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Abstract
In this paper, linear and nonlinear wavelet estimators are defined for a density in a
Besov space based on a negatively dependent random sample, and their upper
bounds on Lp (1≤ p < ∞) risk are provided.
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1 Introduction
Random variables X1, X2, . . . , Xn are said to be negatively dependent (ND), if for any
x1, x2, . . . , xn ∈ R,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤
n∏

i=1

P(Xi ≤ xi),

and

P(X1 > x1, X2 > x2, . . . , Xn > xn) ≤
n∏

i=1

P(Xi > xi).

The definition was introduced by Bozorgnia [3]. Further discussion and related concepts
can be found in [2, 10]. ND random variables are very useful in reliability theory and ap-
plications. Because of the wide applications, the notion of ND random variables has been
receiving more and more attention recently. A series of useful results have been estab-
lished (see [13–16]). Hence, we consider density estimation for ND random variables in
this paper.

For density estimation, Donoho et al. [6] defined wavelet estimators and showed their
convergence rates on Lp-loss, when X1, X2, . . . , Xn are independent. They found that the
convergence rate of the nonlinear estimator is better than that of the linear one. In many
cases, random variables X1, X2, . . . , Xn are dependent. Doosti et al. [8] proposed a linear
wavelet estimator and evaluated its Lp (1 ≤ p < ∞) risks for negatively associated random
variables. Soon afterwards, the above results were extended to the case of negatively de-
pendent sequences [7]. Chesneau [4] and Liu [12] also considered density estimation for
an NA sample. Kou [11] defined linear and nonlinear wavelet estimators for mixing data
and obtained their convergence rates.
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Motivated by the above work, this paper will estimate the unknown density function
f from a sequence of ND data X1, X2, . . . , Xn. We shall define wavelet estimators and give
their upper bounds on Lp-loss. It turns out that our results reduce to Donoho’s classical
theorems in [6], when the random sample is independent.

We establish our results on Besov spaces on a compact subset of the real lineR. As usual,
the Sobolev spaces with integer exponents are defined as

W n
r (R) :=

{
f ∈ Lr(R), f (n) ∈ Lr(R)

}

with ‖f ‖W n
r := ‖f ‖r + ‖f (n)‖r . Then Lr(R) can be considered as W 0

r (R). For 1 ≤ r, q ≤ ∞
and s = n + α with α ∈ (0, 1], a Besov space on R means

Bs
r,q(R) :=

{
f ∈ W n

r (R),
∥∥t–αω2

r
(
f (n), t

)∥∥∗
q < ∞}

with the norm ‖f ‖srq := ‖f ‖W n
r +‖t–αω2

r (f (n), t)‖∗
q , where ω2

r (f , t) := sup|h|≤t ‖f (·+2h)–2f (·+
h) + f (·)‖r stands for the smoothness modulus of f and

‖h‖∗
q =

⎧
⎨

⎩
(
∫ ∞

0 |h(t)|q dt
t )

1
q , if 1 ≤ q < ∞;

ess supt |h(t)|, if q = ∞.

We always assume f ∈ Bs
r,q(R, L) = {f ∈ Bs

r,q(R), f is a probability density and ‖f ‖srq ≤ L}
with L > 0. Let φ ∈ Ct

0(R) be an orthonormal scaling function with t > max{s, 1}. Then φ is
a function of bounded variation (BV). The corresponding wavelet function is denoted by
ψ . It is well known that {φJ ,k ,ψj,k , j ≥ J , k ∈ Z} constitutes an orthonormal basis of L2(R),
where φJ ,k(x) := 2

J
2 ψ(2J x – k), ψj,k(x) := 2

j
2 ψ(2jx – k) as in wavelet analysis [5]. Then for

each f ∈ L2(R), αJ ,k =
∫

f (x)φJ ,k(x) dx, and βj,k =
∫

f (x)ψj,k(x) dx, we have

f (x) =
∑

k∈Z
αJ ,kφJ ,k(x) +

∑

j≥J

∑

k∈Z
βj,kψj,k(x).

