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Abstract
In this paper the quantum Hahn difference operator and the quantum Hahn integral
operator are defined via the quantum shift operator θΦq(t) = qt + (1 – q)θ , t ∈ [a,b],
θ =ω/(1 – q) + a, 0 < q < 1, ω ≥ 0. Some new fractional integral inequalities are
established by using the quantum Hahn integral for one and two functions bounded
by quantum integrable functions. The Hermite–Hadamard type of ordinary and
fractional quantum Hahn integral inequalities as well as the Pólya–Szegö type
fractional Hahn integral inequalities and the Grüss–C̆ebyšev type fractional Hahn
integral inequality are also presented.
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1 Introduction and preliminaries
Let be f defined on an interval I ⊆ R containing ω0 := ω

1–q . The Hahn difference operator
Dq,ω , introduced in [1], is defined as

Dq,ωf (t) =

⎧
⎨

⎩

f (qt+ω)–f (t)
t(q–1)+ω

, t �= ω0,

f ′(ω0), t = ω0,
(1)

provided that f is differentiable at ω0, where q ∈ (0, 1) and ω ≥ 0 are fixed.
The Hahn difference operator unifies (in the limit) the two most well-known and used

quantum difference operators: the Jackson q-difference derivative Dq [2], where q ∈ (0, 1),
defined by

Dqf (t) =

⎧
⎨

⎩

f (t)–f (qt)
t(1–q) , t �= 0,

f ′(0), t = 0,
(2)

provided that f ′(0) exists, for ω = 0, and the forward difference Dω for q → 1, defined by

Dωf (t) =
f (t + ω) – f (t)

ω
, (3)
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where ω > 0 is fixed. The Hahn difference operator is a successful tool for constructing
families of orthogonal polynomials and investigating some approximation problems (cf.
[3–6]). For some recent results to boundary value problems for Hahn difference operators,
we refer to papers [7–10] and the references cited therein.

Let [a, b] ⊆R be an interval. The two quantum numbers 0 < q < 1, ω ≥ 0 can generate a
point θ of Hahn calculus on an interval [a, b] by

θ =
ω

1 – q
+ a, (4)

which means that θ ∈ [a, b] for all results of our analysis. The quantum Hahn shifting
operator is defined by

θΦq(t) = qt + (1 – q)θ , t ∈ [a, b]. (5)

It is easy to see that the iterated k-times quantum shifting is presented by

θΦ
k
q (t) = θΦ

k–1
q

(
θΦq(t)

)
= qkt +

(
1 – qk)θ ,

with θΦ
0
q (t) = t for t ∈ [a, b]. Let us state the definitions of quantum Hahn calculus on an

interval [a, b] which are the results in [11] modified according to notation (5).

Definition 1 Let f be a function defined on [a, b]. The quantum Hahn difference operator
is defined by

aDq,ωf (t) =

⎧
⎨

⎩

f (t)–f (θ Φq(t))
t–θ Φq(t) , t �= θ ,

f ′(θ ), t = θ ,
(6)

provided that f is differentiable at θ .

Definition 2 Assume f : [a, b] → R is a given function and two points c, d ∈ [a, b]. The
q,ω-quantum Hahn integral of f from c to d is defined by

∫ d

c
f (s)a dq,ωs :=

∫ d

θ

f (s)a dq,ωs –
∫ c

θ

f (s)a dq,ωs, (7)

where

∫ t

θ

f (s)a dq,ωs =
[
t – θΦq(t)

]
∞∑

i=0

qif
(
θΦ

i
q(t)

)
(8)

for t ∈ [a, b], provided that the series converge at t = c and t = d. The function f is called
q, ω-integrable on [a, b] if (8) exists for all t ∈ [a, b].

Before going to state the definitions of fractional quantum Hahn calculus on an interval
[a, b], we should introduce the θ -power function which is defined by

(n – m)(0)
θ = 1, (n – m)(k)

θ =
k–1∏

i=0

(
n – θΦ

i
q(m)

)
, k ∈ N∪ {∞}. (9)
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More generally, if γ ∈R, then

(n – m)(γ )
θ =

∞∏

i=0

(n – θΦ
i
q(m))

(n – θΦ
γ +i
q (m))

, (10)

with θΦ
σ
q (m) = qσ m + (1 – qσ )θ , σ ∈R.

The q-gamma function is defined by

Γq(γ ) =
(1 – q)(γ –1)

0
(1 – q)γ –1 , γ ∈R \ {0, –1, –2, . . .}. (11)

Obviously, Γq(γ + 1) = [γ ]qΓq(γ ), where [x]q = (1 – qx)/(1 – q), x ∈R, is the quantum num-
ber or q-number.

Now the definitions of Riemann–Liouville type of fractional derivative and integral of
quantum Hahn calculus on interval [a, b] are presented in the following definitions. See
[12].

Definition 3 The fractional quantum Hahn difference of Riemann–Liouville type of a
function f : [a, b] →R of order α ≥ 0 is defined by (aD0

q,ωf )(t) = f (t) and

(
aDα

q,ωf
)
(t) =

1
Γq(n – α) aDn

q,ω

∫ t

a

(
t – θΦq(s)

)(n–α–1)
θ

f (s)a dq,ωs, α > 0,

where n is the smallest integer greater than or equal to α.

Definition 4 Let α ≥ 0 and f : [a, b] → R be a function. The fractional quantum Hahn
integral of Riemann–Liouville type is defined by (aI0

q,ωf )(t) = f (t) and

(
aIα

q,ωf
)
(t) =

1
Γq(α)

∫ t

a

(
t – θΦq(s)

)(α–1)
θ

f (s)a dq,ωs, α > 0, t ∈ [a, b],

provided the right-hand side exists.

Theorem 1 [12] Let α,β ∈R
+, λ ∈ (–1,∞), and θ ∈ [a, b]. The following formulas hold:

(i) (aIα
q,ω(x – a)(λ)

θ )(t) = Γq(λ+1)
Γq(α+λ+1) (t – a)(α+λ)

θ ;

(ii) (aDα
q,ω(x – a)(λ)

θ )(t) = Γq(λ+1)
Γq(λ–α+1) (t – a)(λ–α)

θ .

