∣
}

,

sup
t′–τ (t′)≤s≤t′

{
max

i∈N1∪N3
ξ–1

i
∣
∣ui(s)

∣
∣
}

= max
i∈N1∪N3

ξ–1
i

∣
∣ui

(
t′)∣∣,

and denote a sequence item i′ ∈ N1 ∪ N3 such that ξ–1
i′ |ui′ (t′)| = maxi∈N1∪N3 ξ–1

i |ui(t′)|.
Hence we can get

d|ui′ (t)|
dt

∣
∣∣∣
t=t′

=

{

ai′
(
xi′

(
t′))

[

– sign
(
ui′ (t)

) · βi′ · ui′
(
t′)

+ sign
(
ui′

(
t′)) ·

n∑

j=1

ci′j
(
gj
(
uj

(
t′) + xr

j
)

– gj
(
xr

j
))

+ sign
(
ui′

(
t′)) ·

n∑

j=1

di′j
(
fj
(
uj

(
t – τi′j(t)

)
+ xr

j
)

– fj
(
xr

j
))

]}

≤
{

ai′
(
xi′

(
t′))

[
–βi′

∣∣ui′
(
t′)∣∣ +

∑

j∈N1

|ci′j|σ̄ l
j
∣∣uj

(
t′)∣∣ +

∑

j∈N2

|ci′j|σ̄ m
j

∣∣uj
(
t′)∣∣

+
∑

j∈N3

|ci′j|σ̄ r
j
∣∣uj

(
t′)∣∣ +

∑

j∈N1

|di′j|δ̄l
j
∣∣uj

(
t′ – τi′j

(
t′))∣∣

+
∑

j∈N2

|di′j|δ̄m
j

∣∣uj
(
t′ – τi′j

(
t′))∣∣ +

∑

j∈N3

|di′j|δ̄r
j
∣∣uj

(
t′ – τij

(
t′))∣∣

]}

≤
{

ai′
(
xi′

(
t′))

[
(–βi′ξi′ +

∑

j∈N2

ξj|ci′j|σ̄ m
j +

∑

j∈N2

ξj|di′j|δ̄m
j +

∑

j∈N1

ξj|ci′j|σ̄ l
j

+
∑

j∈N3

ξj|ci′j|σ̄ r
j +

∑

j∈N1

ξj|di′j|δ̄l
j +

∑

j∈N3

ξj|di′j|δ̄r
j

]}
H

(
t′)

≤ ai′
(
xi′

(
t′))λH

(
t′). (20)
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In the meantime, we can obtain the derivative of |ui′t′ (t)| at time t′ by (19) when i′ ∈ N2

d|ui′t′ (t)|
dt

∣
∣∣
∣
t=t′

> ai′t′
(
xi′t′

(
t′))max{λ, 0}H(

t′), (21)

where ξ–1
i′t′

|ui′t′ (t
′)| = maxi′∈N2 ξ–1

i′ |ui′ (t′)|.
Given the above, we can conclude that

H(t) = sup
t–τ (t)≤s≤t

{
max
i∈N2

ξ–1
i

∣∣ui(s)
∣∣
}

≥ sup
–τ (t)≤s≤0

{
max
i∈N2

ξ–1
i

∣∣ui(s)
∣∣
}

holds for all t ≥ 0, and there exists an increasing time sequence {tl}∞l=1 with liml→∞ tl =
+∞ such that suptl–τ (tl)≤s≤tl

{maxi∈N2 ξ–1
i |ui(s)|} = maxi∈N2 ξ–1

i |ui(tl)|. Correspondingly,
there exists an increasing time subsequence {tlk }∞k=1 with limk→∞ tlk = +∞ such that
ξ–1

i′′ |ui′′ (tlk )| = suptlk –τ (tlk )≤s≤tlk
{maxi∈N2 ξ–1

i |ui(s)|} ≥ sup–τ (t)≤s≤0{maxi∈N2 ξ–1
i |ui(s)|} > 0,

k = 1, 2, . . . . Thus ui′′ (t) would not converge to 0 when t → +∞ means that the equilibrium
point x� is unstable in

∏n
i=1 wi ∈ Φ2. �

4 Corollaries and comparison
According to the above theorems, we have the following two corollaries.

Corollary 1 If conditions (3)–(6) and (16) hold, then model (1) has at least 3n equilibrium
points in Rn, 2n of which are locally μ-stable in Φ1, the remaining 3n –2n points are unstable
in Φ2.