Here and in what follows, A � B denotes A ≤ CB for some constant C > 0; A � B means
B � A; A ∼ B stands for both A � B and B � A. The following theorems are needed in our
discussion:

Theorem 1.1 (Härdle et al. [9]) Let f ∈ Lr(R) (1 ≤ r ≤ ∞), αJ ,k =
∫

f (x)φJ ,k(x) dx and βj,k =∫
f (x)ψj,k(x) dx. The following assertions are equivalent:

(i) f ∈ Bs
r,q (R), s > 0, 1 ≤ q ≤ ∞;

(ii) {2js‖Pjf – f ‖r}j≥0 ∈ lq with Pjf :=
∑

k∈Z αj,kφj,k ;
(iii) ‖αJ·‖r + ‖{2j(s+ 1

2 – 1
r )‖βj·‖r}j≥0‖q < +∞.

Moreover,

‖f ‖srq ∼ ∥∥(
2js‖Pjf – f ‖r

)
j≥0

∥∥
q ∼ ‖αJ·‖r +

∥∥{
2j(s+ 1

2 – 1
r )‖βj·‖r

}
j≥0

∥∥
q.

Theorem 1.2 (Härdle et al. [9]) Let θφ(x) :=
∑

k |φ(x – k)| and ess supx θφ(x) < ∞. Then for
λ = {λk} ∈ lr(Z) and 1 ≤ r ≤ ∞,

∥∥∥∥
∑

k∈Z
λkφjk

∥∥∥∥
r
∼ 2j( 1

2 – 1
r )‖λ‖r .
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Negatively dependent random variables possess the following property which will be
used in this paper.

Theorem 1.3 (Bozorgnia et al. [3]) Let X1, . . . , Xn be a sequence of ND random variables
and let A1, . . . , Am be some pairwise disjoint nonempty subsets of {1, . . . , n} with αi = 	(Ai),
where 	(A) denotes the number of elements in the set A. If fi : Rαi → R (i = 1, . . . , m) are m
coordinatewise nondecreasing (nonincreasing) functions, then f1(Xi, i ∈ A1), . . . , fm(Xi, i ∈
Am) are also ND. In particular, for any ti ≥ 0(≤ 0), 1 ≤ i ≤ m,

E

[
exp

( n∑

i=1

tiXi

)]
≤

n∏

i=1

E
[
exp(tiXi)

]
.

2 Linear estimators
In this section, we shall give a linear wavelet estimator for a density function f (x) in a Besov
space.

The linear wavelet estimator of f (x) is defined as follows:

ˆf lin
n (x) =

∑

k∈K0

α̂j0,kφj0,k(x), (1)

where K0 = {k ∈ Z, supp f ∩ suppφj0,k �= ∅},

α̂j0,k =
1
n

n∑

i=1

φj0,k(Xi). (2)

The following inequalities play important roles in this paper.

Lemma 2.1 (Rosenthal’s inequality, see Asadian et al. [1]) Let X1, . . . , Xn be a sequence of
ND random variables, which satisfy EXi = 0 and E|Xi|p < ∞, where i = 1, . . . , n. Then

E

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p)
�

n∑

i=1

E|Xi|p +

( n∑

i=1

EX2
i

) p
2

, p ≥ 2,

E

(∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p)
≤

( n∑

i=1

EX2
i

) p
2

, 0 < p ≤ 2.

Lemma 2.2 Let X1, X2, . . . , Xn be ND random variables and let the density function f be
bounded and compactly supported with support length less than H > 0. Then for α̂j0,k de-
fined by (2) we have

E|α̂j0,k – αj0,k|p � n– p
2

for 1 ≤ p < ∞ and 2j0 ≤ n.

