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1 Introduction

Besov space serves to generalize more elementary functional spaces like Sobolov spaces,
Lipschitz spaces, Holder spaces, and generalized Holder spaces. It is important to note
that Besov space is effective at measuring regularity properties of functions.

Several researchers like those of [3, 5-9] have obtained a degree of approximation of
certain functions in different functional spaces such as Lipschitz space and Holder spaces
using single and product summability means. Therefore, in the present work, we obtain
the degree of approximation of a function in a Besov space using generalized Norlund—
Hausdorff (N,;Ay) product means, which provide a more general estimate than those of
[1-4].

2 Preliminaries
From [10] we define the following:

Let Cy, := C[0, 27r] denote the Banach space of all 27 -periodic continuous function de-
fined on [0, 27r] under the supremum norm and

2r
L,:=L"[0,27] := {f [0,27] — R;/ lf(y)’/’dy< o0, p > 1}
0

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


https://doi.org/10.1186/s13660-019-2128-1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-019-2128-1&domain=pdf
mailto:hknigam@cusb.ac.in

Nigam and Hadish Journal of Inequalities and Applications (2019) 2019:191 Page 2 of 17

be the space of all 277 -periodic integrable functions.

The L,-norm of a function f is defined by

L [ fO)Pdy}? for1<p<oo;

£, =
€SSSUPsc(oor) f ()] for p =o0.

The modulus of continuity of a function f in L, space is defined by

w(f;l)=  sup Lf(y +h) —f(y)|.
y,y+hel0,2r]
|h|<l

The kth order modulus of smoothness of a function f in L, space is defined by

>0,

wi(f,D), = sup | AK(f, ) )
0<h<l
3 [k

AG(fr9) = Z(—l)k‘(i)f(y +ih), keN.
i=0

Remark 1
(i) For p = 00,k =1 and a continuous function f, the modulus of smoothness wi(f, 1),
reduces to the modulus of continuity w(f, /).
(ii) For 0< p <00, k=1 and a continuous function f, wi(f,!), becomes the integral

modulus of continuity of first order w(f,/),,.
Remark 2 If a function f belongs to Cy, and w(f,[) = O(["), for 0 < v < 1, then the function
f belongs to Lip v. If the function f belongs to L,,0 < p < 0o, and w(f,[), = O(l"),0<v <1,
then the function f belongs to Lip(v, p).
If p = 0o in class Lip(v, p) then Lip(v, p) class reduces to the class Lip v. Thus,

Lipv C Lip(v, p). (1)

Consider v >0, k > v i.e.,, k = [v] + 1, where k is the smallest integer.
ForfelL,,if

wi(f, ), =0(l"), >0, 2)

then the functionf € Lip*(v, p) (generalized Lipschitz class) and in this case the seminorm

is given by
lf|Lip* = Slup(l_vwk(f; l)p)
>0
Thus,

Lip(v, p) € Lip*(v, p). ®3)
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Remark 3 We are not representing here the definition of well-known Hoélder spaces H,
and H, ,. The reader can consult [11] for detailed work on these spaces, It can be noted
that [11, 12]:

(1) Hy €S H, S Cy,; for0<n <v <1 (H, is a Banach space),

(2) H,, SH,, L, for0<n<v<1,H,,is aBanach space for p > 1 and a complete

p-normed space for 0 < p < 1.

Let v > 0 be given, and let k = [v] + 1. For 0 < p,o < 00, the Besov space Bl (L,) is a collec-
tion of all the functions (27 -periodic) f € L, such that

(fo L"wa(f,0),1° %)%, 0<o <00

supl>0(l_vwk(fr l)p); g =00,

sy, = | wilf, )], =

is finite [13].

Note 1 From (2) and (3) it is observed that, for o = oo, B} (L,) = Lip*(v, p). Then the
following cases are obtained:

(i) Ifwetake 0 <v <1,0< p < o0, then Lip* (v, p) reduces to the Lip (v, p) class.

