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Abstract
In this article, we consider the numerical method for solving the Schrödinger
equations via Phragmén–Lindelöf inequalities under the order induced by a
symmetric cone with the function involved being monotone. Based on the
Phragmén–Lindelöf inequalities, the underlying system of inequalities is reformulated
as a system of smooth equations, and a Schrödinger-type method is proposed to
solve it iteratively so that a solution of the system of the Schrödinger equations is
found. By means of the Schrödinger type inequalities, the algorithm is proved to be
well defined and to be globally convergent under weak assumptions and locally
quadratically convergent under suitable assumptions. Preliminary numerical results
indicate that the algorithm is effective.
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1 Introduction
In this paper, we consider the following Schrödinger equation (see [18, 19]):

–�u + V (x)u =
(

1
|x|α ∗ |u|p

)
|u|p–2u, x ∈ �n, (1.1)

where n ≥ 3, 0 < α < n, 2 – α
n < p ≤ 2∗

α = 2n–α
n–2 and

(A1) V ∈ C(Rn,R+) is coercive, that is,

lim|x|→+∞ V (x) = +∞.

In 2016, Qiao et al. [19] first considered the bound and ground states for the nonlinear
Schrödinger equations under the condition

(A2) infRn V > 0, and there exists a positive constant r satisfying

meas
{

x ∈R
n, |x – y| ≤ r, V (x) ≤ M

} → 0

as |y| → ∞, where M > 0 and meas stands for the Lebesgue measure.
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The nonlinear system (1.1) has been proved to possess wide application fields in many
real world problems such as anomalous diffusion [2, 4, 15], disease models [6, 9, 21], eco-
logical models [26], synchronization of chaotic systems [1, 27], etc.

Put

ν(x) :=
1
2
∥∥u(x)

∥∥2

is the Nevanlinna norm (see [8]), problem (1.1) is equivalent to the following Schrödinger
problem defined by

minν(x), (1.2)

where x ∈ �n.
The Phragmén–Lindelöf inequalities (see [23]) have the main objective to solve the so-

called Schrödinger Phragmén–Lindelöf subproblem model to get the trial step τk

Min T Wk(τ ) =
1
2
∥∥u(xk) + ∇S(xk)τ

∥∥2,

‖τ‖ ≤ �.

In 2015, a modified Phragmén–Lindelöf inequality was proved by Wan [23]:

Min φk(τ ) =
1
2
∥∥u(xk) + ∇u(xk)τ

∥∥2,

‖τ‖ ≤ cp∥∥u(xk)
∥∥γ ,

where p, c, and γ are three positive numbers.
Recently, another adaptive Schrödinger Phragmén–Lindelöf inequality has been defined

by Qiao et al. [17]:

Min T Mk(τ ) =
1
2
∥∥u(xk) + Bkτ

∥∥2,

‖τ‖ ≤ cp∥∥u(xk)
∥∥,

(1.3)

where Bk is defined by

Bk+1 = Bk –
BksksTk Bk

sTk Bksk
+

ykyk
T

ykT sk
, (1.4)

yk = u(xk+1) – u(xk) and sk = xk+1 – xk . This Schrödinger Phragmén–Lindelöf method can
possess the global convergence without the nondegeneracy (see [1, 7, 11, 26] etc.), which
shows that this paper made a further progress in theory. And there exist many applica-
tions about the Schrödinger Phragmén–Lindelöf inequalities (see [3, 25, 27, 28] etc.) for
nonsmooth optimizations and other problems.
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We further consider the Schrödinger Phragmén–Lindelöf model for the nonlinear sys-
tem u(x) at xk (see [17])

ϑ(xk + τ ) = u(xk) + ∇u(xk)T d +
1
2
Tkd2, (1.5)

where ∇u(xk) is the Jacobian matrix of u(x) at xk .
It is well known that the above model (1.5) can be written as the following extension (see

[20, 23, 24]):

ϑ(xk + τ ) = u(xk) + ∇u(xk)T d +
3
2
(
sTk–1τ

)2sk–1. (1.6)

If we set the Schrödinger Phragmén–Lindelöf matrix ∇u(xk), then we can use the
Schrödinger Phragmén–Lindelöf matrix Bk instead of it. Thus, our Schrödinger
Phragmén–Lindelöf model can be defined as follows:

