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Abstract
This study investigates the robust stability problem in the presence of uncertain
parameters for a class of stochastic neutral-type systems with mixed time-varying
delays, where external disturbance and nonlinearity are considered together. The
nonlinear function is assumed to satisfy the one-sided Lipschitz condition and the
quadratic inner-boundedness condition. By constructing a modified
Lyapunov–Krasovskii functional and using the free-weighting matrix technique, some
new delay-dependent criteria for the stability of the problem are presented. In
particular, the derivatives of the time-varying delays are no longer limited to being
less than one. Finally, numerical examples are given to illustrate the effectiveness of
the derived results.
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1 Introduction
The stability analysis and stabilization of time-delay systems have been tackled over be-
cause time delays occur in many practical systems, such as those in the fields of aero-
nautics, chemistry, and mechanics [1]. There are many valuable results regarding the sta-
bility analysis and stabilization of time delay systems [2–4]. Generally speaking, delay-
dependent stability conditions are less conservative than delay-independent ones, espe-
cially when the time delays are relatively small. Thus, the present study is focused on delay-
dependent stability [5].

Systems in many branches of science and industry are often subject to various types
of noise and uncertainty [6]. Stochastic systems governed by Itô stochastic differential
equations have attracted considerable attention, this being where the noise is described
by Brownian motion [7, 8]. A great number of results have been successfully extended to
stochastic time delay systems (e.g. [9–12]). Zhou et al. investigated the problem of sta-
bility analysis of a class of delayed genetic regulatory networks with stochastic distur-
bances, where the delays are assumed to be time-varying and bounded. Based on Itô’s
differential formula and free-weighting matrix method [13], delay-range-dependent and
rate-dependent (or independent) stability criteria are obtained [14]. By constructing a gen-
eralized free-weighting-matrix approach, Zhang et al. investigated the delay-dependent
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stability problem of continuous neural networks with a bounded time-varying delay. The
developed approach can estimate the single integral term arising in the derivative of the
Lyapunov–Krasovskii functional more accurately [15].

Neutral-type stochastic differential equations, depend on the delays of state and state
derivative simultaneously, are often encountered in various fields, such as automatic con-
trol, aircraft stabilization, lossless transmission lines, and turbojet engines [16–23]. Cheng
et al. investigated the problem of robust stability criteria delay-dependent for neutral sys-
tems with interval time-varying delays and nonlinear perturbation [24]. Basic on a piece-
wise delay method, the authors obtained some new sufficient conditions to guarantee the
asymptotic stability for neutral time-delay systems. Kao et al. have probed the problem of
H∞ sliding mode control for nonlinear uncertain neutral stochastic systems with Marko-
vian switching parameters. By utilizing a sliding mode control strategy, they got some cri-
teria on asymptotic stability of the error system and sliding mode dynamics [23]. In [25],
Yao et al. investigated the problem of robust adaptive sliding mode control for uncertain
neutral Markovian jump systems with unknown nonlinearity and unmeasured states. To
the authors’ best knowledge, the problem of delay-dependent stability criteria for uncer-
tain neutral-type with mixed time-varying delays has not been well probed yet, which still
is an open problem. This being because the neutral item and the nonlinearity complicate
the problem.

Motivated by the aforementioned discussion, the present paper investigates the problem
of robust stability for a class of stochastic nonlinear neutral-type systems with mixed time-
varying delays. The main contributions of the present work are as follows.

i. Some delay-dependent sufficient conditions are proposed by constructing an
appropriate Lyapunov–Krasovskii functional and using the free-weighting matrix
method.

ii. The derivatives of the time-varying delays no longer must be less than one, thereby
generalizing the existing results.

iii. Some free-weighting matrices are introduced to avoid using any inequality to deal
with the cross terms. Therefore, our results are less conservative.

The remainder of the paper is organized as follows. Section 2 outlines the required math-
ematical preliminaries. The main results are presented in Sect. 3. In Sect. 4, two practical
examples are provided to demonstrate the effectiveness of the proposed methods. Finally,
Sect. 5 concludes the paper.

Notations Throughout this paper, let (Ω ,F ,P) be a complete probability space with a
filtration {Ft}t≥0 satisfying the usual conditions. B(t) is a one-dimensional Brownian mo-
tion defined on the probability space adapted to the filtration. Rn and R

m×n denote the
n-dimensional Euclidean space and the set of all m × n real matrix, respectively. ‖ · ‖ is
the usual Euclidean norm in R

n. The inner product of vectors x and y in R
n is denoted by

〈x, y〉 or xT y. Let C2,1(Rn ×R+;R+) denote the family of all real-valued functions V (x(t), t)
defined on R

n ×R+ such that they are continuously twice differentiable in x and once in t.
C([–r, 0];Rn) denotes the space of all continuous Rn-valued functions ϕ defined on [–r, 0]
with a norm ‖ϕ‖ = sup–r≤θ≤0|ϕ(θ )|. For a real symmetric matrix X, X > 0 (X ≥ 0) means
that X is positive definite (positive semi-definite). The asterisk ∗ denotes a matrix that
can be inferred by symmetry and the superscript T represents the transpose of a matrix
or a vector. In a matrix, (i, j) denotes an (i, j)-block element of the matrix. The notation
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E{·} represents the mathematical expectation operator. I denotes the identity matrix of
compatible dimension. ei denotes index matrices that consist of the unit matrix on the ith
position and zero blocks on other positions.

2 Preliminaries
In this section, several basic assumptions and conclusions are offered that are of use re-
garding the main results. These basic facts can be found in any introductory book on
stochastic differential equations (e.g. [5, 6, 26–29]).