(i) If we take p — oo then Lip(v, p) reduces to Lip v class.
It is observed that (4) is a seminorm if 1 < p,o < oo but a quasi-seminorm in other cases

[10]. In this way, the quasi-norm for Besov space B).(L,) is given by

W By e, = N + UFlsy, @ = Wl + i), (5)

Remark 4

1. If 0 <v <1, the space B} (L,) reduces to the space H,, , [14].

2. If p =00 =0 and 0 < v < 1, the Besov space reduces to the space H, [15].
The §-order error of approximation of a function f € Cy, is defined by

Ea(f)=igf|lf—fsll,

where #; is a trigonometric polynomial of degree § [16].
If Es(f) — 0 as § — oo, the E;(f) is said to be the best approximation of f [16].
Let Y 5°, 5 be an infinite series such thats; = Y _, u;.

The §th partial sum of the Fourier series (F. S.) is denoted by s;5(f;y) and is given by [16]

) )
559 ~f0) = 5 f o0, z)sm( (+)) a

A Hausdorff matrix is a lower triangle matrix with entries

8
h&,m = < >Aa_mﬂm,
m

where Ay, = ty — me1 and A(A(Sl"fm) = ASHMWI’
If tBAH = Z;.S:O s S as 8 — 00, then the series 25020 us is said to be summable to the sum
s by the Hausdorftf method (A means).
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The Hausdorff matrix H is regular, i.e., H preserves the limit of each convergent se-
quence iff

1
/0 |d(v(z))| <00,

where the mass function v € BV[0, 1], v(0+) = v(0) = 0, and v(1) = 1. In this case, s has
the representation [17]

1
,u,;z/ 2dv(z).
0

Considering the two sequences {ps} and {gs}, we write

8

5
N, 1
(P = — 1k qrSk; Rs = +#0 forall$,
5 R, k§=0 Ds—kqkSk s 1?:0 Pkds—k 7

then the generalized Noérlund means (N, ;) of the sequence {s;} is denoted by the sequence
£ 157 — 5, as § — oo then the series Y 5o, us is said to be summable to s by N, , method
and is denoted by s — s(N,,4) [18].

The necessary and sufficient conditions for a N, , method to be regular are

)
Y Ipsxaxl =O(IRs]) and  psx = o(IRs|) asé— oo
k=0

for every fixed k > 0 for which gx #0 [19].
The N, , transform of the taA” transform defines the N,;Ay product transform and its
dth partial sum is denoted by tfsv” ““H Thus,

8

Nyg A 1 A
Hpabn _ Z gt
s Ry /?_0 Ps-kqkly

5 k
1
"% kZ(; Ds—kqk ; Ny isi.

Npgls )
If ;717" — s as § — oo, then Y 5 us is summable by N,, Ay product means to s. We

have

55— s = ;" -5 asd— oo, Ay method is obtained as regular

A NygAp . .
= Ny (") =t;"""" —s, as§— 0o0,N,, means is obtained as regular

= N,yAp is obtained as regular.

Note 2

(i) AH means reduces to C* means if v(z) = H,‘("lek,a > 1.
S—m
(i) AH means reduces to E? if ks ,,, = (;i) &W’ 0<m<3$.

(iii) Np,q reduces to N, means if g = 1.

Page 4 of 17
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Remark 5 We define the following particular cases of the product means N, Ay:
(i) Npq4An means reduces to (N, p,q)(C, o) or N,,C* means in view of Note 2(i).
(ii) NpgAn means reduces to (N,p,q)(E?) or Ny E? means in view of Note 2(ii).

(iii) Np,qAp means reduces to N, Ay means in view of Note 2(iii).