Proof By the definition of α̂j0,k , one has

E|α̂j0,k – αj0,k|p =
1
np E

∣∣∣∣∣

n∑

i=1

[
φj0,k(Xi) – αj0,k

]
∣∣∣∣∣

p

. (3)
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Let ξi := φj0,k(Xi) – αj0,k (i = 1, 2, . . . , n). Clearly,

E

∣∣∣∣∣

n∑

i=1

[
φj0,k(Xi) – αj0,k

]
∣∣∣∣∣

p

= E

∣∣∣∣∣

n∑

i=1

ξi

∣∣∣∣∣

p

. (4)

One can choose a scaling function φ, which a function of bounded variation, and assume
φ := φ̃ – φ̄, where φ̃ and φ̄ are bounded, nonnegative and nondecreasing functions. Define

α̃j0,k :=
∫

φ̃j0,k(x)f (x) dx, ᾱj0,k :=
∫

φ̄j0,k(x)f (x) dx,

and

ξ̃i := φ̃j0,k(Xi) – α̃j0,k , ξ̄i := φ̄j0,k(Xi) – ᾱj0,k .

Then αj0,k = α̃j0,k – ᾱj0,k , ξi = ξ̃i – ξ̄i and

E

∣∣∣∣∣

n∑

i=1

ξi

∣∣∣∣∣

p

= E

∣∣∣∣∣

n∑

i=1

(ξ̃i – ξ̄i)

∣∣∣∣∣

p

. (5)

It is easy to see that Eξ̃i = 0, the random variables ξ̃1, . . . , ξ̃n are ND due to the nonde-
creasing property φ̃ and Theorem 1.3. To apply the Rosenthal’s inequality, one shows an
inequality

E|ξ̃i|m � 2
(m–2)j0

2 (6)

for m ≥ 2. In fact,

E|ξ̃i|m = E
∣∣φ̃j0,k(Xi) – α̃j0,k

∣∣m � E
∣∣φ̃j0,k(Xi)

∣∣m + |α̃j0,k|m. (7)

Note that |φ̃j0,k(x)| � 2
j0
2 . Then for m ≥ 2,

E
∣∣φ̃j0,k(Xi)

∣∣m = E
[∣∣φ̃j0,k(Xi)

∣∣2∣∣φ̃j0,k(Xi)
∣∣m–2]

� 2
(m–2)j0

2 E
∣∣φ̃2

j0,k(Xi)
∣∣. (8)

Note that f ∈ Bs
r,q(R, L) ⊆ Bs– 1

r∞,q(R, L). Then ‖f ‖∞ ≤ L. Using φ̃ ∈ L2(R), one knows that

E
∣∣φ̃2

j0,k(Xi)
∣∣ �

∫
(φ̃j0,k)2(x)f (x) dx =

∫ ∣∣φ̃(x – k)
∣∣2f

(
2–jx

)
dx � 1,

and |α̃j0,k| = | ∫ f (x)φ̃j0,k(x) dx| � 1 because of supp f is contained in some interval I with
length |I| ≤ H . This, together with (8) and (7), leads to (6).

By Rosenthal’s inequality with 1 ≤ p ≤ 2,

E

∣∣∣∣∣

n∑

i=1

ξ̃i

∣∣∣∣∣

p

≤
[ nm∑

i=1

E(ξ̃i)2

] p
2

� n
p
2 .
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Similarly, E|∑n
i=1 ξ̄i|p � n

p
2 . Combining this with (5), one has

E

∣∣∣∣∣

n∑

i=1

ξi

∣∣∣∣∣

p

� E

∣∣∣∣∣

n∑

i=1

ξ̃i

∣∣∣∣∣

p

+ E

∣∣∣∣∣

n∑

i=1

ξ̄i

∣∣∣∣∣

p

� n
p
2 . (9)

Substituting (9) into (4), one obtains

E

∣∣∣∣∣

n∑

i=1

[
φj0,k(Xi) – αj0,k

]
∣∣∣∣∣

p

� n
p
2 .