Assumption 2.1 (One-sided Lipschitz condition [5]) The nonlinear function f (x, y) is said
to be one-sided Lipschitz if there exist α1,α2 ∈R satisfying

〈
f (x, y), x

〉≤ α1xT x + α2yT y (1)

for ∀x, y ∈ R
n, where constant α1 and α2 are positive, zero, or even negative, and they are

called one-sided Lipschitz constants for f (x, y) with respect to x and y.

Assumption 2.2 (Quadratic inner-boundedness condition [5]) The nonlinear function
f (x, y) is called quadratic inner-boundedness in the region C , if there exist constants β1,
β2, and κ such that

f (x, y)T f (x, y) ≤ β1xT x + β2yT y + κ
〈
x, f (x, y)

〉
, for any x, y ∈ C. (2)

For stochastic systems, Itô’s formula plays an important role in the stability analysis. We
cite the following result here.

Lemma 2.1 (Itô’s formula [6]) Let x(t) be an n-dimensional Itô process on t ≥ 0 with the
stochastic differential

dx(t) = f (t) dt + g(t) dw(t),

where f (t) ∈ R
n and g(t) ∈ R

n×m. Let V (x(t), t) ∈ C2,1(Rn × R
+;R+). Then V (x(t), t) is a

real-valued Itô process with its stochastic differential given by

dV
(
x(t), t

)
= LV

(
x(t), t

)
dt + Vx

(
x(t), t

)
g(t) dw(t),

LV
(
x(t), t

)
= Vt

(
x(t), t

)
+ Vx

(
x(t), t

)
f (t) +

1
2

trace
(
gT (t)Vxx

(
x(t), t

)
g(t)

)
,

where C2,1(Rn × R
+;R+) denotes the family of all real-valued functions V(x(t),t) such that

they are continuously twice differentiable in x and t. If V (x(t), t) ∈ C2,1(Rn ×R
+;R+), we set

Vt
(
x(t), t

)
=

∂V (x(t), t)
∂t

,

Vx
(
x(t), t

)
=
(

∂V (x(t), t)
∂x1

, . . . ,
∂V (x(t), t)

∂xn

)
,

Vxx
(
x(t), t

)
=
(

∂2V (x(t), t)
∂xi∂xj

)

n×n
=

⎛

⎜⎜
⎝

∂2V (x(t),t)
∂x1∂x1

· · · ∂2V (x(t),t)
∂x1∂xn

...
...

∂2V (x(t),t)
∂xn∂x1

· · · ∂2V (x(t),t)
∂xn∂xn

⎞

⎟⎟
⎠ .
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Lemma 2.2 (S-procedure [29]) Let Z be a linear vector space, and F (z), y1(z), y1(z), . . . ,
yk(z) be some real-valued functionals over Z . Furthermore, define the domain D as follows:

D =
{

z ∈Z : y1(z) ≥ 0, y2(z) ≥ 0, . . . , yk(z) ≥ 0
}

,

and the two following conditions:
(1) F (z) > 0, ∀z ∈D,
(2) ∃ scalars ε1 ≥ 0, ε2 ≥ 0, . . . , εk ≥ 0 such that

S(ε, z) = F (z) –
k∑

i=1

εiyi(z) > 0, ∀z ∈Z .

Then (2) implies (1). The procedure of replacing (1) by (2) is called the S-procedure.

Lemma 2.3 (Schur complement [28]) For a given symmetric matrix S =
[ S11 S12

ST
12 S22

]
, the fol-

lowing conditions are equivalent:
(1) S < 0;
(2) S11 < 0, S22 – ST

12S–1
11 S12 < 0;

(3) S22 < 0, S11 – S12S–1
22 ST

12 < 0.

Lemma 2.4 (Matrix inequality [30]) Let E, G and F be real matrices of appropriate di-
mensions with FT F ≤ I , then we have, for any scalar ε > 0,

EFG + GT FT ET ≤ ε–1EET + εGT G.

3 Robust stability analysis
Consider the following uncertain neutral stochastic mixed time-varying delays neutral-
type system described in Itô’s form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[x(t) – Dx(t – λ(t))]

= [(A + �A(t))x(t) + (Aτ + �Aτ (t))x(t – τ (t))

+ f (x(t), x(t – τ (t))] dt

+ [(H + �H(t))x(t) + (Hτ + �Hτ (t))x(t – τ (t))] dw(t),

x(t) = ϕ(t), t ∈ [–r, 0], r = max{τ1,λ1},
y(t) = Cx(t),

(3)

where x(t) ∈ R
n is the state vector, τ (t) is the unknown time-varying delay satisfying 0 ≤

τ (t) < τ1, 0 ≤ λ(t) < λ1, τ̇ (t) ≤ d and λ̇(t) ≤ μ with real constants τ1,λ1, d and μ. f (x(t), x(t –
τ (t))) ∈R

n is a nonlinear function with respect to the state x(t) and the delayed state x(t –
τ (t)), f (0, 0) = 0. ϕ(t) ∈ C([–r, 0];Rn) is a vector valued continuous function, and w(t) is
the standard one-dimensional Brownian motion satisfying

E
{

dw(t)
}

= 0, E
{

dw(t)
}2 = dt,

Here A ∈R
n×n, Aτ ∈R

n×n, D ∈R
n×n, H ∈R

n×n and Hτ ∈R
n×n. Moreover, �A(t), �Aτ (t),

�H(t) and �Hτ (t) are unknown matrices representing time-varying parameter uncertain-
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ties and are assumed to be of the form
[

�A(t) �Aτ (t)
�H(t) �Hτ (t)

]

=

[
E1

E2

]

F(t)
[
G1 G2

]
, (4)

where E1, E2, G1 and G2 are known real constant matrices of appropriate dimensions, and
F(t) is an unknown time-varying matrix function satisfying

FT (t)F(t) ≤ I, ∀t ∈R. (5)

The parameter uncertainties �A(t), �Aτ (t), �H(t) and �Hτ (t) are said to be admissible
if both (4) and (5) hold.