Note 3
(i) Above particular case (i) in remark 5 is further reduced to Np,qu fora =1.
(i) Above particular case (ii) in remark 5 is further reduced to N, ,E* for g = 1.
(iii) Above particular case (iii) in remark 5 is further reduced to N,C* in view of Note
2(i) and then to N,,C* for o = 1.
(iv) Above particular case (iii) in remark 5 is further reduced to N,E? in view of Note
2(ii) and then to N,E* for g = 1.
We write

NpgAH

Ty) = 27 (5) ~ £) = /0 6, ()M () i, 6)

where

1< Kotk . ey sin(v + %)u
M;s(u) = m kXO:p(g_quVX:O:/o <V>z 1-2) dV(Z)T(%)’
&y(u) =f(y +u) +f(y — u) - 2f (y);

¢y+l(u) - ¢y(u)r O<v<l,

O, lu) =
¢y+l(u) + ¢y—l(u) - 2¢y(u): 1<v<2

Ty0) = Ts(y + 1) — Ts(y), O<v<l,
Ts(y+ 1)+ Ts(y—0)-2T5(y), 1<v<2.

Remark 6 We prove the following additional results that will be used in the proof of our

theorem.
W 100D - f M) @) ds, @)
0
() w0, = [ 1560, ®)

Proof (i) We have

Ts(y + 1) — Ts(y), O<vc<l,

T(g(y,l)=
Ts(y+ 1)+ Ts(y—1)-2Ts5(y), 1<v<2,

5 [Dy1() — ¢y (1)) M s () dus, O<v<l,
o (Byri() + dy_i(u) — 260 ()| M5 () du, 1<v<2,

_ / " by, 1, )M (1) .
0

Page 5of 17
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O
Proof (ii) By definition of wi(f,[),, we have
wi(Ts, 1), = sup | Aj(Ts, -)”p
0<h<l
) supa<g 1 Ts (- + 1) = Ts ()l ps O<v<l,
supgy< 1 T5(- + 1) + Ts(- = h) = 2T5()llp, 1=<v<2,
=160, O

3 Main theorem

Theorem 3.1 For a function f (27 -periodic and Lebesgue integrable) for 0 <n < v < 2,
the best error approximation of f in the Besov space B..(L,),p > 1,1 <0 <00 by N,yAy
transform of its FS is given by

@G+, v—np-ol>1,
” TB() ||BZ(L,0) = O(l) (6 + 1)—U+n+a’1’ v—n-— 0_1 < 1;
(6 + 1) log(s + V)]0, v-n- 1-1
4 Lemmas

Lemma 4.1 If {ps} and {qs} are monotonic increasing and monotonic decreasing, respec-
tively, then

(6 + Dpsqgo = O(Rs).

Proof

8

R = Zps_qu =psqo + Ps—191 + - - - + Pogs
k=0

= psqo +Psqo + -+ - + Psqo

= (8 + 1)psqo,

(6 + Dpsqgo = O(R;). a

Lemma 4.2 M;(u) =0 +1) for O<u < 5=

Proof ForO<u < ﬁ, sin(3) > Z, sin(v + %)u <@+ %)u and sup;,; [V'(2)| = N we have

L8 kol , i, SIn(v + 1)bt
|M5(u)| = ﬁ;ps—qu;/() <V>Z 1-2) T(Z)d v(2)
L le koorlop , i sin(v + 1 2u
< R kXO:ps—quvZO:/(; <V>Z (1-2) fd v(z)

1< 1
= Zm quZ/ ( >(1 Z)V(l—z)" sin(v+ §>u|dv(z)|

Page 6 of 17



Nigam and Hadish Journal of Inequalities and Applications (2019) 2019:191 Page 7 of 17

_4R5u2p5 quZ/ () 2V+1) (l—z)kdz, whereAz(liz)V

N < 1 P Kk
— _ (1-2)"dz ( )A"(2v+1)
= Z(}:ps qufo VXZO: )
N /1 Kk Lk
=— _ (1-2)fdz{2 v( )AV+ ( )A"
e Igozl?s kqk A { VX:O: Y VX:O: Y
8 1 k
N / . k-1 .
=— - 1-2)"dz{2 k( )A"+(1+A)
. Igozps kqk A { VX:; vo1