Min Nk(τ ) =
1
2

∥∥∥∥u(xk) + Bkd +
3
2
(
sTk–1τ

)2sk–1

∥∥∥∥
2

,

‖τ‖ ≤ cp∥∥u(xk)
∥∥γ ,

(1.7)

where Bk = H–1
k and Hk is generated by

Hk+1 = VT
k HkVk + ρksksTk

= VT
k

[
VT

k–1Hk–1Vk–1 + ρk–1sk–1sTk–1
]
Vk + ρksksTk

= · · ·
=

[
VT

k · · ·VT
k–m+1

]
Hk–m+1[Vk–m+1 · · ·Vk]

+ ρk–m+1
[
VT

k–1 · · ·VT
k–m+2

]
sk–m+1sTk–m+1[Vk–m+2 · · ·Vk–1]

+ · · ·
+ ρksksTk , (1.8)

where ρk = 1
sTk yk

, Vk = I – ρkyksTk (see [23] etc.).

Let τ
p
k be the solution of (1.7). Define

Aτk
(
τ

p
k
)

= ν
(
xk + τ

p
k
)

– ν(xk), (1.9)

and predict reduction by

Pτk
(
τ

p
k
)

= Nk
(
τ

p
k
)

– Nk(0). (1.10)

Based on definitions of Aτk(τ p
k ) and Pτk(τ p

k ), we design their ratio by

rp
k =

Aτk(τ p
k )

Pτk(τ p
k )

. (1.11)

Therefore, the Schrödinger-type algorithm for solving (1.1) is stated as follows.
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Algorithm
Initial: Let B0 = H–1

0 ∈ �n ×�n be a symmetric and positive definite matrix. x0 ∈ �n and

 = 0. ρ , c, and ε are three positive constants. Let l := 0;

Step 1: Stop if ‖χ (xl)‖ < ε holds;
Step 2: Solve (1.7) with � = �l to obtain ς




l ;
Step 3: Compute Aςl(ς


l ), Pςl(ς


l ), and the ratio r


l . If r


l < ρ , let 
 = 
 + 1, go to Step 2.
If r


l ≥ ρ , go to the next step;
Step 4: Set xl+1 = xl + ς




l , yl = χ (xl+1) – χ (xl), update Bl+1 = H–1
l+1 by (1.8) if yTl ς

p
l > 0,

otherwise set Bl+1 = Bl ;
Step 5: Let l := l + 1 and 
 = 0. Go to Step 1.

In this paper, we further focus on convergence results of the above algorithm under the
following assumptions.

Assumptions
(A) Define the set Ω by

Ω =
{

x|ϕ(x) ≤ ϕ(x0)
}

. (1.12)

It is easy to see that Ω is bounded.
(B) The nonlinear system χ (x) is twice continuously differentiable in Ω1, which is an

open convex set containing Ω .
(C) The following Phragmén–Lindelöf relation

∥∥[∇χ (xl) – Bl
]
χ (xl)

∥∥ = O
(∥∥ς

p
l
∥∥)

(1.13)

holds.
(D) The sequence matrices {Bl} are uniformly bounded in Ω1.

It follows from Assumption (B) that (see [10, 22])

∥∥∇χ (xl)T∇χ (xl)
∥∥ ≤ ML, (1.14)

where ML is a positive real number.

2 Convergence results
We first have the following new Phragmén–Lindelöf inequalities.

Lemma 2.1 Let τ
p
k be the solution of (1.1). Then

Pτk
(
τ

p
k
) ≤ –

1
2
∥∥Bku(xk)

∥∥min

{
�k ,

‖Bku(xk)‖
M2

l

}
+ O

(�2
k
)

(2.1)

holds.

Proof Define

J (u) =
1
2

∫
�n

|∇u|2 + u2 dx –
1

2p

∫
�n

∫
�n

|u(x)|p|u(y)|p
|x – y|α dx dy.
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It follows from (1.7) that

j0 < j1 = inf
N–

J (u) < j0 +
p – 1

2p
S

p
p–1
α,p .

Consider V (x) is a minimizer for both Sα,p. By the continuity of J , we know that

J (u0 + tV ) < j0 +
p – 1

2p
S

p
p–1
α,p ,

where 0 ≤ t < γ .
So

J (u0 + tV ) =
1
2
‖u0 + tV‖2 –

1
2p

B̃(u0 + tV ) –
∫

�n
h(u0 + tV ) dx

= J (u0) +
t2

2

[
‖V‖2 –

tp–2

p
B̃(V )

]
+ B̃(u0) + B̃(tV ) – B̃(u0 + tV )

< j0 +
p – 1

2p
S

p
p–1
α,p .