Let

h(t) = F(t)
[
G1x(t) + G2x

(
t – τ (t)

)]
,

h1(t) = Ax(t) + Aτ x
(
t – τ (t)

)
+ f
(
x(t), x

(
t – τ (t)

))
+E1h(t).

System (3) can be rewritten as follows:

⎧
⎨

⎩
d[x(t) – Dx(t – λ(t))] = h1(t) dt + [Hx(t) + Hτ x(t – τ (t)) + E2h(t)] dw(t),

h(t)T h(t) ≤ [G1x(t) + G2x(t – τ (t))]T [G1x(t) + G2x(t – τ (t))].
(6)

In this section, we will solve the problem of robust stability for uncertain stochastic
time-delay system (6) by constructing the appropriate Lyapunov–Krasovskii functional
and introducing free-weighting matrix. A new delay-dependent stability criteria is de-
rived.

Theorem 3.1 Consider the neutral stochastic time-delay system (6). The nonlinear func-
tion f (x(t), x(t – τ (t))) satisfies Assumptions 2.1 and 2.2. For given scalars τ1, λ1, μ and d, if
there exist symmetric positive definite matrices P ∈R

n×n, Q1 ∈ R
n×n, Q2 ∈R

n×n, S1 ∈R
n×n,

S2 ∈ R
n×n, R1 ∈ R

n×n, R2 ∈ R
n×n, Mi > 0 (i = 1, . . . , 10) and Nj (j = 1, . . . , 8) of appropriate

dimensions and scalars ε1 > 0, ε2 > 0 and ε3 > 0 satisfying the following LMIs:

Ψ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ψ11 Ψ12R1 Ψ13R2 Ψ14 Ψ15

∗ –τ–1
1 R1 0 0 0

∗ ∗ –λ–1
1 R2 0 0

∗ ∗ ∗ –M̄ 0
∗ ∗ ∗ ∗ – ¯̄M

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, (7)

Σ1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 –N1

∗ ∗ –M3 0 0 0
∗ ∗ ∗ –M4 0 –N2

∗ ∗ ∗ ∗ –M5 0
∗ ∗ ∗ ∗ ∗ –R1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (8)
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Σ2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M1 0 0 0 0 0
∗ –M2 0 0 0 0
∗ ∗ –M3 0 0 –N3

∗ ∗ ∗ –M4 0 0
∗ ∗ ∗ ∗ –M5 –N4

∗ ∗ ∗ ∗ ∗ –R1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (9)

Π1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M6 0 0 0 0 0
∗ –M7 0 0 0 –N5

∗ ∗ –M8 0 0 0
∗ ∗ ∗ –M9 0 –N6

∗ ∗ ∗ ∗ –M10 0
∗ ∗ ∗ ∗ ∗ –R2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (10)

Π2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

–M6 0 0 0 0 0
∗ –M7 0 0 0 0
∗ ∗ –M8 0 0 –N7

∗ ∗ ∗ –M9 0 0
∗ ∗ ∗ ∗ –M10 –N8

∗ ∗ ∗ ∗ ∗ –R2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

< 0, (11)

with

Ψ11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ω11 Ω12 0 Ω14 0 NT
2 0 NT

6 0 Ω1,10 Ω1,11
∗ Ω22 NT

3 Ω24 0 Ω26 NT
4 0 0 0 Ω2,11

∗ ∗ Ω33 0 0 –N3D Ω37 0 0 0 0
∗ ∗ ∗ Ω44 NT

7 –DT NT
2 0 Ω48 NT

8 –DT P Ω4,11
∗ ∗ ∗ ∗ Ω55 0 0 –N7D Ω59 0 0
∗ ∗ ∗ ∗ ∗ Ω66 –DT N4 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ω77 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω88 –DT NT

8 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω99 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε3I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ω11,11

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (12)

Ψ12 =
[
A Aτ 0 0 0 0 0 0 0 I E1

]T
,

Ψ13 =
[
A Aτ 0 0 0 0 0 0 0 I E1

]T
,

Ψ14 =
[
M̄1 M̄2 M̄3 M̄7 M̄8 0 0 0 0 0 0

]T
,

Ψ15 =
[
M̄6 0 0 0 0 M̄4 M̄5 M̄9 M̄10 0 0

]T
,

M̄ = diag
{
τ–1

1 M1, τ–1
2 M2, τ–1

3 M3,λ–1
1 M7,λ–1

1 M8
}

,

¯̄M = diag
{
λ–1

1 M6, τ–1
1 M4, τ–1

1 M5,λ–1
1 M9,λ–1

1 M10
}

,

M̄1 = M1e1, M̄2 = M2e2, M̄3 = M3e3,

M̄4 = M4e4, M̄5 = M5e5,

M̄6 = M6e1, M̄7 = M7e2, M̄8 = M8e3,

M̄9 = M9e4, M̄10 = M10e5,

Ω11 = PA + AT P + HT PH + Q1 + Q2 + S1 + S2 + ε1GT
1 G1 + ε2α1I + ε3β1I, (13)
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Ω12 = PAτ + HT PHτ + NT
1 + ε1GT