= ZP@ kﬂk/ (1 -2)* dz{2k(1 + A + (1 + A}

k=0

=— Zm qu/ 2k(1-2z) + 1] dz (substituting the value of A)
7T

8
=— Y pssqlk+1)
4m Py

8
N +1)

<

= T Zpa-qu

k=0

=05 +1). O

Lemma 4.3 If {ps} and {q;} are monotonic increasing and monotonic decreasing se-

quences, respectively, then

1 1
Ms(u) =O(m> for 571 <u<m.

Proof For 55 <u<m,sin 2su<l, sin(5) > # and supy,; [V'(2)| =N

|Ms(u)| =

1< kot , SNV + 3 Ly,
m;ps_m;/o (f)=a-2 e
Zpa kOIkImZ/ ( ) 2(1 - 2" 4 .

= Rm )

First, we solve
k Lk kv i(vs ]
ImZ/ < )z"(l—z) el gy
v=0 0 v
<Ime2/2(> (1-2)""e"dz

1 k k
— iy k=v (i)Y
=Ime /0 VEZO (v>(1 Z) (ze ) dz
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1
=Imeigf {1+z( 1)}kdz
0

ei(k+1)u -1
=Im T, u _u.
(k+1)(e'2 —e'2)
. ei(k+1)u -1
=Im

(k +1)2isin 5

cos(k + 1)u + isin(k + 1)u—1
2i(k +1)sin 5

sin?(k + 1)

= = 10
(k+1)sin 5 (10)
From (9) and (10), we have
|M (u)| sin?(k + 13
’ - 2R (k +1)sin g
Nrn 1
- 2R u? ZPS quk+ 1|
Using Abel’s lemma and Lemma 4.1, we have
A 1
M - - -
|Ms(w)| < Ron ‘Z(Pa kqk = Ps—k- 1¢Ik+1)202 1 HPodn 2 1‘
N7 v-1 m 1
= R [Z |Ps—kqk — Ps-k1qks1 +Poqs] Jmax kX_(; " 1’
< R [Ipsqo - pogs| + pogs]
Nm
- 2R
< 3psqoNT )
2R5M2
Ms(u)=0 !
u) =0l ——— ).
b (8 +1)u? -

Lemma4.4 Letl1 <p <ooand0<v<2.Iff €L, thenforO<l,u<m
@) 1L, < 4w(f, D),
(i) 1PCLu)ll, < dwil(f,u)p,
(i) 1P.()llp < 2wi(f, 1)y,
where k = [v] + 1.

Proof The proof of above lemma can be obtained along the same lines of the proofs of
Lemma 2 in [20]. O
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Lemma4.5 Let0<n<v<2.IffeB)(L,),p>11<0 <00, then

o7 e, Lwlg di\ 7 . PR
@ /OWS(”)‘(/O ij) dM=O(1){/O (u ”I(Ma(u))”-ldu} ,
T T D1, o 1
(i /0 |M5(M)|</ ”(1,77“)””7) du
T . 1—%
:0(1){ / (u“-"*%|Ms<u)|)wdu} .
0

Proof The part of above lemma can be established along the same lines of the proofs of
Lemma 2 in [20]. O

Lemma 4.6 ([20]) Let0<n<v<2andiff € B(L,),p > 1,0 =00, then

sup (l "||<D lu)” ) (u”_”).