This with (3) shows that for 1 ≤ p ≤ 2,

E|α̂j0,k – αj0,k|p � 1
np × n

p
2 = n– p

2 . (10)

When 2 ≤ p < ∞, Rosenthal’s inequality and (6) show that

E

∣∣∣∣∣

n∑

i=1

ξ̃i

∣∣∣∣∣

p

�
n∑

i=1

E|ξ̃i|p +

[ n∑

i=1

E(ξ̃i)2

] p
2

� n2
(p–2)j0

2 + n
p
2 .

Similarly, E|∑n
i=1 ξ̄i|p � n2

(p–2)j0
2 + n

p
2 . Hence E|∑n

i=1 ξi|p � n2
(p–2)j0

2 + n
p
2 . Furthermore, it

follows from (4), (3) and 2j0 ≤ n that

E|α̂j0,k – αj0,k|p � 1
np

[
n2

(p–2)j0
2 + n

p
2
]
� n– p

2 .

Combining this with (10), one concludes the desired inequality of the lemma. �

Theorem 2.1 Let f (x) ∈ Bs
r,q(R, L) (s > 1

r , r, q ≥ 1) and let f̂ lin
n be defined by (1). Under the

conditions of Lemma 2.2, for each 1 ≤ p < ∞, one has

sup
f ∈Bs

r,q(R,L)
E
∥∥f̂ lin

n – f
∥∥p

p � n– s′p
2s′+1 ,

where s′ := s – ( 1
r – 1

p )+ and x+ = max(x, 0).

Proof Since

E
∥∥f̂ lin

n – f
∥∥p

p � ‖Pj0 f – f ‖p
p + E

∥∥f̂ lin
n – Pj0 f

∥∥p
p, (11)

it is sufficient to estimate ‖Pj0 f – f ‖p
p and E‖f̂ lin

n – Pj0 f ‖p
p.

When r ≤ p, s′ = s – ( 1
r – 1

p )+ = s – 1
r + 1

p and Bs
r,q(R) ⊂ Bs′

p,q(R), one has

sup
f ∈Bs

r,q(R,L)
‖Pj0 f – f ‖p

p � sup
f ∈Bs′

p,q(R,L)
‖Pj0 f – f ‖p

p.

By the approximation theorem in Besov spaces and from Theorem 9.4 in [9], one gets

‖Pj0 f – f ‖p
p � 2–j0s′p. (12)
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When r > p, because both f and φ have compact supports, one can assume that supp(Pj0 f –
f ) ⊆ I with |I| ≤ H . Then Hölder inequality shows

‖Pj0 f – f ‖p
p =

∫

I

∣∣Pj0 f (y) – f (y)
∣∣p dy � ‖Pj0 f – f ‖p

r .

Since f ∈ Bs
r,q(R, L), one knows ‖Pj0 f – f ‖r � 2–j0s. Moreover, ‖Pj0 f – f ‖p

p � 2–j0sp. Note that
s′ = s for r > p. Then ‖Pj0 f – f ‖p

p � 2–j0s′p. This, together with (12), shows that for 1 ≤ p < ∞,

‖Pj0 f – f ‖p
p � 2–j0s′p. (13)

Next, one estimates E‖f̂ lin
n – Pj0 f ‖p

p. It is easy to see that

f̂ lin
n – Pj0 f =

∑

k∈K

(α̂j0,k – αj0,k)φj0,k

by the definitions of f̂ lin
n and Pj0 f . Furthermore,

∥∥f̂ lin
n – Pj0 f

∥∥p
p � 2j0p( 1

2 – 1
p ) ∑

k∈K

|α̂j0,k – αj0,k|p

due to Theorem 1.2. Let |K0| denote the number of elements in K0. Then |K0| ∼ 2j0 , be-
cause K0 := {k ∈ Z, supp f ∩ suppφj0,k �= ∅} and f , φ have compact supports. This, together
with Lemma 2.2, leads to

E
∥∥f̂ lin

n – Pj0 f
∥∥p

p � 2
j0p
2 E|α̂j0,k – αj0,k|p �

(
2j0

n

) p
2

. (14)

Substituting (13) and (14) into (11), one obtains

E
∥∥f̂ lin

n – f
∥∥p

p �
(

2j0

n

) p
2

+ 2–j0s′p.