1 G2, Ω14 = NT
5 – AT PD,

Ω1,10 = P –
1
2
ε2I +

1
2
ε3κI, Ω1,11 = PE1 + HT PE2,

Ω22 = HT
τ PHτ – (1 – d)Q1–N1 – NT

1 + ε1GT
2 G2 + ε2α2I + ε3β2I,

Ω24 = –AT
τ PD–N1D, Ω26 =N1D – NT

2 ,

Ω2,11 = HT
τ PE2, Ω33 = –Q2 – N3 – NT

3 ,

Ω37 = N3D – NT
4 , Ω44 = –(1 – μ)S1 – N5D – DT NT

5 – N5 – NT
5 ,

Ω48 = N5D – DT NT
6 – NT

6 , Ω4,11 = –DT PE1,

Ω55 = –N7 – NT
7 – S2,

Ω59 = N7D – NT
8 , Ω66 = N2D + DT NT

2 , Ω77 = N4D + DT NT
4 ,

Ω88 = N6D + DT NT
6 , Ω99 = N8D + DT NT

8 , Ω11,11 = ET
2 PE2 – ε1I,

then the null solution of the stochastic time-delay system (6) is asymptotically stable in the
mean square.

Proof Choose the following Lyapunov–Krasovskii functional:

V
(
x(t), t

)
=

4∑

i=1

Vi, (14)

with

V1 =
[
x(t) – Dx

(
t – λ(t)

)]T P
[
x(t) – Dx

(
t – λ(t)

)]
,

V2 =
∫ t

t–τ (t)
xT (s)Q1x(s) ds +

∫ t

t–λ(t)
xT (s)S1x(s) ds,

V3 =
∫ t

t–τ1

xT (s)Q2x(s) ds +
∫ t

t–λ1

xT (s)S2x(s) ds,

V4 =
∫ 0

–τ1

∫ t

t+θ

hT
1 (s)R1h1(s) ds dθ +

∫ 0

–λ1

∫ t

t+θ

hT
1 (s)R2h1(s) ds dθ .

Using Itô’s formula, Lemma 2.1, we obtain the stochastic differential as follows:

dV
(
x(t), t

)

= LV
(
x(t), t

)
dt

+
{

2
[
x(t) – Dx

(
t – λ(t)

)]T P
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]}
dw(t), (15)

with

LV
(
x(t), t

)

= Vt
(
x(t), t

)
+ Vx

(
x(t), t

)[
Ax(t) + Aτ x

(
t – τ (t)

)
+ f
(
x(t), x

(
t – τ (t)

))
+ E1h(t)

]

+
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]T P
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]
, (16)
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Vt
(
x(t), t

)
= V2t + V3t + V4t , (17)

V2t = xT (t)Q1x(t) – (1 – τ̇ (t)xT(t – τ (t)
)
Q1x

(
t – τ (t)

)

+ xT (t)S1x(t) – (1 – λ̇(t)xT(t – λ(t)
)
S1x
(
t – λ(t)

)
, (18)

V3t = xT (t)Q2x(t) – xT (t – τ1)Q2x(t – τ1)

+ xT (t)S2x(t) – xT (t – λ1)S2x(t – λ1), (19)

V4t = τ1hT
1 (t)R1h1(t) –

∫ t

t–τ1

hT
1 (s)R1h1(s) ds

+ λ1hT
1 (t)R2h1(t) –

∫ t

t–λ1

hT
1 (s)R2h1(s) ds}dt, (20)

Vx
(
x(t), t

)
= 2
[
x(t) – Dx

(
t – λ(t)

)]T P. (21)

Substituting (16)–(21) into (15), one can obtain

dV
(
x(t), t

)
=
{

2
[
x(t) – Dx

(
t – λ(t)

)]T P
[
Ax(t) + Aτ x

(
t – τ (t)

)

+ f
(
x(t), x

(
t – τ (t)

))
+ E1h(t)

]

+
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]T P
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]

+ xT (t)Q1x(t) – (1 – τ̇ (t)xT(t – τ (t)
)
Q1x

(
t – τ (t)

)

+ xT (t)S1x(t) – (1 – λ̇(t)xT(t – λ(t)
)
S1x
(
t – λ(t)

)

+ xT (t)Q2x(t) – xT (t – τ1)Q2x(t – τ1)

+ xT (t)S2x(t) – xT (t – λ1)S2x(t – λ1)

+ τ1hT
1 (t)R1h1(t) –

∫ t

t–τ1

hT
1 (s)R1h1(s) ds

+ λ1hT
1 (t)R2h1(t) –

∫ t

t–λ1

hT
1 (s)R2h1(s) ds

}
dt

+
{

2
[
x(t) – Dx

(
t – λ(t)

)]T

× P
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]}
dw(t). (22)

Taking the expectation of both sides of (22), we have

E dV
(
x(t), t

)
= ELV

(
x(t), t

)
dt. (23)

Set

xλ

(
t – λ(t)

)≡ x
(
t – λ(t) – λ

(
t – λ(t)

))
,

xλ(t – λ1) ≡ x
(
t – λ1 – λ(t – λ1)

)
,

xλ

(
t – τ (t)

)≡ x
(
t – τ (t) – λ

(
t – τ (t)

))
,

xλ(t – τ1) ≡ x
(
t – τ1 – λ(t – τ1)

)
.
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We can derive the following equations by using the Newton–Leibniz formula:

2
[
xT(t – τ (t)

)
N1 + xT

λ

(
t – τ (t)

)
N2
]

×
[

x(t) – Dx
(
t – λ(t)

)
– x
(
t – τ (t)

)
+ Dxλ

(
t – τ (t)

)

–
∫ t

t–τ (t)
h1(s) ds –

∫ t

t–τ (t)

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dw(s)

]
= 0, (24)

2
[
xT (t – τ1)N3 + xT

λ (t – τ1)N4
]

×
[

x
(
t – τ (t)

)
– Dxλ

(
t – τ (t)

)
– x(t – τ1) + Dxλ(t – τ1)

–
∫ t–τ (t)

t–τ1

h1(s) ds –
∫ t–τ (t)

t–τ1

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dw(s)

]
= 0, (25)

2
[
xT(t – λ(t)

)
N5 + xT

λ

(
t – λ(t)

)
N6
]

×
[

x(t) – Dx
(
t – λ(t)

)
– x
(
t – λ(t)

)
+ Dxλ

(
t – λ(t)

)

–
∫ t

t–λ(t)
h1(s) ds –

∫ t

t–λ(t)

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dw(s)

]
= 0, (26)

2
[
xT (t – λ1)N7 + xT

λ (t – λ1)N8
]

×
[

x
(
t – λ(t)

)
– Dxλ

(
t – λ(t)

)
– x(t – λ1) + Dxλ(t – λ1)

–
∫ t–λ(t)

t–λ1

h1(s) ds –
∫ t–λ(t)

t–λ1

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dw(s)

]
= 0, (27)

where Nj (j = 1, . . . , 4) are arbitrary matrices with appropriate dimensions. Adding the left-
hand sides of (24), (25), (26) and (27) on to LV (x(t), t), and noticing the properties of the
stochastic integral, we have

E
{[

xT(t – τ (t)
)
N1 + xT

τ

(
t – τ (t)

)
N2
] ∫ t

t–τ (t)

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dw(s)

}

= 0,

E
{[

xT (t – τ1)N3 + xT
τ (t – τ1)N4

] ∫ t–τ (t)

t–τ1

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dw(s)

}
= 0,

E
{[

xT(t – λ(t)
)
N5 + xT

λ

(
t – λ(t)

)
N6
] ∫ t

t–λ(t)

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dw(s)

}

= 0,

E
{[

xT (t – λ1)N7 + xT
λ (t – λ1)N8

] ∫ t–λ(t)

t–λ1

(
Hx(s) + Hτ x

(
s – τ (s)

)
+ E2h(s)

)
dw(s)

}
= 0.

Thus (23) is transformed to

E dV
(
x(t), t

)
= ELṼ

(
x(t), t

)
dt, (28)
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where

LṼ
(
x(t), t

)
= LV

(
x(t), t

)
+ U(t), (29)

U(t) = 2
[
xT(t – τ (t)

)
N1 + xT

λ

(
t – τ (t)

)
N2
]

×
[

x(t) – Dx
(
t – λ(t)

)
– x
(
t – τ (t)

)
+ Dxλ

(
t – τ (t)

)
–
∫ t

t–τ (t)
h1(s) ds

]

+ 2
[
xT (t – τ1)N3 + xT

λ (t – τ1)N4
]

×
[

x
(
t – τ (t)

)
– Dxλ

(
t – τ (t)

)
– x(t – τ1) + Dxλ(t – τ1) –

∫ t–τ (t)

t–τ1

h1(s) ds
]

+ 2
[
xT(t – λ(t)

)
N5 + xT

λ

(
t – λ(t)

)
N6
]

×
[

x(t) – Dx
(
t – λ(t)

)
– x
(
t – λ(t)

)
+ Dxλ

(
t – λ(t)

)
–
∫ t

t–λ(t)
h1(s) ds

]

+ 2
[
xT (t – λ1)N7 + xT

λ (t – λ1)N8
]

×
[

x
(
t – λ(t)

)
– Dxλ

(
t – λ(t)

)
– x(t – λ1) + Dxλ(t – λ1)

–
∫ t–λ(t)

t–λ1

h1(s) ds
]

. (30)

Recalling that τ̇ (t) ≤ d and λ̇(t) ≤ μ, and subdividing the integration interval, we have

LṼ
(
x(t), t

)
= LV

(
x(t), t

)
+ U(t)

≤
{

2
[
x(t) – Dx

(
t – λ(t)

)]T P
[
Ax(t) + Aτ x

(
t – τ (t)

)

+ f
(
x(t), x

(
t – τ (t)

))
+ E1h(t)

]

+
[
Hx(t) + Hτ x

(
t – τ (t)

)
+ E2h(t)

]T P

× [Hx(t) + Hτ x
(
t – τ (t)

)
+ E2h(t)

]

+ xT (t)Q1x(t) – (1 – d)xT(t – τ (t)
)
Q1x

(
t – τ (t)

)

+ xT (t)S1x(t) – (1 – μ)xT(t – λ(t)
)
S1x
(
t – λ(t)

)

+ xT (t)Q2x(t) – xT (t – τ1)Q2x(t – τ1)

+ xT (t)S2x(t) – xT (t – λ1)S2x(t – λ1) + τ1hT
1 (t)R1h1(t)

–
∫ t–τ (t)

t–τ1

hT
1 (s)R1h1(s) ds –

∫ t

t–τ (t)
hT

1 (s)R1h1(s) ds
}

+ λ1hT
1 (t)R2h1(t)