Fractional differential equations attracted much attention in recent years due to their
widespread application in many fields of science and engineering, such as fluid flow, sig-
nal and image processing, fractals theory, control theory, electromagnetic theory, fitting of
experimental data, optics, potential theory, biology, chemistry, diffusion, and viscoelastic-
ity, etc; see [13–15]. One of the aspects which are nowadays very much popular among the
scientists for research is the integral inequalities with applications. The applications of in-
equalities are very much common for fixed point theorems and existence and uniqueness
of solutions for differential equations.

In this paper we prove some new quantum Hahn fractional integral inequalities by using
the quantum Hahn integral. The main results are included in Sect. 2, where inequalities are
obtained for quantum integrable functions bounded by quantum integrable functions as
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well as quantum Hermite–Hadamard type Hahn inequalities. In Sect. 3, inequalities are
produced for two quantum integrable functions bounded by quantum integrable func-
tions as well as the Pólya–Szegö type fractional Hahn integral inequalities and the Grüss–
C̆ebyšev type fractional Hahn integral inequality.

2 Some results on fractional integral inequalities for one unknown function
Let the points θi ∈ [a, b], i = 1, 2, be defined by

θi =
ωi

1 – qi
+ a (12)

for quantum numbers 0 < qi < 1 and ωi ≥ 0, i = 1, 2.

Theorem 2 Let f be a qi, ωi-integrable function on [a, b], i = 1, 2. In addition, we assume
that:

(H1) There exist two qi, ωi-integrable functions ϕi, i = 1, 2, on [a, b] such that:

ϕ1(t) ≤ f (t) ≤ ϕ2(t) for all t ∈ [a, b].

Then, for t ∈ [a, b], α,β > 0, 0 < qi < 1, and ωi ≥ 0, i = 1, 2, we have

(
aIβ

q2,ω2ϕ2
)
(t)

(
aIα

q1,ω1 f
)
(t) +

(
aIβ

q2,ω2 f
)
(t)

(
aIα

q1,ω1ϕ1
)
(t)

≥ (
aIβ

q2,ω2ϕ2
)
(t)

(
aIα

q1,ω1ϕ1
)
(t) +

(
aIβ

q2,ω2 f
)
(t)

(
aIα

q1,ω1 f
)
(t). (13)

Proof From condition (H1), for all τ ,ρ ∈ [a, b], we obtain

(
ϕ2(τ ) – f (τ )

)(
f (ρ) – ϕ1(ρ)

) ≥ 0,

which yields

ϕ2(τ )f (ρ) + ϕ1(ρ)f (τ ) ≥ ϕ1(ρ)ϕ2(τ ) + f (τ )f (ρ). (14)

Multiplying both sides of (14) by (t – θ1Φq1 (ρ))(α–1)
θ1

/Γq1 (α), ρ ∈ [a, t) and taking the q1,
ω1-integration with respect to ρ on [a, t), we obtain

ϕ2(τ )
∫ t

a

(t – θ1Φq1 (ρ))(α–1)
θ1

Γq1 (α)
f (ρ)a dq1,ω1ρ + f (τ )

∫ t

a

(t – θ1Φq1 (ρ))(α–1)
θ1

Γq1 (α)
ϕ1(ρ)a dq1,ω1ρ

≥ ϕ2(τ )
∫ t

a

(t – θ1Φq1 (ρ))(α–1)
θ1

Γq1 (α)
ϕ1(ρ)a dq1,ω1ρ

+ f (τ )
∫ t

a

(t – θ1Φq1 (ρ))(α–1)
θ1

Γq1 (α)
f (ρ)a dq1,ω1ρ,

which leads to

ϕ2(τ )
(

aIα
q1,ω1 f

)
(t) + f (τ )

(
aIα

q1,ω1ϕ1
)
(t)

≥ ϕ2(τ )
(

aIα
q1,ω1ϕ1

)
(t) + f (τ )

(
aIα

q1,ω1 f
)
(t). (15)
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Multiplying both sides of (15) by (t – θ2Φq2 (τ ))(β–1)
θ2

/Γq2 (β), τ ∈ [a, t) and taking the q2,
ω2-integration with respect to τ on [a, t), we get the desired result in (13). �

Corollary 1 Let ϕ1 and ϕ2 be polynomial θ -power functions defined by

ϕ1(t) =
n∑

i=0

ci(t – a)(i)
θ1

, ϕ2(t) =
m∑

j=0

dj(t – a)(j)
θ2

,

satisfying (H1). Then, for t ∈ [a, b], α,β > 0, 0 < qi < 1, and ωi ≥ 0, i = 1, 2, we have

(
aIα

q1,ω1 f
)
(t)

m∑

j=0

dj
Γq2 (j + 1)

Γq2 (β + j + 1)
(t – a)(β+j)

θ2

+
(

aIβ
q2,ω2 f

)
(t)

n∑

i=0

ci
Γq1 (i + 1)

Γq1 (α + i + 1)
(t – a)(α+i)

θ1

≥
( m∑

j=0

dj
Γq2 (j + 1)

Γq2 (β + j + 1)
(t – a)(β+j)

θ2

)( n∑

i=0

ci
Γq1 (i + 1)

Γq1 (α + i + 1)
(t – a)(α+i)

θ1

)

+
(

aIβ
q2,ω2 f

)
(t)

(
aIα

q1,ω1 f
)
(t).

Corollary 2 Let f be a qi, ωi-integrable function on [a, b], i = 1, 2, satisfying
(H2) m ≤ f (t) ≤ M for all t ∈ [a, b] and m, M ∈R.

Then, for α,β > 0, we have the following estimate:

M
(

aIα
q1,ω1 f

)
(t) + m

(
aIβ

q2,ω2 f
)
(t) ≥ mM +

(
aIβ

q2,ω2 f
)
(t)

(
aIα

q1,ω1 f
)
(t).