It follows from t ≥ γ that

J (u0 + tV ) =
1
2
‖u0 + tV‖2 –

1
2p

B̃(u0 + tV ) –
∫

�n
h(u0 + tV ) dx

=
1
2
‖u0‖2 + t

∫
�n

∇u0∇V + u0V dx +
t2

2
‖V‖2 –

1
2p

B̃(u0)

+
1

2p
[
B̃(u0) + B̃(tV ) – B̃(u0 + tV )

]
–

1
2p

B̃(tV )

–
∫

�n
hu0 dx –

∫
�n

htV dx

= J (u0) +
t2

2

[
‖V‖2 –

t2(p–1)

2p
B̃(V )

]
+

1
2p

[
B̃(u0) + B̃(tV )

– B̃(u0 + tV ) + 2p
∫

�n

∫
�n

|u0(x)|p|u0(y)|p–2u0(y)
|x – y|α dx dy

]

< j0 +
p – 1

2p
S

p
p–1
α,p .

Here, we use that 〈J ′(u0), tV 〉 = 0 and V (x) is a solution of (1.1). By the definition of τ
p
k

[14, 16] and it being the solution of (1.7), we get

Pτk
(
τ

p
k
) ≤ Pτk

(
–α

�k

‖Bku(xk)‖Bku(xk)
)

=
1
2

[
α2�2

k
‖BkBku(xk)‖2

‖Bku(xk)‖2 + α4�4
k

9
4

(sTk–1Bku(xk))4

‖Bku(xk)‖4

+ 3α2�2
k

(sTk–1Bku(xk))2

‖Bksk–1‖2 u(xk)T sk–1 – 2α�k
(u(xk)T BkBku(xk))

‖Bku(xk)‖

– 3α3�3
k

(sTk–1Bku(xk))2sTk–1BkBku(xk)
‖Bku(xk)‖3

]
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=
1
2

[
α2�2

k
‖BkBku(xk)‖2

‖Bku(xk)‖2 – 2α�k
(u(xk)T BkBku(xk))

‖Bku(xk)‖ + O
(�2

k
)]

≤ –α�k
∥∥Bku(xk)

∥∥ +
1
2
α2�2

kM2
l + O

(�2
k
)

for any α ∈ [0, 1].
Therefore

Pτk
(
τ

p
k
) ≤ min

0≤α≤1

[
–α�k

∥∥Bku(xk)
∥∥ +

1
2
α2�2

kM2
l

]
+ O

(�2
k
)

≤ –
1
2
∥∥Bku(xk)

∥∥min

{
�k ,

‖Bku(xk)‖
M2

l

}
+ O

(�2
k
)
. �

Lemma 2.2 Let Assumptions (A), (B), (C), and (D) hold. Then

∣∣Aτk
(
τ

p
k
)

– Pτk
(
τ

p
k
)∣∣ = O

(∥∥τ
p
k
∥∥2),

where τk is the solution of (1.7).

Proof It follows from (1.9) and (1.10) that

∣∣Aτk
(
τ

p
k
)

– Pτk
(
τ

p
k
)∣∣ =

∣∣ν(
xk + τ

p
k
)

– Nk
(
τ

p
k
)∣∣

=
1
2

∣∣∣∣
∥∥u(xk) + ∇u(xk)τ p

k + O
(∥∥τ

p
k
∥∥2)∥∥2

–
∥∥∥∥u(xk) + Bkτ

p
k +

3
2
(
sTk–1τ

p
k
)2sk–1

∥∥∥∥
2∣∣∣∣

=
∣∣u(xk)T ∇u(xk)τ p

k – u(xk)T Bkτ
p
k + O

(∥∥τ
p
k
∥∥2)

+ O
(∥∥τ

p
k
∥∥3) + O

(∥∥τ
p
k
∥∥4)∣∣

≤ ∥∥[∇u(xk) – Bk
]
u(xk)

∥∥∥∥τ
p
k
∥∥ + O

(∥∥τ
p
k
∥∥2)

+ O
(∥∥τ

p
k
∥∥3) + O

(∥∥τ
p
k
∥∥4)

= O
(∥∥τ

p
k
∥∥2). �

Theorem 2.1 Let Assumptions (A), (B), (C), and (D) hold. Then Algorithm either finitely
stops or generates an infinite sequence {xk} satisfying

lim
k→∞

∥∥u(xk)
∥∥ = 0, (2.2)

where {xk} is defined as in Algorithm.