–
∫ t–λ(t)

t–λ1

hT
1 (s)R2h1(s) ds –

∫ t

t–λ(t)
hT

1 (s)R2h1(s) ds}+U(t). (31)

On the other hand, by using the one-sided Lipschitz (1) and the quadratically inner-
bounded conditions (2), we obtain the following inequality:

α1xT (t)x(t) + α2xT(t – τ (t)
)
x
(
t – τ (t)

)
– xT (t)f

(
x(t), x

(
t – τ (t)

))≥ 0, (32)
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β1xT (t)x(t) + β2xT(t – τ (t)
)
x
(
t – τ (t)

)
– f
(
x(t), x

(
t – τ (t)

))T f
(
x(t), x

(
t – τ (t)

))

+ κxT (t)f
(
x(t), x

(
t – τ (t)

))≥ 0. (33)

Using the S-procedure Lemma 2.2 in (31), we can see that LṼ (x(t), t) < 0 is implied if there
exist positive scalars ε1, ε2 and ε3 satisfying

LṼ
(
x(t), t

)
+ ε1

[
G1x(t) + G2x

(
t – τ (t)

)]T[G1x(t) + G2x
(
t – τ (t)

)]
– ε1h(t)T h(t)

+ ε2α1xT (t)x(t) + ε2α2xT(t – τ (t)
)
x
(
t – τ (t)

)
– ε2xT (t)f

(
x(t), x

(
t – τ (t)

))

+ ε3β1xT (t)x(t) + ε3β2xT(t – τ (t)
)
x
(
t – τ (t)

)

– ε3f
(
x(t), x

(
t – τ (t)

))T f
(
x(t), x

(
t – τ (t)

))

+ ε3κxT (t)f
(
x(t), x

(
t – τ (t)

))
< 0. (34)

Moreover, the following formula holds for any positive definite matrices Mi (i = 1, . . . , 10)
of appropriate dimensions:

τ1xT (t)M1x(t) –
∫ t

t–τ1

xT (t)M1x(t) ds = 0, (35)

τ1xT(t – τ (t)
)
M2x

(
t – τ (t)

)
–
∫ t

t–τ1

xT(t – τ (t)
)
M2
(
t – τ (t)

)
ds = 0, (36)

τ1xT (t – τ1)M3x(t – τ1) –
∫ t

t–τ1

xT (t – τ1)M3(t – τ1) ds = 0, (37)

τ1xT
λ

(
t – τ (t)

)
M4xλ

(
t – τ (t)

)
–
∫ t

t–τ1

xT
λ

(
t – τ (t)

)
M4xλ

(
t – τ (t)

)
ds = 0, (38)

τ1xT
λ (t – τ1)M5xλ(t – τ1) –

∫ t

t–τ1

xT
λ (t – τ1)M5xλ(t – τ1) ds = 0, (39)

λ1xT (t)M6x(t) –
∫ t

t–λ1

xT (t)M6x(t) ds = 0, (40)

λ1xT(t – λ(t)
)
M7x

(
t – λ(t)

)
–
∫ t

t–λ1

xT(t – λ(t)
)
M7
(
t – λ(t)

)
ds = 0, (41)

λ1xT (t – λ1)M8x(t – λ1) –
∫ t

t–λ1

xT (t – λ1)M8(t – λ1) ds = 0, (42)

λ1xT
λ

(
t – λ(t)

)
M9xλ

(
t – λ(t)

)
–
∫ t

t–λ1

xT
λ

(
t – λ(t)

)
M9xλ

(
t – λ(t)

)
ds = 0, (43)

λ1xT
λ (t – λ1)M10xλ(t – λ1) –

∫ t

t–λ1

xT
λ (t – λ1)M10xλ(t – λ1) ds = 0. (44)

Let

ξT (t) =
[
xT (t) xT(t – τ (t)

)
xT (t – τ1) xT(t – λ(t)

)
xT (t – λ1)

xT
λ

(
t – τ (t)

)
xT

λ (t – τ1)xT
λ

(
t – λ(t)

)
xT

λ (t – λ1)f T(x(t), x
(
t – τ (t)

))
hT (t)

]
,

ηT
1 (t, s) =

[
xT (t) xT(t – τ (t)

)
xT (t – τ1) xT

λ

(
t – τ (t)

)
xT

λ (t – τ1) hT
1 (s)

]
,

ηT
2 (t, s) =

[
xT (t) xT(t – λ(t)

)
xT (t – λ1) xT

λ

(
t – λ(t)

)
xT

λ (t – λ1) hT
1 (s)

]
.
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Combining the above formulas (35)–(44) and rearranging (34), if Ψ11 < 0, we have the
following inequality:

ξT (t)Ψ11ξ (t) + τ1hT
1 (t)R1h1(t) + λ1hT

1 (t)R2h1(t)

+
∫ t

t–τ (t)
ηT

1 (t, s)Σ1η1(t, s) ds +
∫ t–τ (t)

t–τ1

ηT
1 (t, s)Σ2η1(t, s) ds

+
∫ t

t–λ(t)
ηT

2 (t, s)Π1η2(t, s) ds +
∫ t–λ(t)

t–λ1

ηT
2 (t, s)Π2η2(t, s) ds < 0, (45)

with Ψ11, Σ1, Σ2, Π1 and Π2 being defined as in (8), (9), (10), (11) and (12). Utilizing the
Schur complement Lemma 2.3, (45) is equivalent to the following LMI:

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ψ11 Ψ12 Ψ13 Ψ14 Ψ15

∗ –τ–1
1 R–1

1 0 0 0
∗ ∗ –λ–1

1 R–1
2 0 0

∗ ∗ ∗ –M̄ 0
∗ ∗ ∗ ∗ – ¯̄M

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, (46)

with Ψ11, Ψ12, Ψ13, Ψ14, Ψ15, M̄ and ¯̄M being defined as in (12) and (13).