Further, if α = β , q1 = q2, and ω1 = ω2, then the following inequality holds:

(M + m)
(

aIα
q1,ω1 f

)
(t) ≥ mM +

(
aIα

q1,ω1 f
)2(t).

Theorem 3 Assume that:
(H3) 0 < ϕ1(t) ≤ f (t) ≤ ϕ2(t) for all t ∈ [a, b].

Then the following inequalities

(t – a)(β)
θ2

Γq2 (β + 1)
(

aIα
q1,ω1 f 2)(t) +

(t – a)(α)
θ1

Γq1 (α + 1)
(

aIβ
q2,ω2ϕ

2
2
)
(t)

≥ 2
(

aIα
q1,ω1 f

)
(t)

(
aIβ

q2,ω2ϕ2
)
(t) (16)

and

(t – a)(β)
θ2

Γq2 (β + 1)
(

aIα
q1,ω1ϕ

2
1
)
(t) +

(t – a)(α)
θ1

Γq1 (α + 1)
(

aIβ
q2,ω2 f 2)(t)

≥ 2
(

aIα
q1,ω1ϕ1

)
(t)

(
aIβ

q2,ω2 f
)
(t) (17)

are fulfilled.
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Proof From the well-known inequality

a
b

+
b
a

≥ 2, a, b ∈R
+,

we can write

ϕ2(τ )
f (ρ)

+
f (ρ)
ϕ2(τ )

≥ 2,

which leads to

ϕ2
2 (τ ) + f 2(ρ) ≥ 2f (ρ)ϕ2(τ ). (18)

Multiplying both sides of (18) by (t – θ1Φq1 (ρ))(α–1)
θ1

/Γq1 (α), ρ ∈ [a, t) and applying q1, ω1-
integration, we deduce the inequality

(t – a)(α)
θ1

Γq1 (α + 1)
ϕ2

2 (τ ) +
(

aIα
q1,ω1 f 2)(t) ≥ 2ϕ2(τ )

(
aIα

q1,ω1 f
)
(t).

By multiplying both sides of the last inequality with (t – θ2Φq2 (τ ))(β–1)
θ2

/Γq2 (β), τ ∈ [a, t)
and applying q2, ω2-integration, we obtain the result in (16).

To prove (17), we use the fact that

ϕ1(ρ)
f (τ )

+
f (τ )
ϕ1(ρ)

≥ 2.

By the same method, we get inequality in (17). The proof is completed. �

Corollary 3 Suppose that:
(H4) 0 < m ≤ f (t) ≤ M for all t ∈ [a, b].

Then the inequalities

(t – a)(β)
θ2

Γq2 (β + 1)
(

aIα
q1,ω1 f 2)(t) + M2 (t – a)(α)

θ1
(t – a)(β)

θ2

Γq1 (α + 1)Γq2 (β + 1)

≥ 2M
(t – a)(β)

θ2

Γq2 (β + 1)
(

aIα
q1,ω1 f

)
(t) (19)

and

m2 (t – a)(β)
θ2

(t – a)(α)
θ1

Γq2 (β + 1)Γq1 (α + 1)
+

(t – a)(α)
θ1

Γq1 (α + 1)
(

aIβ
q2,ω2 f 2)(t)

≥ 2m
(t – a)(α)

θ1

Γq1 (α + 1)
(

aIβ
q2,ω2 f

)
(t) (20)

are true.
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Theorem 4 Let f (t), ϕ1(t), and ϕ2(t) be (q,ω)-integrable functions on [a, b] satisfying (H3).
Then, for α,β ,γ > 0, we have the inequality

(
aIα

q,ωϕ2
2
)
(t)

(
aIβ

q,ωf 2)(t)
(

aIγ
q,ωϕ2

2
)
(t) +

(
aIα

q,ωf 2)(t)
(

aIβ
q,ωϕ1f

)
(t)

(
aIγ

q,ωϕ1ϕ2
)
(t)

+
(

aIα
q,ωϕ2f

)
(t)

(
aIβ

q,ωϕ2
1
)
(t)

(
aIγ

q,ωϕ1ϕ2
)
(t)

+
(

aIα
q,ωϕ2f

)
(t)

(
aIβ

q,ωϕ1f
)
(t)

(
aIγ

q,ωϕ2
1
)
(t)

≥ (
aIα

q,ωϕ2
2
)
(t)

(
aIβ

q,ωϕ1f
)
(t)

(
aIγ

q,ωϕ1ϕ2
)
(t)

+
(

aIα
q,ωϕ2f

)
(t)

(
aIβ

q,ωf 2)(t)
(

aIγ
q,ωϕ1ϕ2

)
(t)

+
(

aIα
q,ωϕ2f

)
(t)

(
aIβ

q,ωϕ1f
)
(t)

(
aIγ

q,ωϕ2
2
)
(t)

+
(

aIα
q,ωf 2)(t)

(
aIβ

q,ωϕ2
1
)
(t)

(
aIγ

q,ωϕ2
1
)
(t). (21)

Proof From (H3), we know that

ϕ2(ρ)
f (ρ)

≥ 1,
f (τ )
ϕ1(τ )

≥ 1 and
ϕ2(η)
ϕ1(η)

≥ 1.

Hence, we get the fact that

(
ϕ2(ρ)
f (ρ)

–
ϕ1(τ )
f (τ )

)(
f (τ )
ϕ1(τ )

–
ϕ1(η)
ϕ2(η)

)(
ϕ2(η)
ϕ1(η)

–
f (ρ)
ϕ2(ρ)

)

≥ 0.

It follows that

ϕ2
2 (ρ)f 2(τ )ϕ2

2 (η) + f 2(ρ)ϕ1(τ )f (τ )ϕ1(η)ϕ2(η)

+ ϕ2(ρ)f (ρ)ϕ2
1(τ )ϕ1(η)ϕ2(η) + ϕ2(ρ)f (ρ)ϕ1(τ )f (τ )ϕ2

1 (η)

≥ ϕ2
2 (ρ)ϕ1(τ )f (τ )ϕ1(η)ϕ2(η) + ϕ2(ρ)f (ρ)f 2(τ )ϕ1(η)ϕ2(η)

+ ϕ2(ρ)f (ρ)ϕ1(τ )f (τ )ϕ2
2 (η) + f 2(ρ)ϕ2

1(τ )ϕ2
1 (η).