Proof We know that t–(u) is a continuous function of u. Consequently, the manifold Λ–

disconnects D1,2(�n) in exactly two connected components U1 and U2, where

U1 =
{

u ∈ D1,2(�n) : u = 0 or ‖u‖D < t–
(

u
‖u‖D

)}
,

U2 =
{

u ∈ D1,2(�n) : ‖u‖D > t–
(

u
‖u‖D

)}
.
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So D1,2(�n) = Λ– ∪ U1 ∪ U2. In particular, u0 ∈ Λ+ ⊂ U1. Since

t–
(

u0 + tW
‖u0 + tW‖D

)
u0 + tW

‖u0 + tW‖D
∈ Λ,

we have

0 < t–
(

u0 + tW
‖u0 + tW‖D

)
< C0

uniformly for t ∈ R.
On the other hand,

‖u0 + tW‖D ≥ t‖W‖D – ‖u0‖D ≥ C0,

where t ≥ t̃.
So that we can fix a positive number t0 such that

‖u0 + t0W‖D > t–
(

u0 + t0W
‖u0 + t0W‖D

)
,

which yields that

u0 + t0W ∈ U2.

Combining this and the fact u0 ∈ U1, we know that

u0 + t1W ∈ Λ–

for some 0 < t1 < t0.
So

c1 = inf
Λ–

I(u) ≤ max
0≤t≤t0

I(u0 + tW ) < c0 +
N + 2 – α

4N – 2α
S

2N–α
N+2–α
H,L .

And there exists a minimizing sequence {un} ⊂ Λ– satisfying

I(un) < c1 +
1
n

;

I(w) ≥ I(un) –
1
n

‖u – w‖D,

where w ∈ Λ–.
So that

c1 + 1 > I(un) =
1
2
‖un‖2

D –
1

2 · 2∗
α

B(un) –
∫

�n
h(x)un dx

≥
(

1
2

–
1

2 · 2∗
α

)
‖un‖2

D –
(

1 –
1

2 · 2∗
α

)
‖h‖H–1‖un‖D,

which implies ‖un‖ has an upper bound.
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It follows from {un} ⊂ Λ– that

‖un‖2
D ≤ (

2 · 2∗
α – 1

)‖un‖2∗
α

D

S2∗
α

H,L

.

Thus, ‖un‖D has a uniform positive lower bound.
Similarly,

I(un) → c1, I ′(un) → 0 in H–1.

By Lemma 2.2 and

c1 < c0 +
N + 2 – α

4N – 2α
S

2N–α
N+2–α
H,L ,

we obtain that
∫

�n
h(x)u1 dx > 0 and u1 ∈ Λ+,

which leads to a contradiction.
In the case h > 0. Applying Lemma 2.1 to u1 and |u1|, we know that there exists t–(|u1|)

such that

t–(|u1|
)|u1| ∈ Λ–.

Moreover,

t–(|u1|
) ≥ t0

(|u1|
)

= t0(u1) =
[

A(u1)
(2∗

α – 1)B(u1)

] 1
2∗
α–2

.

So
∫

�n
h(x)u1 dx =

∫
�n

h(x)|u1|dx,

which implies that u1 ≥ 0. According to the maximum principle, we get u1 > 0.
It is easy to see that ‖un‖ is bounded, which yields that

‖un‖2 = ‖wn‖2 + ‖v‖2 + o(1), n → ∞,

and
∫

�n

|wn(x)|p|wn(y)|p
|x – y|α dw

=
∫

�n

|wn(x)|p|wn(y)|p
|x – y|α dw +

∫
�n

|w(x)|p|w(y)|p
|x – y|α dw + on(1)

as n → ∞.
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So

c ← J (wn) =
1
2
‖wn‖2 –

1
2p

∫
�n

|wn(x)|p|wn(y)|p
|x – y|α dw –

∫
�n

h(x)wn dx

=
1
2
‖wn‖2 –

1
2p

∫
�n

|wn(x)|p|wn(y)|p
|x – y|α dw –

∫
�n

h(x)wn dx

+
1
2
‖v‖2 –

1
2p

∫
�n

|v(x)|p|v(y)|p
|x – y|α dw –

∫
�n

h(x)v dx + on(1)

= J (v) +
1
2
‖wn‖2 –

1
2p

B̃(wn) + on(1)

and

1
2
‖wn‖2 –

1
2p

B̃(wn) + on(1) <
p – 1

2p
S

p
p–1
α,p . (2.3)