Pre-and post-multiplying (46) by diag{
11

︷ ︸︸ ︷
I, . . . , I, R1, R2,

10
︷ ︸︸ ︷
I, . . . , I}, we obtain LMI (7). Com-

bining with LMIs (8), (9), (10) and (11), we find that ELṼ (ξ (t), t) < 0, i.e., it guarantees the
asymptotic stability of system (6) in the mean square. �

Remark 3.1 In Theorem 3.1, we do not use any inequality techniques for the cross terms.
Therefore, our result is less conservative.

Remark 3.2 In the proof of Theorem 3.1, the purpose of introducing M1, . . . , M10 is to
expand the dimension of the matrices Σ1, Σ2, Π1 and Π2 so that we can solve them by
LMIs technology.

If uncertain parameters �A(t), �Aτ (t), �H(t) and �Hτ (t) in system (6) are equal to
zero, the system is simplified to the following deterministic stochastic system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d[x(t) – Dx(t – λ(t))] = [Ax(t) + Aτ x(t – τ (t))

+ f (x(t), x(t – τ (t))] dt

+ [Hx(t) + Hτ x(t – τ (t))] dw(t),

x(t) = ϕ(t), t ∈ [–r, 0], r = max{τ1,λ1},
y(t) = Cx(t).

(47)

The following conclusion of the robust asymptotic stability is obtained by Theorem 3.1
for the deterministic stochastic system (47).

Corollary 3.1 Consider the neutral stochastic time-delay system (47). The nonlinear func-
tion function f (x(t), x(t – τ (t))) satisfies Assumptions 2.1 and 2.2. For given scalars τ1, λ1, μ
and d, if there exist symmetric positive definite matrices P ∈ R

n×n, Q1 ∈ R
n×n, Q2 ∈ R

n×n,
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S1 ∈ R
n×n, S2 ∈ R

n×n, R1 ∈ R
n×n, R2 ∈ R

n×n, Mi > 0 (i = 1, . . . , 10) and Nj (j = 1, . . . , 8) of
appropriate dimensions and scalars ε2 > 0 and ε3 > 0 satisfying the following LMI:

Ξ =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Ξ11 Ξ12R1 Ξ13R2 Ξ14 Ξ15

∗ –τ–1
1 R1 0 0 0

∗ ∗ –λ–1
1 R2 0 0

∗ ∗ ∗ –M̄ 0
∗ ∗ ∗ ∗ – ¯̄M

⎤

⎥⎥⎥⎥⎥⎥
⎦

< 0, (48)

with

Ξ11 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Φ11 Φ12 0 Φ14 0 NT
2 0 NT

6 0 Φ1,10
∗ Φ22 NT

3 Φ24 0 Φ26 NT
4 0 0 0

∗ ∗ Φ33 0 0 –N3D Φ37 0 0 0
∗ ∗ ∗ Φ44 NT

7 –DT NT
2 0 Φ48 NT

8 –DT P
∗ ∗ ∗ ∗ Φ55 0 0 –N7D Φ59 0
∗ ∗ ∗ ∗ ∗ Φ66 –DT N4 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Φ77 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ88 –DT NT

8 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ99 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –ε3I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, (49)

Ξ12 =
[

A Aτ 0 0 0 0 0 0 0 I
]T

,

Ξ13 =
[

A Aτ 0 0 0 0 0 0 0 I
]T

,

Ξ14 =
[

M̄1 M̄2 M̄3 M̄7 M̄8 0 0 0 0 0
]T

,

Ξ15 =
[

M̄6 0 0 0 0 M̄4 M̄5 M̄9 M̄10 0
]T

,

M̄ = diag
{
τ–1

1 M1, τ–1
2 M2, τ–1

3 M3,λ–1
1 M7,λ–1

1 M8
}

,
¯̄M = diag

{
λ–1

1 M6, τ–1
1 M4, τ–1

1 M5,λ–1
1 M9,λ–1

1 M10
}

,

M̄1 = M1e1, M̄2 = M2e2, M̄3 = M3e3,

M̄4 = M4e4, M̄5 = M5e5,

M̄6 = M6e1, M̄7 = M7e2, M̄8 = M8e3,

M̄9 = M9e4, M̄10 = M10e5, (50)

Φ11 = PA + AT P + HT PH + Q1 + Q2 + S1 + S2 + ε2α1I + ε3β1I,

Φ12 = PAτ + HT PHτ + NT
1 , Φ14 = NT

5 – AT PD,

Φ1,10 = P –
1
2
ε2I +

1
2
ε3κI,

Φ22 = HT
τ PHτ – (1 – d)Q1–N1 – NT

1 + ε2α2I + ε3β2I,

Φ24 = –AT
τ PD–N1D, Φ26 =N1D – NT

2 ,

Φ33 = –Q2 – N3 – NT
3 , Φ37 = N3D – NT

4 ,

Φ44 = –(1 – μ)S1 – N5D – DT NT
5 – N5 – NT

5 , Φ48 = N5D – DT NT
6 – NT

6 ,

Φ55 = –N7 – NT
7 – S2, Φ59 = N7D – NT

8 , Φ66 = N2D + DT NT
2 ,

Φ77 = N4D + DT NT
4 , Φ88 = N6D + DT NT

6 , Φ99 = N8D + DT NT
8 .
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Combining with LMIs (8), (9), (10) and (11), then the null solution of the stochastic time-
delay system (47) is asymptotically stable in the mean square.