Using the method to prove Theorem 2, we obtain the inequality in (21), which finishes the
proof. �

Corollary 4 Suppose that the (q,ω)-integrable function f satisfies (H4). Then, for t ∈ [a, b],
we have

(
M4 – m4)(

aIα
q,ωf 2)(t)

(
(t – a)(α)

θ

Γq(α + 1)

)2

≥ m2M2(M – m)
(

aIα
q,ωf

)
(t)

(
(t – a)(α)

θ

Γq(α + 1)

)2

+ mM
(
M2 – m2)(

aIα
q,ωf

)2(t)
(t – a)(α)

θ

Γq(α + 1)

+ mM(M – m)
(

aIα
q,ωf 2)(t)

(
aIα

q,ωf
)
(t)

(t – a)(α)
θ

Γq(α + 1)
. (22)
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Next, we will prove the Hermite–Hadamard type of quantum Hahn integral inequality.
Let [a, b] ⊂R with θ ∈ [a, b] be a given interval containing a point θ . Now we claim that

(b + qa – ω)
1 + q

∈ [a, b]. (23)

Since θ ∈ [a, b], we have a + ω/(1 – q) ∈ [a, b], which yields ω ≤ (1 – q)(b – a). Hence we
obtain

b –
(

b + qa – ω

1 + q

)

=
q(b – a) + ω

1 + q
≤ (b – a)

1 + q
≤ b – a,

which implies that (23) holds.
From Example 3.12, page 9 in [11], we get the following formula:

∫ b

a
t a dq,ωt =

∫ b

a

(
(t – a) + a

)
a dq,ωt

=
(b – a)2 – ω(b – a)

1 + q
+ a(b – a)

= (b – a)
(

b + qa – ω

1 + q

)

. (24)

Theorem 5 Let f : [a, b] → R be a convex differentiable function on (a, b), and quantum
numbers 0 < q < 1, ω ≥ 0 with θ ∈ [a, b]. Then we have

f
(

b + qa – ω

1 + q

)

≤ 1
(b – a)

∫ b

a
f (t)a dq,ωt

≤
[

qf (a) + f (b)
1 + q

– ω

(
f (b) – f (a)

(b – a)(1 + q)

)]

. (25)

Proof From the fact that f is a differentiable function on (a, b) and (23), we have that f ′((b+
qa – ω)/(1 + q)) exists. Since f is convex, that is,

f
(
(1 – λ)a + λb

) ≤ (1 – λ)f (a) + λf (b) (26)

for all λ ∈ [0, 1], we set a tangent line under the curve of f by

h(t) = f
(

b + qa – ω

1 + q

)

+ f ′
(

b + qa – ω

1 + q

)(

t –
b + qa – ω

1 + q

)

,

which leads to h(t) ≤ f (t) for all t ∈ [a, b]. By taking the (q,ω)-integration and using (24),
we have

∫ b

a
h(t)a dq,ωt =

∫ b

a

[

f
(

b + qa – ω

1 + q

)

+ f ′
(

b + qa – ω

1 + q

)(

t –
b + qa – ω

1 + q

)]

a dq,ωt

= (b – a)f
(

b + qa – ω

1 + q

)

+ f ′
(

b + qa – ω

1 + q

)[∫ b

a
ta dq,ωt – (b – a)

(
b + qa – ω

1 + q

)]
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= (b – a)f
(

b + qa – ω

1 + q

)

+ f ′
(

b + qa – ω

1 + q

)[

(b – a)
(

b + qa – ω

1 + q

)

– (b – a)
(

b + qa – ω

1 + q

)]

= (b – a)f
(

b + qa – ω

1 + q

)

≤
∫ b

a
f (t)a dq,ωt. (27)

On the other hand, we set the line connected between the points (a, f (a)) and (b, f (b))
by

k(t) = f (a) +
(

f (b) – f (a)
b – a

)

(t – a), (28)

which follows from (26) that f (t) ≤ k(t) for all t ∈ [a, b]. Applying the (q,ω)-integration on
both sides of (28), one has

∫ b

a
k(t)a dq,ωt =

∫ b

a

[

f (a) +
(

f (b) – f (a)
b – a

)

(t – a)
]

a dq,ωt

= (b – a)f (a) +
(

f (b) – f (a)
b – a

)(
(b – a)2 – ω(b – a)

1 + q

)

= (b – a)
[

qf (a) + f (b)
1 + q

– ω

(
f (b) – f (a)

(b – a)(1 + q)

)]

≥
∫ b

a
f (t)a dq,ωt. (29)

Combining inequalities (27)–(29), we have inequalities (25). This completes the proof. �

Remark 1 If ω = 0, then (25) is reduced to

f
(

b + qa
1 + q

)

≤ 1
(b – a)

∫ b

a
f (t) a dq,ωt ≤

[
qf (a) + f (b)

1 + q

]

, (30)

which appeared in [16].

Example 1 Let α > 0 be the order of quantum Hahn fractional integral. Then, by Theo-
rem 1, we obtain

aIα
q,ω(x)(b) = aIα

q,ω(x – a + a)(b)

= aIα
q,ω(x – a)(b) + aaIα

q,ω(1)(b)

=
1

Γq(α + 2)
(b – a)(α+1)

θ +
a

Γq(α + 1)
(b – a)(α)

θ .

Since

(b – a)(α)
θ =

(b – θΦ
0
q (a))(b – θΦ

1
q (a))(b – θΦ

2
q (a))(b – θΦ

3
q (a)) · · ·

(b – θΦα
q (a))(b – θΦα+1

q (a))(b – θΦα+2
q (a))(b – θΦα+3

q (a)) · · · ,
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we get the fact that (b – a)(α)
θ (b – θΦ

α
q (a)) = (b – a)(α+1)

θ . Thus, we have

aIα
q,ω(x)(b) =

(b – a)(α)
θ

Γq(α + 1)

( (b – θΦ
α
q (a))

[α + 1]q
+ a

)

.