Notice that

o(1) =
〈
J ′(un), un

〉
=

〈
J ′(v), v

〉
+ ‖wn‖2 – B̃(wn) + o(1),

which yields that

‖wn‖2 – B̃(wn) = o(1). (2.4)

It follows from (2.4) that

‖wn‖2 = B̃(wn) ≤ ‖wn‖2p

Sp
α,p

and

1
2

p – 1
p

S
p

p–1
α,p =

1
2

(
1 –

1
p

)
S

p
p–1

≤ 1
2

(
1 –

1
p

)
‖wn‖2

=
1
2
‖wn‖2 –

1
2p

B̃(wn) + on(1)

<
p – 1

2p
S

p
p–1
α,p ,

which also leads to a contradiction.
Suppose that

lim
k→∞

∥∥Bku(xk)
∥∥ = 0 (2.5)

holds. Using Assumption (C) we get (2.2). It follows from (2.5) that the subsequence {kj}
satisfies

∥∥Bkj u(xkj )
∥∥ ≥ ε. (2.6)
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Set

K =
{

k|∥∥Bku(xk)
∥∥ ≥ ε

}
.

So we assume that

∥∥u(xk)
∥∥ ≥ ε

holds, where k ∈ K .
It follows from the definition of Algorithm and Lemma 2.1 that

∑
k∈K

[
ν(xk) – ν(xk+1)

] ≥ –
∑
k∈K

ρPτk
(
τ

pk
k

) ≥
∑
k∈K

ρ
1
2

min

{
cpk ε,

ε

M2
l

}
ε.

Lemma 2.2 gives us that the sequence {ν(xk)} is convergent, which yields that

∑
k∈K

ρ
1
2

min

{
cpk ε,

ε

M2
l

}
ε < +∞.

Then pk → +∞ when k → +∞ and k ∈ K . It follows that

min qk(τ ) =
1
2

∥∥∥∥u(xk) + Bkτ +
3
2
(
sTk–1τ

)2sk–1

∥∥∥∥
2

,

s.t. ‖τ‖ ≤ cpk –1∥∥u(xk)
∥∥

(2.7)

is unacceptable.
If we put x′

k+1 = xk + τ ′
k , then we have

ν(xk) – ν(x′
k+1)

–Pτk(τ ′
k)

< ρ. (2.8)

By applying Lemma 2.1 and the definition of �k , we know that

–Pτk
(
τ ′

k
) ≥ 1

2
min

{
cpk –1ε,

ε

M2
l

}
ε.

By applying Lemma 2.2, we know that

ν
(
x′

k+1
)

– ν(xk) – Pτk
(
τ ′

k
)

= O
(∥∥τ ′

k
∥∥2) = O

(
c2(pk –1)).

So
∣∣∣∣ν(x′

k+1) – ν(xk)
Pτk(τ ′

k)
– 1

∣∣∣∣ ≤ O(c2(pk –1))
0.5 min{cpk –1ε, ε

M2
l
}ε + O(c2(pk –1)ε2)

.

By applying pk → +∞ as k → +∞, we know that

ν(xk) – ν(x′
k+1)

–Pτk(τ ′
k)

→ 1, k ∈ K ,

which also gives a contradiction to (2.8). �
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3 Numerical results
This section reports some numerical results of Algorithm.

3.1 Problems
Define

u(x) =
(
υ1(x),υ2(x), . . . ,υn(x)

)T .

Problem 1 The Schrödinger differential function (see [12])

υl(x) = 2

(
n + l(1 – cos xl) – sin xl –

n∑
j=1

cos xj

)
(2 sin xl – cos xl),

where l = 1, 2, 3, . . . , n.

Initial guess:

x0 =
(

101
100n

,
101

100n
, . . . ,

101
100n

)T
.

Problem 2 Logarithmic function

υl(x) = ln(xl + 1) –
xl

n
,

where l = 1, 2, 3, . . . , n.

Initial points:

x0 = (1, 1, . . . , 1)T .

Problem 3 Schrödinger differential function (see [5, pp. 471–472])

υ1(x) = (2 – 0.2x1)x1 – x2 + 1,

υl(x) = (2 – 0.2xl)xl – xi–1 + xi+1 + 1,

υn(x) = (2 – 0.2xn)xn – xn–1 + 1,

where l = 1, 2, 3, . . . , n.