Taking 2j0 ∼ n
1

2s′+1 , the desired conclusion follows. �

3 Nonlinear estimators
In this part, we will give a nonlinear wavelet estimator for f (x), which is better than the
linear one in some cases. The nonlinear (hard thresholding) wavelet estimator is defined
as follows:

f̂ non
n (y) :=

∑

k∈K0

α̂j0,kφj0,k(y) +
j1∑

j=j0

∑

k∈Kj

β̂∗
j,kψj,k(y). (15)

Here K0 = {k ∈ Z, supp f ∩ suppφj0,k �= ∅}, Kj = {k ∈ Z, supp f ∩ suppψj,k �= ∅},

α̂j0,k =
1
n

n∑

i=1

φj0,k(Xi) and β̂j,k =
1
n

n∑

i=1

ψj,k(Xi) (16)
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with β̂∗
j,k = β̂j,kX {|β̂j,k| > λ = c

√
j
n } while the constant c is determined (later on) by s, r, p

and L.
For the wavelet coefficients, we can get the following lemma whose proof is very similar

to that of Lemma 2.2 and so we omit it.

Lemma 3.1 Let β̂j,k be defined by (16). Then under the assumptions of Lemma 2.2,

E|β̂j,k – βj,k|p � n– p
2

for 1 ≤ p < ∞ and 2j ≤ n.

To prove Lemma 3.3, we need an important inequality.

Lemma 3.2 (Bernstein’s inequality) Let X1, . . . , Xn be a sequence of ND random variables
such that E(Xi) = 0, E(X2

i ) = σ 2 and |Xi| ≤ M < ∞ (i = 1, . . . , n). Then for each v > 0,

P

(∣∣∣∣∣
1
n

n∑

i=1

Xi

∣∣∣∣∣ > v

)
≤ 2 exp

(
–

nv2

2(σ 2 + vM
3 )

)
.

This above inequality is well-known, when X1, . . . , Xn are independent; see Theorem C.1
on page 241 in [9]. We find by checking the details that the same inequality holds for ND
samples: In fact, because Theorem C.1 is a direct corollary of Lemma C.1 (page 239), it
suffices to prove that lemma for the ND case. Note that

E

[
exp

( n∑

i=1

tXi

)]
=

n∏

i=1

E
[
exp(tXi)

]

for an independent sample X1, . . . , Xn, while

E

[
exp

( n∑

i=1

tXi

)]
≤

n∏

i=1

E
[
exp(tXi)

]

for ND samples, according to Theorem 1.3. Then we only need to replace the equality

exp(–λt)E

[
exp

( n∑

i=1

tXi

)]
= exp

{
–

[
λt –

n∑

i=1

log E
(
etXi

)
]}

by

exp(–λt)E

[
exp

( n∑

i=1

tXi

)]
≤ exp

{
–

[
λt –

n∑

i=1

log E
(
etXi

)
]}

on page 240 (line 8–9), in order to complete the proof of Lemma C.1, when X1, . . . , Xn are
ND.
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Lemma 3.3 Let β̂j,k be given by (16). Under the assumptions of Lemma 2.2 and if j2j ≤ n,
then for each ω > 0, there exists c > 0 such that

P

(
|β̂j,k – βj,k| > λ = c

√
j
n

)
� 2–ωj.

Proof It is easy to see that

|β̂j,k – βj,k| =
1
n

∣∣∣∣∣

n∑

i=1

[
ψj,k(Xi) – βj,k

]
∣∣∣∣∣.

Hence,

I := P
(|β̂j,k – βj,k| > λ

)
= P

(
1
n

∣∣∣∣∣

n∑

i=1

[
ψj,k(Xi) – βj,k

]
∣∣∣∣∣ > λ

)
.