Now, we claim that the point

� :=
(b – θΦ

α
q (a))

[α + 1]q
+ a ∈ [a, b]. (31)

Indeed, we will show that b – � ≤ b – a. By direct computation with ω ≤ (1 – q)(b – a), we
have

b – � = b –
[ (b – θΦ

α
q (a))

[α + 1]q
+ a

]

=
(b – a)(1 – qα+1) – (b – a)(1 – q) + (1 – qα)ω

1 – qα+1

≤ (b – a)(1 – qα+1) – (b – a)(1 – q) + (1 – qα)(1 – q)(b – a)
1 – qα+1

=
(b – a)(1 – qα)

1 – qα+1

≤ b – a,

which implies that (31) holds.
Now we are in a position to prove the Hermite–Hadamard type of quantum Hahn inte-

gral inequality.

Theorem 6 Let the function f and the constants q, ω, θ be as in Theorem 5. Then, for α > 0,
we have

f
( (b – θΦ

α
q (a))

[α + 1]q
+ a

)

≤ Γq(α + 1)
(b – a)(α)

θ

(
aIα

q,ωf
)
(b)

≤
[

q[α]qf (a) + f (b)
[α + 1]q

–
ω[α]q

[α + 1]q

(
f (b) – f (a)

b – a

)]

. (32)

Proof To get the fractional quantum Hahn Hermite–Hadamard inequality, we will use a
method similar to that in Theorem 5. Firstly, we define a function h∗(t) by

h∗(t) = f (�) + f ′(�)(t – �),

where � ∈ [a, b] is defined in (31). For α > 0, by taking the fractional (q,ω)-integral of
order α with Example 1, we get

(
aIα

q,ωh∗)(b) = f (�)
(

aIα
q,ω(1)

)
(b) + f ′(�)

[(
aIα

q,ωt
)
(b) – �

(
aIα

q,ω(1)
)
(b)

]

=
(b – a)(α)

θ

Γq(α + 1)
f (�) + f ′(�)

[
(b – a)(α+1)

θ

Γq(α + 1)
� – �

(b – a)(α)
θ

Γq(α + 1)

]



Asawasamrit et al. Journal of Inequalities and Applications        (2019) 2019:154 Page 11 of 18

=
(b – a)(α)

θ

Γq(α + 1)
f (�)

≤ (
aIα

q,ωf
)
(b). (33)

In the next step, we use the line k(t) over the curve of f which is defined in (28). By the
fractional (q,ω)-integral of order α and Theorem 1, one has

(
aIα

q,ωk
)
(b) = f (a)

(
aIα

q,ω(1)
)
(b) +

(
f (b) – f (a)

b – a

)
(

aIα
q,ω(t – a)

)
(b)

=
(b – a)(α)

θ

Γq(α + 1)
f (a) +

(
f (b) – f (a)

b – a

)
(b – a)(α+1)

θ

Γq(α + 2)

=
(b – a)(α)

θ

Γq(α + 1)

[

f (a) +
(f (b) – f (a))(b – θΦ

α
q (a))

(b – a)[α + 1]q

]

=
(b – a)(α)

θ

Γq(α + 1)

[
q[α]qf (a) + f (b)

[α + 1]q
–

ω[α]q

[α + 1]q

(
f (b) – f (a)

b – a

)]

≥ (
aIα

q,ωf
)
(b). (34)

Combining both of inequalities (33)–(34), we obtain the desired result in (32). The proof
is completed. �

Remark 2 If α = 1, then inequality (32) is reduced to (25). If ω = 0, then (32) is reduced to

f
(

b + q[α]qa
[α + 1]q

)

≤ Γq(α + 1)
(b – a)(α)

a

(
aIα

q f
)
(b) ≤ q[α]qf (a) + f (b)

[α + 1]q
, (35)

which corrects the result in Theorem 3.3 [17], where (b – a)(α)
a is defined by (10) with θ = a.

In addition, if α = 1, then (35) is also reduced to (30).

3 Some results on fractional integral inequalities for two unknown functions
In this section, we prove some fractional integral inequalities for two unknown functions.
Let g be a (q,ω)-integrable function on [a, b]. Assume that:

(H5) There exist ψ1 and ψ2 (q,ω)-integrable functions on [a, b] such that

ψ1(t) ≤ g(t) ≤ ψ2(t) for all t ∈ [a, b].

Theorem 7 Let (H1) with qi = q, ωi = ω, i = 1, 2, and (H5) hold. Then, for α,β > 0, the
fractional Hahn integral inequalities are true on [a, b]:

(i) (aIα
q,ωf )(t)(aIβ

q,ωψ2)(t) + (aIα
q,ωϕ1)(t)(aIβ

q,ωg)(t) ≥
(aIα

q,ωf )(t)(aIβ
q,ωg)(t) + (aIα

q,ωϕ1)(t)(aIβ
q,ωψ2)(t).

(ii) (aIα
q,ωg)(t)(aIβ

q,ωϕ2)(t) + (aIα
q,ωψ1)(t)(aIβ

q,ωf )(t) ≥
(aIα

q,ωg)(t)(aIβ
q,ωf )(t) + (aIα

q,ωψ1)(t)(aIβ
q,ωϕ2)(t).

(iii) (aIα
q,ωψ1)(t)(aIβ

q,ωϕ1)(t) + (aIα
q,ωg)(t)(aIβ

q,ωf )(t) ≥
(aIα

q,ωg)(t)(aIβ
q,ωϕ1)(t) + (aIα

q,ωψ1)(t)(aIβ
q,ωf )(t).

(iv) (aIα
q,ωg)(t)(aIβ

q,ωf )(t) + (aIα
q,ωψ2)(t)(aIβ

q,ωϕ2)(t) ≥
(aIα

q,ωψ2)(t)(aIβ
q,ωf )(t) + (aIα

q,ωg)(t)(aIβ
q,ωϕ2)(t).