O<lu<m

5 Proof of the main theorem
5.1 Casel:for1<o <00,0>1,0=<1<v<2

Proof Following [16], we have

17 sins+ )
sitfin -0 =5 [ o072
2

Denoting the Hausdorff matrix summability transform of ss;(y) by tBAH (y), we get

$
5O ~f0) =Y s m[sm() —f )]

m=0
N S 1 (7 sin(m + 3)1
<32 ()8 nl 5 [ 00

1 (7 b /8 sl 1Y sin(m + 1)1
- /0 qby(l)%(m)A < /0 2 dv(z))isin(l) di

2

=—/ @(DZ/ ( )"’(1 a2 g

s i

The N, transform of £5"(y), denoted by tév” aBH (y), is given by

NquH

) -f)

1 ) 1 (" " (Y m ) ey sin(v+%)l
_R_6§pakqm<gfo %(D;/O (V)z (1-2) dv(z)wdl). 11)
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Replacing / by u

o 18 moel g v v g sin(v+%)ud
_/(; gby(u)mgpé—QO;A <V>Z( -2) U(Z)T(ﬂ) u

2
- [ o
Let

NpgAH

Ty() = 271 () — £(3) = /0 ()M (1) .

Using the definition of the Besov norm given by (5), we have
1766 =101, + Dot ),
Now using (6) and Lemma 4.4(iii)
7501, = [ o], 0] d
< fo i 2wi(f, 1), | M ()| ds.

Using Holder’s inequality and definition of Besov space given in (4), we get,

" N N AN
o ol [ty | (22 o

T 1,0 -7
=O(1){/O (‘M(g(u)|u”+5)”*1 du}
1-1

3% 1 %1 o
:OH/O (|M5(u)|u 0) du}

1

T - 1-Z
+ {/1 (|M5(u)|u"+%)E du} ]

Now using Lemma 4.2, we have

1

§+1 1,0 1-
R=o{/ (|Ms<u)|u“*€)ﬂdu}
0

o

1-1

o

1
-0 f“ {6+ 1urra )71 du}
0

ﬁ 1-o
=O{(8+1)rf”1/ U du}
0

(12)

(13)

(14)

(15)

(16)

(17)

Page 10 of 17



Nigam and Hadish Journal of Inequalities and Applications (2019) 2019:191

Using Lemma 4.3, we have

T

-z
S=0 (|M,g(u)|u”+;)”nldu}

oﬂ‘y\

|

T

T 1 1\ 7T -5
-0 = ) 4
/1<(5+1)u2“ ) ”}

§+1

a

o 1-1
-0 /ﬂ N I
1 \§+1

§+1

(6+1)71, v>1,
=0(1) (8 +1)7, v<l,

1

(§+ 1) log(s+ )m]** ", v=1.
Combining (16)—(18), we have

(8 + 1)_1; V> 1,
I 750, =0 6+ 1), vel,
6+ 1) log(s + )m ], v=1.

Using the generalized Minkowski inequality [21] repeatedly and Lemma 4.5, we get

" T D\ di?
bl = | [(5) 7]
B 0 n /
b4 T ||CD(-,Z,L£)||" dl o1
S/O |‘}\/I(S(M)|6l'u</0 TPT)
i w0 LS dl )
5[/(; |Ma(u)|du{/0 T?} :|
’ (Ll di )
+|:/0 iMa(u)|du{/u TT} ]

b4 - 1—%
= O(l){/ (u'" |M,3(u)|)m du}
0

1
-5

+O(1){f”(uvn+;\M5(u)|)<f+1 du}
0
= O(D)(Ry + S1).