In order to estimate I , denote ηi := ψj,k(Xi) – βj,k (i = 1, 2, . . . , n). Then

I = P

(
1
n

∣∣∣∣∣

n∑

i=1

ηi

∣∣∣∣∣ > λ

)
.

Since ψ is a function of BV, ψ := ψ̃ – ψ̄ , where ψ̃ and ψ̄ are bounded, nonnegative and
nondecreasing functions. Denote

β̃j,k :=
∫

ψ̃j,k(x)f (x) dx, β̄j,k :=
∫

ψ̄j,k(x)f (x) dx,

and

η̃i := ψ̃j,k(Xi) – β̃j,k , η̄i := ψ̄j,k(Xi) – β̄j,k .

Then βj,k = β̃j,k – β̄j,k , ηi = η̃i – η̄i and

I = P

(
1
n

∣∣∣∣∣

n∑

i=1

(η̃i – η̄i)

∣∣∣∣∣ > λ

)

≤ P

(
1
n

∣∣∣∣∣

n∑

i=1

η̃i

∣∣∣∣∣ >
λ

2

)
+ P

(
1
n

∣∣∣∣∣

n∑

i=1

η̄i

∣∣∣∣∣ >
λ

2

)
. (17)

Note that η̃1, . . . , η̃n are ND thanks to the monotonicity of ψ̃ and Theorem 1.3. On the
other hand, Eη̃i = 0, E(η̃i)2 � 1 and |η̃i| � 2

j
2 . Using Bernstein’s inequality, one obtains that

P

(
1
n

∣∣∣∣∣

n∑

i=1

η̃i

∣∣∣∣∣ >
λ

2
=

c
2

√
j
n

)
≤ 2 exp

(
–

c2j

C(1 + c
√

j2j

n )

)

for some fixed constant C > 0. Due to j2j ≤ n, one can take c > 0 such that c2

C(1+c) ≥ ω and

P

(
1
n

∣∣∣∣∣

n∑

i=1

η̃i

∣∣∣∣∣ >
λ

2

)
� 2–ωj. (18)
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Similarly, P( 1
n |∑n

i=1 η̄i| > λ
2 ) � 2–ωj. This, with (18) and (17), leads to

I = P

(
1
n

∣∣∣∣∣

n∑

i=1

ηi

∣∣∣∣∣ > λ

)
� 2–ωj.

The desired conclusion follows. �

Theorem 3.1 Let f (x) ∈ Bs
r,q(R, L) (s > 1

r , r, q ≥ 1), and let f̂ non
n be defined by (15). Under

the assumptions of Lemma 2.2, for each 1 ≤ p < ∞, s′ := s – ( 1
r – 1

p )+ and x+ = max(x, 0),
there exist θi ∈R (i = 1, 2, 3) such that

sup
f ∈Bs

r,q(R,L)
E
∥∥f̂ non

n – f
∥∥p

p �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ln n)θ1 n– sp
2s+1 , p

2s+1 < r < p,

(ln n)θ2 ( ln n
n )

s′p
2(s–1/r)+1 , r = p

2s+1 ,

(ln n)θ3 ( ln n
n )

s′p
2(s–1/r)+1 , r < p

2s+1 .

(19)

Proof Clearly,

f̂ non
n – f =

(
f̂ lin
n – Pj0 f

)
+ (Pj1+1f – f ) +

j1∑

j=j0

∑

k∈Kj

(
β̂∗

jk – βjk
)
ψjk .

Then

E
∥∥f̂ non

N – f X∥∥p
p � T1 + T2 + T3, (20)

where T1 := E‖f̂ lin
n – Pj0 f ‖p

p, T2 := ‖Pj1+1f – f ‖P
p and T3 := E‖∑j1

j=j0
∑

k∈Kj
(β̂∗

jk – βjk)ψjk‖p
p. By

(13) and (14),

T1 �
(

2j0

n

) p
2

and T2 � 2–j1s′p. (21)

For estimating T3, one uses Minkowski and Jensen’s inequalities to get

∥∥∥∥∥

j1∑

j=j0

∑

k∈Kj

(
β̂∗

j,k – βj,k
)
ψj,k

∥∥∥∥∥

p

p

≤ (j1 – j0 + 1)p–1
j1∑

j=j0

∥∥∥∥
∑

k∈Kj

(
β̂∗

j,k – βj,k
)
ψj,k

∥∥∥∥
p

p
.