Asawasamrit et al. Journal of Inequalities and Applications        (2019) 2019:154 Page 12 of 18

Proof To prove (i), from (H1) and (H5), we use the fact

(
ψ2(τ ) – g(τ )

)(
f (ρ) – ϕ1(ρ)

) ≥ 0,

which yields

ψ2(τ )f (ρ) + ϕ1(ρ)g(τ ) ≥ g(τ )f (ρ) + ψ2(τ )ϕ1(ρ).

By multiplying both sides of the above inequality with (t – θΦq(ρ))(α–1)
θ /Γq(α), ρ ∈ [a, t)

and applying the Hahn (q,ω)-integration, we have

ψ2(τ )
(

aIα
q,ωf

)
(t) + g(τ )

(
aIα

q,ωϕ1
)
(t) ≥ g(τ )

(
aIα

q,ωf
)
(t) + ψ2(τ )

(
aIα

q,ωϕ1
)
(t).

Multiplying both sides of the last inequality by (t – θΦq(τ ))(β–1)
θ /Γq(β), τ ∈ [a, t) and taking

the (q,ω)-integration with respect to τ on [a, t), we get to inequality (i).
Finally, for proving (ii)–(iv), we use inequalities (ϕ2(τ ) – f (τ ))(g(ρ) – ψ1(ρ)) ≥ 0, (ϕ1(τ ) –

f (τ ))(ψ1(ρ) – g(ρ)) ≥ 0, and (f (τ ) –ϕ2(τ ))(g(ρ) –ψ2(ρ)) ≥ 0, τ ,ρ ∈ [a, b], respectively. This
completes the proof. �

Theorem 8 Suppose that (H3) holds and assume that:
(H6) 0 < ψ1(t) ≤ g(t) ≤ ψ2(t) for all t ∈ [a, b].

Then the following inequalities:
(v) (aIα

q,ωψ1ψ2f 2)(t)(aIα
q,ωϕ1ϕ2g2)(t) ≤ 1

4 ((aIα
q,ω(ϕ1ψ1 + ϕ2ψ2)fg)(t))2,

(vi) (aIα
q,ωϕ1ϕ2)(t)(aIα

q,ωf 2)(t)(aIβ
q,ωψ1ψ2)(t)(aIβ

q,ωg2)(t) ≤
1
4 ((aIα

q,ωϕ1f )(t)(aIβ
q,ωψ1g)(t) + (aIα

q,ωϕ2f )(t)(aIβ
q,ωψ2g)(t))2,

are satisfied.

Proof For τ ∈ [a, t], t > a, we find that

A :=
(

ϕ2(τ )
ψ1(τ )

–
f (τ )
g(τ )

)

≥ 0 (36)

and

B :=
(

f (τ )
g(τ )

–
ϕ1(τ )
ψ2(τ )

)

≥ 0. (37)

Multiplying above two inequalities, that is,

AB =
(

ϕ2(τ )
ψ1(τ )

–
f (τ )
g(τ )

)(
f (τ )
g(τ )

–
ϕ1(τ )
ψ2(τ )

)

≥ 0,

we obtain

(
ϕ1(τ )ψ1(τ ) + ϕ2(τ )ψ2(τ )

)
f (τ )g(τ ) ≥ ψ1(τ )ψ2(τ )f 2(τ ) + ϕ1(τ )ϕ2(τ )g2(τ ). (38)

Next multiplying both sides of (38) by (t – θΦq(τ ))(α–1)
θ /Γq(α) and (q,ω)-integrating with

respect to τ from 0 to t, we have

(
aIα

q,ω(ϕ1ψ1 + ϕ2ψ2)fg
)
(t) ≥ (

aIα
q,ωψ1ψ2f 2)(t) +

(
aIα

q,ωϕ1ϕ2g2)(t).
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By using the AM–GM inequality, that is, x + y ≥ 2√xy, x, y ∈R
+, we obtain

(
aIα

q,ω(ϕ1ψ1 + ϕ2ψ2)fg
)
(t) ≥ 2

√(
aIα

q,ωψ1ψ2f 2
)
(t)

(
aIα

q,ωϕ1ϕ2g2
)
(t).

To prove (vi), we use the fact that

(
ϕ2(τ )
ψ1(ρ)

–
f (τ )
g(ρ)

)(
f (τ )
g(ρ)

–
ϕ1(τ )
ψ2(ρ)

)

≥ 0

for τ ,ρ ∈ [a, b], which implies

ϕ1(τ )f (τ )ψ1(ρ)g(ρ) + ϕ2(τ )f (τ )ψ2(ρ)g(ρ)

≥ ψ1(ρ)ψ2(ρ)f 2(τ ) + ϕ1(τ )ϕ2(τ )g2(ρ).

By the method used in Theorem 7 with AM–GM inequality, we get the requested inequal-
ity in (vi). The proof is completed. �

Corollary 5 Assume that (H4) holds and also the following condition is satisfied:
(H7) 0 < n ≤ g(t) ≤ N for all t ∈ [a, b].

Then we get the Pólya–Szegö type fractional Hahn integral inequalities:
(vii) (aIαq,ω f 2)(t)(aIαq,ωg2)(t)

((aIαq,ω fg)(t))2 ≤ 1
4 (

√
mn
MN +

√
MN
mn )2.

(viii) (t–a)(α+β)
θ

Γq(α+1)Γq(β+1)
(aIαq,ω f 2)(t)(aIβq,ωg2)(t)

((aIαq,ω f )(t)(aIβq,ωg)(t))2 ≤ 1
4 (

√
mn
MN +

√
MN
mn )2.

Lemma 1 ([18]) If A and B are nonnegative constants, then

Aλ + (λ – 1)Bλ – λABλ–1 ≥ 0 for λ > 1, (39)

and

Aλ + (λ – 1)Bλ – λABλ–1 ≤ 0 for 0 < λ < 1, (40)

where the equality holds if and only if A = B.