Since (a + b)? < a” + b” for positivea, band 0<p <1forp=1- % <1, then

Page 11 of 17
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-1

1

5+1

T - 1-o
+ {/ (u"_” |M5(Lt)|)ﬁ du}

=R11 +R12. (21)
Using Lemma 4.2, we have
1 1-071
§+1 _o
&i:o{/‘ «5+nu“0”4du}
0
=0f(s+1)" 7 ). (22)
Using Lemma 4.3, we have
T 1 ﬁ 1-071
Ri,=0 v d
oo [, («gma) 4]
5+1
G+, v-n-0o1>1,
=0(1) (8 + 1) o) v-n-ol<l, (23)
8+ 1) log(8 + V)", v-p-L=1
Now from (21) to (23), we get
¢+, v-n-ol>1,
Ri=0(1)1 (s + 1)“’“7“’71, v—n-ol<l, (24)
6+ 1) log( + D", v-p-L=1.
Since (a + b)? < a” + b” for positivea, band0<p <1lforp=1- % <1, then
T 1—071
Sl = {/ (Mu—nﬂr_l ‘1VI§(M)|)m dbt}
0
A 1-o71
5+1 -1 _o
< {/ (u”"“‘r !M(;(u)|)"*1 du}
0
T 1-o71
+ {/ (u”"’”_l |M5(u)|)ﬁ du}
1
§+1
= SH + 512 say. (25)
Using Lemma 4.2, we have
. 1-071
S+1 -1 o
Sii= O{/ (=7 | Ms(w)|) ™ du}
0
L 1-071
§+1 -1 _o_
= O{/ (u""”*” 6+ 1)) o1 du}
0
(26)

=o{(6+1)"}.

Page 12 of 17
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Using Lemma 4.3, we have

T - l1-o
S1p = O{/ (uv—n+% |[\/I(3(I/l)|)m du}
1

§+1
T 51 1-0~
=0 / u e L\ du
1 (8 +1)u?
§+1
B+ v—n>1,
=0(1) 1 (8 + 1), v-n<l,
(6 + 1) log(d + V)], v-n=1

Now, from (25)-(27), we get

6+1)71 v-n>1,
S1=0(1) 3 (s + 1)V, v-n<l,
6+ 1) log(s + V)], v-n=1

Combining (20), (24) and (28), we get

(6+1)71, v-np-—ol>1,

1

Wi(Ts, o = O(Q) § (8 + 1)1+, v-n-ot<l,
(6 + 1) logd + 1)), §-n-ol=1.

From (14), (19) and (29), we get

G+ v-n-ol>1,

1

” Té(')”Bg(Lp) =0(1) 4 (8 + 1)~vmto von-—ol<l,
(6 + 1) log(s + 1)7{]1‘“71, v-n-1=1.

o

Casell: Foro =00,0<n<v<2.

| 0,0, = 1 TON, + [we(Ts )]

Using (2) in (15),
7,01, = [ 2,00, 50| s

1
5+1

:O(l){/M|M5(u)|u“du+/ |M5(u)|u"du}
0 _

= O(l)[Rz + 52]

(27)

(28)

(29)

(30)

(31)

(32)

Page 13 0of 17
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Using Lemma 4.2, we get

x
R, :/ u" | My (w)| du
0

1

5/5_ Y6+ 1) du=(5+1)"". (33)
0

Using Lemma 4.3, we get

Sy = / u’ |M,3(u)| du
5
1 o
< / 2 du
S+1 /)1
5+1
(6+1)71, v>1,
=106+, v<l, (34)

(§+1)tlog(6 + ), v=1.
From (32) and (34), we get

(6+1)71, v>1,
| 7:)], = 0) { 6+ 1), v<l, (35)
(§+1)tlog6 + ), v=1.

Using the generalized Minkowski inequality [21] and Lemma 4.6, we get

lwi(Ts,9)], . = Slup(l_"Wk(Ts»l)p)
>0

17,00

—sup(t[ 0]
>0
—sup|:l '7( dy>:|
>0
2 %
<sup|:l 'I( ) {/ |M5(u)|p|CI>(y,l,u)|pdy} du]
>0

[z / 10410 |M,;(u)|dui|

/ (supl "o L)]], ) M) du

|M5(u)|<I>(y 1, u) du

- o(1) / " | M (1) du

- o(1)[ [ st [ M| du]
0 _

5+1

= O(l)[Rg + Sg]. (36)
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Using Lemma 4.2, we get

R3 = /om u' ™" |M5(u)| du
=0((6 +1)"). (37)

Using Lemma 4.3, we get

S3 = /1 u"’”‘M(g(u)’du

5+1

1 s
:O(l)—/ w2 du

§+1 )1
§+1
S+ v—n>1,
=0(1) (8 +1)~*", v—-n<l, (38)

+1)tlog+1)r, v-—n=1.
From (36) to (38), we get

B+ v—n>1,
|wi(Ts, -)||,7,OO =0(1) { (5 + 1)V, v-n<l, (39)
S+1)tlog+ ), v—n=1.