Corollary 2 When ai(xi(t)) = 1, model (1) becomes the Hopfield neural network model

dxi(t)
dt

= –bi
(
xi(t)

)
+

n∑

j=1

cijgj
(
xj(t)

)
+

n∑

j=1

dijfj
(
xj

(
t – τ (t)

))
– Ii, t ≥ 0. (22)

On the basis of conditions (3)–(6) and (16), model (22) has at least 3n equilibrium points
in Rn, 2n of which are locally μ-stable in Φ1, the remaining 3n – 2n points are unstable
equilibrium points in Φ2.

Remark 1 The present paper investigates the multistability of a Cohen–Grossberg neu-
ral network with unbounded time-varying delay and nondecreasing activation functions.
Compared with [41], the obtained results are more general.

Remark 2 The net self-inhibition function bi(xi(t)) in this paper is an odd function and
monotonically increasing, which includes the case of [41]. Thus model (22) is more general
than [41].

Remark 3 The activation functions of [41] are identical whether with or without time
delay, but the activation functions in this paper are different. Therefore the conclusion of
this paper is closer to the practical application.
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Figure 1 The state trajectories and phase plots of the neural network model (1). The above three graphs are
the state trajectories and phrase plots, where the third graph is a 3D phase plot of the state variable (t, x2, x1)

5 Simulation example
Example We consider the following two-dimensional Cohen–Grossberg neural network
model:

dxi(t)
dt

= –ai
(
xi(t)

)
[

bi
(
xi(t)

)
–

n∑

j=1

cijgj
(
xj(t)

)
–

n∑

j=1

dijfj
(
xj

(
t – τij(t)

))
+ Ii(t)

]

, t ≥ 0,

where i = 1, 2, a(x) = 1 + 0.2 sin(x), b1(x1(t)) = x1(t), b2(x2(t)) = –1.2x2(t),

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

tanh(0.2x) – tanh(1) + tanh(0.2), x < –1,

tanh(x), –1 ≤ x ≤ 1,

tanh(0.2x) + tanh(1) – tanh(0.2), x > 1,

f (x) =
|x + 1| – |x – 1|

2
,

C = (cij) =

(
3.5 0.2
0.4 4.8

)

, D = (dij) =

(
0.4 0.2
0.2 0.5

)

, I =

(
–0.3
–0.6

)

,

τij(t) = τ (t) = 0.2t.

After a simple calculation, we know that the above hypothesis satisfies the conditions
of Theorems 1–3. Therefore there are at least nine equilibrium points in model (1) from
Corollary 1, 4 of which are μ-stable equilibrium points and others are unstable points.
The solution of model (1) is traced with 150 initial conditions, the simulation results are
showed in the above three graphs of Fig. 1.

6 Conclusion
Stability of multiple unstable Cohen–Grossberg neural networks with unbounded time-
varying delays is discussed analytically in this paper. Based on the geometric structure of
two different activation functions and some rigorous mathematical analysis, the present
paper proved that there exist multiple equilibrium points in the model, some of which are
unstable, others are μ-stable. One numerical example and its simulation show the effec-
tiveness of the conclusion. Here, we also need point out the following. On the one hand,
the impulsive control is rarely used to deal with cases of unbounded time-varying de-
lays, especially for multiple unstable Cohen–Grossberg neural networks with unbounded
time-varying delays. Therefore, the stability under impulsive control of multiple unstable
Cohen–Grossberg neural networks with unbounded time-varying delays is still a chal-
lenging problem. On the other hand, we use something like positivity-based method to
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study the stability of Cohen–Grossberg neural networks in this article. The positivity-
based method is a valid approach for difference and delay differential systems (see [24–28,
44–48]). Therefore, the research on stability with positivity-based approach is an interest-
ing and meaningful topic, and we will also consider the stability of other neural networks
by employing the positivity-based approach in the near future.
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