Initial points:

x0 = (–1, –1, . . . , –1)T .

Problem 4 Trigexp function (see [5, p. 473])

υ1(x) = 3x3
1 + x2 – 4 + 2 sin(x1 – x2) sin(x1 + x2),

υl(x) = –2xi–1exi–1–xl + 3xl
(
4 + 3x2

l
)

+ 2xi+1
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– sin(xl – xi+1) sin(xl + xi+1) – 2,

υn(x) = –2xn–1exn–1–xn + 3xn – 2,

where l = 1, 2, 3, . . . , n.

Initial guess:

x0 = (0, 0, . . . , 0)T .

Problem 5 Let u(x) be the gradient of

h(x) =
n∑

l=1

(
exl – xl

)
.

Then

υl(x) = exl – 1,

where l = 1, 2, 3, . . . , n.

Initial points:

x0 =
(

1
n

,
2
n

, . . . , 1
)T

.

Parameters: c = 0.2, ε = 10–2, ρ = 0.03, p = 3, m = 6 H0 is the unit matrix.
The method for (1.3) and (1.7): the Dogleg method [13, 25].
Code experiments: run on a PC with Intel Pentium(R) Xeon(R) E5507 CPU 2.27 GHz,

6.00 GB of RAM, and Windows 7 operating system.
Code software: MATLAB r2017a.
Stop rules: the program stops if ‖u(x)‖ ≤ 1e – 4 holds.
Other cases: we will stop the program if the iteration number is larger than ten hundred.

3.2 Results and discussion
The column meaning in the following tables:

Dim: the dimension. NI: the number of iterations.
NG: the norm function number. Time: the CPU-time in seconds.
Numerical results of Table 1 show the performance of these two algorithms about NI,

NG, and Time. It is not difficult to see that both of these algorithm can successfully solve
all these ten nonlinear problems.

It is easy to see that the NI and the NG of Algorithm have won since their performance
profile plot is on top right. And the Time of Algorithm YL has superiority over Algorithm.
Both of these two algorithms have good robustness.

4 Conclusions
In this paper, we considered the numerical method for solving the Schrödinger equations
via Phragmén–Lindelöf inequalities under the order induced by a symmetric cone with
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Table 1 Experiment results

Nr Dim Algorithm Algorithm YL Nr Dim Algorithm Algorithm YL

Ni NG Time NI NG Time NI NG Time NI NG Time

1 300 9 18 10.93567 11 22 1.778411 6 300 3 6 1.279208 5 6 0.7176046
800 9 18 52.46314 11 22 7.176046 800 3 6 5.397635 5 16 2.88601
1600 8 14 215.453 11 22 42.57267 1600 3 6 29.88979 5 16 16.39571

2 300 4 10 11.27887 6 7 1.185608 7 300 5 14 3.790824 12 49 1.435209
800 4 10 45.94229 6 7 4.071626 800 5 14 22.52654 12 49 4.69563
1600 4 10 251.38 6 7 22.58894 1600 5 14 102.0403 17 83 19.23492

3 300 4 10 2.808018 64 125 8.642455 8 300 1 2 1.294808 3 6 0.2808018
800 4 10 10.74847 78 129 52.26034 800 1 2 5.694037 3 6 0.8580055
1600 4 10 70.80885 68 99 262.5653 1600 1 2 31.091 3 6 3.775224

4 300 2 2 0.9112052 6 17 1.092007 9 300 13 19 11.01367 12 15 1.60681
800 2 2 2.839218 6 22 3.08882 800 9 15 40.95026 11 17 7.191646
1600 2 2 14.08689 6 22 13.27569 1600 10 19 299.3191 10 16 38.07984

5 300 3 6 1.731611 6 7 0.936006 10 300 3 9 4.558416 40 50 12.44888
800 3 6 5.616036 6 7 3.650423 800 3 9 11.62207 40 50 49.43672
1600 3 6 30.32659 6 7 22.44854 1600 3 9 73.07087 41 53 365.7911

the function involved being monotone. Based on the Phragmén–Lindelöf inequalities, the
underlying system of inequalities was reformulated as a system of smooth equations, and
a Schrödinger-type method was proposed to solve it iteratively so that a solution of the
system of the Schrödinger equations was found. By means of the Schrödinger type in-
equalities, the algorithm was proved to be well defined and to be globally convergent un-
der weak assumptions and locally quadratically convergent under suitable assumptions.
Preliminary numerical results indicate that the algorithm was effective.
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