Combining (31), (35) and (39) we obtain

¢ +1)74 v—n-ol>1,
1

Bl(Ly) = O(l) (8 + 1)—v+n+o’ ,
6+ 1) og + V], v-p-Ll=1

I75()

v—n—0‘1<1,

6 Corollaries
Corollary 6.1 The error approximation of a function f € B,(L,), p > 1,1 <o < 00 by
N, ,C% means of its F. S is given by

@+1)7, v—n-o'>1,
1

I Tf‘(')“Bg(Lp) =0(1) { B+ 1)+,
6+ 1) log(s + )]0, v-n- 1-1

v-n-ol<«l,

Corollary 6.2 The error approximation of a function f € B)(L,),p > 1,1 <o < 00 by
Ny, E? means of its FS is given by

@+1)7, v—np-ol>1,
1

“ TB(')”BZ(L/,) =0(1) § (8 + 1)+,
(6 + 1) log(s + D)o, v- n-— 5 =1.

v-n-olt<«l,
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Remark 7 Corollaries 6.1, 6.2 can be further reduced for N, ,C* and N,,,E* means, re-
spectively in view of Note 3(i), (ii).

Corollary 6.3 The error approximation of f € B.(L,), p > 1,1 <0 < 00 by N,Ay means
of its F. S is given by

G+ v-n-ol>1,
1

” T‘S(')”BZ(L,)) =0(1) § (8 +1)™+mo,
6+ 1) 'og + Dm], v-p-Ll=1

v—n—0‘1<1,

Remark 8 Corollary 6.3 can be further reduced for N,C* N,C',N,E?,N,E" in view of
Note 3(iii), (iv).

7 Particular cases

7.1. Using Note 1(ii) and Note 3(iv) and by putting n = 0 in our result, our theorem
becomes a particular case of main theorem of [4].

7.2. Using Note 1(i) and Note 3(iii) and by putting 1 = 0 in our result, our main theorem
becomes a particular case of main theorem of [1].

7.3. Using Note 1(i) and Note 3(i) by putting n = 0 in our result, our main theorem
becomes a particular case of main theorem of [3].

7.4. If £(¢) = t* then Lip((£(¢), ) class reduces to Lip(e, r) class, where &(¢) is a positive
increasing function and r > 1. Further as » — oo in Lip(«, r) class reduces to Lipa
class. Thus, using this argument in [2] and putting # = 0 in our result, our main
theorem becomes a particular case of [2].

8 Conclusion

In the review literature, it has been observed that many results have been obtained by the
researchers on the degree of approximation of certain functions in different functional
spaces like Lipschitz space, Holder spaces etc. using the trigonometric Fourier approxima-
tion method. Since the Besov space generalizes more elementary functions as mentioned
above and this space is very effective in measuring regularity properties of the function,
this space has a wide range of applications in different areas of engineering and in mathe-
matics in general and in analysis in particular.

Motivated by the usefulness of the Besov space in approximating the error of a certain
function, in the present work we estimate the error of a function f in Besov space using
a generalized Norlund—Hausdorff (N, Ax) product matrix, our result generalizes several
previously known results obtained by using a Lipschitz space. Thus, the results of [1-4]
become particular cases of our theorem. Some useful results are also deduced in the form
of corollaries from our theorem.

Some other studies regarding the modulus of the smoothness of functions using differ-
ent function spaces may be performed in future work.
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