Theorem 9 Suppose that the assumptions of Theorem 8 hold. Then, for t ∈ [a, b], we
have

(
aIα

q,ω(ϕ2ψ2g – ψ1ψ2f )λ
)
(t) + (λ – 1)

(
aIα

q,ω(ψ1ψ2f – ϕ1ψ1g)λ
)
(t)

≥ λ
(

aIα
q,ω(ϕ2ψ2g – ψ1ψ2f )(ψ1ψ2f – ϕ1ψ1g)λ–1)(t), λ > 1, (41)

and

(
aIα

q,ω(ϕ2ψ2g – ψ1ψ2f )λ
)
(t) + (λ – 1)

(
aIα

q,ω(ψ1ψ2f – ϕ1ψ1g)λ
)
(t)

≤ λ
(

aIα
q,ω(ϕ2ψ2g – ψ1ψ2f )(ψ1ψ2f – ϕ1ψ1g)λ–1)(t), 0 < λ < 1. (42)
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Proof Set the constants A, B as in (36)–(37), respectively. For any λ > 1, we obtain from
Lemma 1 that

(
ϕ2(τ )g(τ ) – ψ1(τ )f (τ )

ψ1(τ )g(τ )

)λ

+ (λ – 1)
(

ψ2(τ )f (τ ) – ϕ1(τ )g(τ )
ψ2(τ )g(τ )

)λ

≥ λ

(
ϕ2(τ )g(τ ) – ψ1(τ )f (τ )

ψ1(τ )g(τ )

)(
ψ2(τ )f (τ ) – ϕ1(τ )g(τ )

ψ2(τ )g(τ )

)λ–1

.

Multiplying both sides by (ψ1(τ )ψ2(τ )g(τ ))λ, we have

(
ϕ2(τ )ψ2(τ )g(τ ) – ψ1(τ )ψ2(τ )f (τ )

)λ + (λ – 1)
(
ψ1(τ )ψ2(τ )f (τ ) – ϕ1(τ )ψ1(τ )g(τ )

)λ

≥ λ
(
ϕ2(τ )ψ2(τ )g(τ ) – ψ1(τ )ψ2(τ )f (τ )

)(
ψ1(τ )ψ2(τ )f (τ ) – ϕ1(τ )ψ1(τ )g(τ )

)λ–1,

which implies inequality (41) by multiplying by (t – θΦq(τ ))(α–1)
θ /Γq(α) and applying Hahn

(q,ω)-integration. In a similar way, the proof of inequality (42) can be obtained. The proof
is completed. �

Corollary 6 If (H4) and (H7) hold, then we get

(
aIα

q,ω(MNg – nNf )λ
)
(t) + (λ – 1)

(
aIα

q,ω(nNf – mng)λ
)
(t)

≥ λ
(

aIα
q,ω(MNg – nNf )(nNf – mng)λ–1)(t), λ > 1,

and

(
aIα

q,ω(MNg – nNf )λ
)
(t) + (λ – 1)

(
aIα

q,ω(nNf – mng)λ
)
(t)

≤ λ
(

aIα
q,ω(MNg – nNf )(nNf – mng)λ–1)(t), 0 < λ < 1.

In particular case, if M = N , m = n, and λ = 2, we have

(
M2 + m2)2(

aIα
q,ωg2)(t) + 4m2M2(

aIα
q,ωf 2)(t)

≥ 4
(
mM3 + m3M

)(
aIα

q,ωfg
)
(t).

Next, we are going to prove the Grüss–C̆ebyšev type fractional Hahn (q,ω)-integral in-
equality on the interval [a, b]. Let us prove the fractional (q,ω)-Korkine equality on the
interval [a, b].

Lemma 2 Let f , g : [a, b] → R be (q,ω)-integrable functions. Then, for 0 < q < 1, ω ≥ 0,
θ ∈ [a, b], and α > 0, we have

1
2
{

aI2α
q,ω

(
f (s) – f (r)

)(
g(s) – g(r)

)}
(b)

=
(b – a)(α)

θ

Γq(α + 1)
(

aIα
q,ωfg

)
(b) –

(
aIα

q,ωf
)
(b)

(
aIα

q,ωg
)
(b). (43)
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Proof From Definitions 2 and 4, we have

{
aI2α

q,ω
(
f (s) – f (r)

)(
g(s) – g(r)

)}
(b)

=
1

Γ 2
q (α)

∫ b

a

∫ b

a

(
b – θΦq(s)

)(α–1)
θ

(
b – θΦq(r)

)(α–1)
θ

× (
f (s) – f (r)

)(
g(s) – g(r)

)
a dq,ωsa dq,ωr

=
(b – a)(α)

θ

Γq(α + 1)

(
b – θΦq(b)

Γq(α)

∞∑

i=0

qi(b – θΦ
i+1
q (b)

)(α–1)
θ

f
(
θΦ

i
q(b)

)
g
(
θΦ

i
q(b)

)
)

–

(
b – θΦq(b)

Γq(α)

∞∑

i=0

qi(b – θΦ
i+1
q (b)

)(α–1)
θ

f
(
θΦ

i
q(b)

)
)

×
(

b – θΦq(b)
Γq(α)

∞∑

i=0

qi(b – θΦ
i+1
q (b)

)(α–1)
θ

g
(
θΦ

i
q(b)

)
)

–

(
b – θΦq(b)

Γq(α)

∞∑

i=0

qi(b – θΦ
i+1
q (b)

)(α–1)
θ

g
(
θΦ

i
q(b)

)
)

×
(

b – θΦq(b)
Γq(α)

∞∑

i=0

qi(b – θΦ
i+1
q (b)

)(α–1)
θ

f
(
θΦ

i
q(b)

)
)

+
(b – a)(α)

θ

Γq(α + 1)

(
b – θΦq(b)

Γq(α)

∞∑

i=0

qi(b – θΦ
i+1
q (b)

)(α–1)
θ

f
(
θΦ

i
q(b)

)
g
(
θΦ

i
q(b)

)
)

=
2(b – a)(α)

θ

Γq(α + 1)

(
b – θΦq(b)

Γq(α)

∞∑

i=0

qi(b – θΦ
i+1
q (b)

)(α–1)
θ

f
(
θΦ

i
q(b)

)
g
(
θΦ

i
q(b)

)
)

– 2

(
b – θΦq(b)

Γq(α)

∞∑

i=0

qi(b – θΦ
i+1
q (b)

)(α–1)
θ

f
(
θΦ

i
q(b)

)
)

×
(

b – θΦq(b)
Γq(α)

∞∑

i=0

qi(b – θΦ
i+1
q (b)

)(α–1)
θ

g
(
θΦ

i
q(b)

)
)

=
2(b – a)(α)

θ

Γq(α + 1)
(

aIα
q,ωfg

)
(b) – 2

(
aIα

q,ωf
)
(b)

(
aIα

q,ωg
)
(b),

which is (2), as desired. The proof is completed. �

The following example is needed to prove our next result.