4 Two illustrative numerical examples
In this section, we give some examples to demonstrate the effectiveness of the method
proposed herein.

Example 4.1 Consider the neutral-type nonlinear mixed time-varying delays system (47).
We choose the same system matrix as those in Refs. [31, 32] and nonlinear function as this
in Ref. [9], i.e. α1 = 0.5, α2 = 0.005, β1 = –2.5, β2 = –0.015 and κ = 5. Let λ(t) = τ (t) and give
parameter matrix D. Table 1 lists the maximal allowable upper bound of the time delay for
different parameter matrix D. From Table 1, it is easily seen that, when d > 1, our result
still holds, that our proposed method is not constrained by the condition of 0 < τ̇ (t) < 1.
Therefore, we can conclude that our proposed method in this paper is a generalization of
the existing results of neutral-type stochastic nonlinear time-varying delays systems.

A =

[
–1.2 0.1
–0.1 –1

]

, Aτ =

[
–0.6 0.7
–1 –0.1

]

.

Example 4.2 Consider the neutral-type stochastic mixed time-varying delays nonlinear
system (6) with the same system matrix parameters as those in Refs. [33–35]:

A =

[
–0.9 0.2
0.1 –0.9

]

, Aτ =

[
–1.1 –0.2
–0.1 –1.1

]

,

D =

[
–0.2 0.0
0.2 –0.1

]

.

Choosing the same nonlinear function parameter constants as those in Example 4.1. By
using Theorem 3.1 with H = Hτ = 0, we can obtain the maximal allowable upper bounds
of the time delays in Tables 2 and 3. Tables 2 and 3 give the allowable upper bounds for
λ1 and τ1 when d > 1 or μ > 1, respectively. It can be seen that when d increases, the
maximum allowable upper bounds τ1 descend with μ = 1.2. By contrast, when τ1 descends,
the maximum allowable upper bounds λ1 increase with d = 0.5.

Table 1 Maximal allowable upper bounds of τ1 for different parameter D

d = 0.4 d = 0.9 d = 1.1 d = 2.0 d = 4.0

D =
[ –0.1 1.09
–0.02 –1.0

]
19.6223 13.2923 4.2053 3.2464 4.6988

D =
[ –3.0 3.1
–29.0 1.0

]
14.9681 14.9743 14.9783 13.4113 13.9748

D =
[ –0.6 8
0.0 –2.0

]
12.2443 11.7322 11.8577 11.9342 13.0935

Table 2 Maximal allowable upper bounds τ1 for different d and λ1, when μ = 1.2

λ1 = 5 λ1 = 4 λ1 = 3 λ1 = 2 λ1 = 1

d = 0.5 0.3771 0.5169 0.7510 1.2143 2.5901
d = 0.7 0.3772 0.5170 0.7469 1.2107 2.5925
d = 0.9 0.3750 0.5152 0.7471 1.2093 2.5802
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Table 3 Maximal allowable upper bounds λ1 for different τ1 and μ, when d = 0.5

τ1 = 1.5 τ1 = 1.3 τ1 = 1.1 τ1 = 0.9 τ1 = 0.7 τ1 = 0.5

μ = 1.2 1.6596 1.8819 2.1769 2.5739 3.1693 4.0981
μ = 1.3 1.6551 1.8796 2.1765 2.5782 3.1748 4.1014
μ = 1.5 1.6579 1.8840 2.1796 2.5790 3.1746 4.1006

Let

E1 =

[
0.2 0
0 0.2

]

, E2 =

[
0.2 0
0 0.2

]

, E3 =
[
0.2 0.2

]
,

G1 =

[
0.2 0
0 0.2

]

, G2 =

[
0.2 0
0 0.2

]

, G3 =

[
0.2 0
0 0.2

]

.

If we choose the time-varying delays as τ1 = 1.5, d = 0.5, μ = 1.2 and λ1 = 1.6596 then
according to Theorem 3.1 we can obtain a set of solutions as follows:

P = 1.0 × e–4

[
0.2351 0.1888
0.1888 0.2285

]

, Q1 =

[
0.0660 –0.0040

–0.0040 0.1092

]

,

Q2 =

[
0.0350 0.0014
0.0014 0.0204

]

,

S1 = 1.0 × e–7

[
0.0310 –0.0028

–0.0028 0.4031

]

, S2 =

[
0.0350 0.0014
0.0014 0.0204

]

,

R1 = 1.0 × e–8

[
0.1316 –0.0318

–0.0318 0.1615

]

, R2 = 1.0 × e–8

[
0.1362 –0.0746

–0.0746 0.1895

]

,

ε1 = 0.0748, ε2 = 2.7442, ε3 = 0.6889.

5 Conclusions
This paper provides sufficient findings for the stability criteria of uncertain neutral-type
stochastic nonlinear systems with mixed time-varying delays. Some delay-dependent sta-
bility criteria are obtained by using a suitable Lyapunov–Krasovskii functional and linear
matrix inequality (LMI) techniques. The derived outcome is expressed via LMIs that can
be calculated through the MATLAB LMI Control Toolbox. Compared with some previous
studies, the present study has two novel aspects. First, because no inequality technology is
used to deal with the cross terms, our results are less conservative. Second, the derivatives
of the time-varying delays are no longer limited to being less than one, thereby broadening
the study scope. Numerical examples have been provided to illustrate the effectiveness of
our main results.
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