This, together with Theorem 1.2, leads to

T3 ≤ (j1 – j0 + 1)p–1E
j1∑

j=j0

2j( p
2 –1)

(∑

k∈Kj

∣∣β̂∗
j,k – βj,k

∣∣p
)

.

Since β̂∗
j,k = δH (β̂j,k ,λ),

∣∣β̂∗
j,k – βj,k

∣∣p = |β̂j,k – βj,k|p[X{|β̂j,k |>λ,|βj,k |< λ
2 } + X{|β̂j,k |>λ,|βj,k |≥ λ

2 }]

+ |βj,k|p[X{|β̂j,k |≤λ,|βj,k |>2λ} + X{|β̂j,k |≤λ,|βj,k |≤2λ}].
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Therefore,

T3 � (j1 – j0 + 1)p–1

{
E

j1∑

j=j0

2j( p
2 –1)

∑

k∈Kj

|β̂j,k – βj,k|p[X{|β̂j,k |>λ,|βj,k |< λ
2 }

+ X{|β̂j,k |>λ,|βj,k |≥ λ
2 }] + E

j1∑

j=j0

2j( p
2 –1)

∑

k∈Kj

|βj,k|p[X{|β̂j,k |≤λ,|βj,k |>2λ}

+ X{|β̂j,k |≤λ,|βj,k |≤2λ}]

}
. (22)

When |β̂jk| > λ and |βjk| < λ
2 , |β̂jk – βjk| ≥ |β̂jk| – |βjk| > λ

2 , one has

I{|β̂jk |>λ,|βjk |< λ
2 } ≤ I{|β̂jk –βjk |> λ

2 }.

Similarly, when |β̂jk| ≤ λ and |βjk| > 2λ, |β̂jk| ≤ λ < |βjk |
2 . Hence,

|β̂jk – βjk| ≥ |βjk| – |β̂jk| >
|βjk|

2
> λ and |βjk| < 2|β̂jk – βjk|.

Furthermore,

|βjk|pI{|β̂jk |≤λ,|βjk |>2λ} � |β̂jk – βjk|pI{|β̂jk –βjk |> λ
2 }.

Then (22) reduces to

T3 � T31 + T32 + T33,

where

T31 := (j1 – j0 + 1)p–1E
j1∑

j=j0

2j( p
2 –1)

∑

k∈Kj

|β̂j,k – βj,k|pX{|β̂j,k –βj,k |> λ
2 },

T32 := (j1 – j0 + 1)p–1E
j1∑

j=j0

2j( p
2 –1)

∑

k∈Kj

|β̂j,k – βj,k|pX{|βj,k |≥ λ
2 }

and T33 := (j1 – j0 + 1)p–1 ∑j1
j=j0 2j( p

2 –1) ∑
k∈Kj

|βj,k|pX{|βj,k |≤2λ}.
In order to estimate T31, first one assumes 1

q + 1
q′ = 1. Then Jensen’s inequality shows

that

T31 ≤ (j1 – j0 + 1)p–1
j1∑

j=j0

2j( p
2 –1)

∑

k∈Kj

[
E|β̂j,k – βj,k|qp] 1

q
[
E(X{|β̂j,k –βj,k |> λ

2 })
q′] 1

q′

≤ (j1 – j0 + 1)p–1
j1∑

j=j0

2j( p
2 –1)

∑

k∈Kj

(
E|β̂j,k – βj,k|qp) 1

q

[
P
(

|β̂j,k – βj,k| >
λ

2

)] 1
q′

.
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This, together with Lemmas 3.1 and 3.3, leads to