Example 2 Let f (t) = t2 and g(t) = t, t ∈ [a, b]. Then the fractional Hahn (q,ω)-integral of
order α > 0 of f (t) from a to b is

(
aIα

q,ωf
)
(b) =

(
aIα

q,ω(t – a + a)2)(b)

=
(

aIα
q,ω(t – a)2)(b) + 2a

(
aIα

q,ω(t – a)
)
(b) + a2(

aIα
q,ω(1)

)
(b)
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=
Γq(3)

Γq(α + 3)
(b – a)(α+2)

θ +
2a

Γq(α + 2)
(b – a)(α+1)

θ +
a2

Γq(α + 1)
(b – a)(α)

θ

=
(b – a)(α)

θ

Γq(α + 1)

[
Γq(3)(b – θΦ

α+1
q (a))(b – θΦ

α
q (a))

[α + 2]q[α + 1]q
+

2a(b – θΦ
α
q (a))

[α + 1]q
+ a2

]

.

In addition, from Example 1, the square of (aIα
q,ωg)(b) is

[(
aIα

q,ωg
)
(b)

]2 =
[

1
Γq(α + 2)

(b – a)(α+1)
θ +

a
Γq(α + 1)

(b – a)(α)
θ

]2

=
[ (b – θΦ

α
q (a))(b – a)(α)

θ

[α + 1]qΓq(α + 1)
+

a(b – a)(α)
θ

Γq(α + 1)

]2

=
(b – a)2(α)

θ

Γ 2
q (α + 1)

[ (b – θΦ
α
q (a))2

[α + 1]2 +
2a(b – θΦ

α
q (a))

[α + 1]q
+ a2

]

.

Theorem 10 Let f , g : [a, b] →R be L1, L2-Lipschitzian (q,ω)-integrable functions, that is,

∣
∣f (s) – f (r)

∣
∣ ≤ L1|s – r|,

∣
∣g(s) – g(r)

∣
∣ ≤ L2|s – r|

(44)

for all s, r ∈ [a, b], L1, L2 > 0. Then, for 0 < q < 1, ω ≥ 0, θ ∈ [a, b], and α > 0, the following
inequality holds:

(b – a)(α)
θ

Γq(α + 1)
(

aIα
q,ωfg

)
(b) –

(
aIα

q,ωf
)
(b)

(
aIα

q,ωg
)
(b)

≤ L1L2
q[α]q(b – a)2(α)

θ (b – θΦ
α
q (a))2

[α + 1]2
q[α + 2]qΓ 2

q (α + 1)
. (45)

Proof From inequalities (44), we have

∣
∣
(
f (s) – f (r)

)(
g(s) – g(r)

)∣
∣ ≤ L1L2(s – r)2

for all s, r ∈ [a, b]. Taking the double fractional Hahn (q,ω)-integration of order α with
respect to s, r ∈ [a, b], we get

(
aI2α

q,ω
∣
∣
(
f (s) – f (r)

)(
g(s) – g(r)

)∣
∣
)
(b)

≤ L1L2
(

aI2α
q,ω(s – r)2)(b)

= L1L2

[
(b – a)(α)

θ

Γq(α + 1)
(

aIα
q,ωs2)(b) – 2

(
aIα

q,ωs
)
(b)

(
aIα

q,ωr
)
(b)

+
(b – a)(α)

θ

Γq(α + 1)
(

aIα
q,ωr2)(b)

]

= 2L1L2

[
(b – a)(α)

θ

Γq(α + 1)
(

aIα
q,ωs2)(b) –

((
aIα

q,ωs
)
(b)

)2
]

. (46)
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Applying the results from Example 2, it follows that

(b – a)(α)
θ

Γq(α + 1)
(

aIα
q,ωs2)(b) –

((
aIα

q,ωs
)
(b)

)2

=
(b – a)2(α)

θ (b – θΦ
α
q (a))

[α + 1]qΓ 2
q (α + 1)

[
Γq(3)(b – θΦ

α+1
q (a))

[α + 2]q
–

(b – θΦ
α
q (a))

[α + 1]q

]

=
(b – a)2(α)

θ (b – θΦ
α
q (a))

[α + 1]qΓ 2
q (α + 1)

[
q(b – a)(1 – q)(1 – qα)

(1 – qα+1)(1 – qα+2)
+

qω(–q2α + 2qα – 1)
(1 – qα+1)(1 – qα+2)

]

=
q[α]q(b – a)2(α)

θ (b – θΦ
α
q (a))2

[α + 1]2
q[α + 2]qΓ 2

q (α + 1)
. (47)

Hence, (46) and (47) lead to

(
aI2α

q,ω
∣
∣
(
f (s) – f (r)

)(
g(s) – g(r)

)∣
∣
)
(b) ≤ 2L1L2

q[α]q(b – a)2(α)
θ (b – θΦ

α
q (a))2

[α + 1]2
q[α + 2]qΓ 2

q (α + 1)
. (48)

Applying Lemma 2 to (48), we deduce the desired inequality in (45). This completes the
proof. �

Remark 3 If α = 1, q → 1, and ω = 0, then (45) is reduced to the classical Grüss–C̆ebyšev
integral inequality as follows:

∣
∣
∣
∣

1
b – a

∫ b

a
f (s)g(s) ds –

(
1

b – a

∫ b

a
f (s) ds

)(
1

b – a

∫ b

a
g(s) ds

)∣
∣
∣
∣ ≤ L1L2(b – a)2

12
.
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