T31 � (j1 – j0 + 1)p–1
j1∑

j=j0

2j( p
2 –1)2jn– p

2 2– ωj
q′ = (j1 – j0 + 1)p–1n– p

2

j1∑

j=j0

2j( p
2 – ω

q′ )

� (j1 – j0 + 1)p–1n– p
2 2j0( p

2 – ω
q′ ) ≤ (j1 – j0 + 1)p–1n– p

2 2
j0p
2 (23)

by choosing ω such that p
2 < ω

q′ .
It is easy to see that ‖βj·‖r � 2–j(s+ 1

2 – 1
r ) thanks to Theorem 1.1. Combining this with

Lemma 3.1 and X{|βj,k |≥ λ
2 } ≤ ( |βj,k |

λ
2

)r , one has

T32 � (j1 – j0 + 1)p–1
j1∑

j=j0

2j( p
2 –1)

∑

k∈Kj

n– p
2

∣∣∣∣
βj,k

λ
2

∣∣∣∣
r

� (j1 – j0 + 1)p–1n– p
2

j1∑

j=j0

λ–r2j( p–r
2 –rs). (24)

Similarly, it can be shown that

T33 ≤ (j1 – j0 + 1)p–1
j1∑

j=j0

2j( p
2 –1)

∑

k∈Kj

|βj,k|p
(

2λ

|βj,k|
)p–r

� (j1 – j0 + 1)p–1
j1∑

j=j0

λp–r2j( p–r
2 –rs) (25)

due to r < p and X{|βj,k |≤2λ} ≤ ( 2λ
|βj,k | )

p–r .
Take

2j0 ∼
⎧
⎨

⎩
[(ln n)

p–r
r n] 1

2s+1 , r > p
2s+1 ,

n
1–2/p

2(s–1/r)+1 , r ≤ p
2s+1 ,

and 2j1 ∼
⎧
⎨

⎩
n

s
s′(2s+1) , r > p

2s+1 ,

(n/ ln n)
1

2(s–1/r)+1 , r ≤ p
2s+1 .

(26)

Then j0 < j1, j1 – j0 ∼ ln n and for j0 ≤ j ≤ j1, λ := c
√

j
n ∼ c

√
ln n
n . Moreover, (24) and (25)

reduce to

T32 � (j1 – j0 + 1)p–1n
r–p

2 (ln n)– r
2
[
2j0ξX{ξ<0} + (j1 – j0 + 1)X{ξ=0} + 2j1ξX{ξ>0}

]
(27)

and

T33 � (j1 – j0 + 1)p–1
(

ln n
n

) p–r
2 [

2j0ξX{ξ<0} + (j1 – j0 + 1)X{ξ=0} + 2j1ξX{ξ>0}
]
, (28)

where ξ = p–r
2 – rs.
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Note that ξ ≥ 0 holds if and only if r ≤ p
2s+1 . Then substituting (26) into (23), (27) and

(28), one obtains

T3 � T31 + T32 + T33 �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ln n)θ1 n– sp
2s+1 , p

2s+1 < r < p,

(ln n)θ2 ( ln n
n )

s′p
2(s–1/r)+1 , r = p

2s+1 ,

(ln n)θ3 ( ln n
n )

s′p
2(s–1/r)+1 , r < p

2s+1 .

(29)

Similarly, it is easy to check that

T1 + T2 �

⎧
⎨

⎩
n– sp

2s+1 , p
2s+1 < r < p,

( ln n
n )

s′p
2(s–1/r)+1 , r ≤ p

2s+1

(30)

by (26) and (21). Finally, the desired conclusion (19) follows from (20), (29), and (30). �

Remark 3.1 From Theorems 2.1 and 3.1, we easily found that our results are consistent
with those in [6] for independent samples.

Remark 3.2 In [7], Doosti and Chaubey provided a convergence rate of n– s′p
2s′+1 for ND

samples, which is a little weaker than n– sp
2s+1 in Theorem 3.1 for r < p (note that s < s′ when

r < p).
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