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Abstract
In this paper, we obtain the equivalent relations between Kolmogorov maximal
inequality and Hájek–Rényi maximal inequality both in moment and capacity types in
sublinear expectation spaces. Based on these, we establish several strong laws of large
numbers for general random variables and obtain the growth rate of the partial sums.
In a first application, a strong law of large numbers for negatively dependent random
variables is obtained. In a second application, we consider the normalizing sequence
{logn}n≥1 and get some special limit properties in sublinear expectation spaces.
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1 Introduction and notations
The general framework of the sublinear expectation space was introduced by Peng [13]
and it is a natural extension of the classical linear expectation space with the linear prop-
erty being replaced by the subadditivity and positive homogeneity. This simple generaliza-
tion provides a very flexible framework to model uncertainty problems in statistics or fi-
nance. Peng [14] introduced the independent and identically distributed random variables,
G-normal distribution and obtained the weak law of large numbers and the central limit
theorem in sublinear expectation spaces. Since then, many authors began to investigate
the limit properties, especially the law of large numbers in sublinear expectation spaces.
For instance, Chen, Wu and Li [5] gave a strong law of large numbers for non-negative
product independent random variables; Chen [2] obtained the Kolmogorov strong law of
large numbers for independent and identically distributed random variables; Zhang [21]
gave the necessary and sufficient conditions of Kolmogorov strong law of larger numbers
holding for independent and identically distributed random variables under a continuous
sublinear expectation; Zhang [22] obtained a strong law of large numbers for a sequence
of extended independent random variables; Chen, Hu and Zong [3] gave several strong
laws of large numbers under some moment conditions with respect to the partial sum
and some conditions similar to Petrov’s; Chen, Huang and Wu [4] established an exten-
sion of the strong law of large numbers under exponential independence. There are also
many results on law of large numbers under different non-additive probability framework.
The reader can see [1, 6, 12, 18] and the references therein.
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However, none of these papers investigate the growth rate of the partial sums. The main
purpose of this paper is to explore the growth rate of the partial sums and investigate the
strong law of large numbers for general random variables in sublinear expectation spaces.

In classical probability or expectation space, Fazekas and Klesov [9] gave a general ap-
proach of obtaining the strong law of large numbers for sequences of random variables by
using a Hájek–Rényi type maximal inequality. This general approach made no restriction
on the dependence structure of random variables. Under the same conditions as those in
Fazekas and Klesov [9], Hu and Hu [10] obtained the growth rate for the sums of random
variables. Sung, Hu and Volodin [17] improved these results and applied this approach
to the weak law of large numbers for tail series. Tómács and Líbor [20] used the prob-
ability Hájek–Rényi type maximal inequality to prove the strong law of large numbers.
More results and applications of this approach in classical probability space can be found
in Fazekas [8] and the references therein.

In this paper, we will extend the approach used by Fazekas and Klesov [9] and Hu and Hu
[10] to sublinear expectation spaces. In Sect. 2, we firstly show the equivalent relations be-
tween Kolmogorov maximal inequality and Hájek–Rényi maximal inequality both in the
moment and capacity types in sublinear expectation spaces. Based on these, we establish
several strong laws of large numbers for general random variables in sublinear expecta-
tion spaces and obtain the growth rate of the partial sums in Sect. 3. As an application, a
strong law of large numbers for negatively dependent random variables is obtained since
the Kolmogorov type maximal inequality for negatively dependent random variables has
been proved in Sect. 2. In Sect. 4, we give another application. We consider the normaliz-
ing sequence {log n}n≥1 and get some limit properties in sublinear expectation spaces.

In the remainder of this section, we give some notations in sublinear expectation spaces.
We use the framework and notations in Peng [14] and [15]. Let (Ω ,F ) be a given measur-
able space and H be a linear space of real measurable functions defined on (Ω ,F ) such
that if X1, . . . , Xn ∈ H then ψ(X1, . . . , Xn) ∈ H , for each ψ ∈ Cl,Lip(Rn), where Cl,Lip(Rn)
denotes the linear space of functions ψ satisfying

∣
∣ψ(y) – ψ(z)

∣
∣≤ C

(

1 + |y|m + |z|m)|y – z|,
for all y, z ∈R

n, for some C > 0, m ∈ N depending on ψ .

Here and in the sequel, N denotes the set of all non-negative integers and N
∗ denotes

the set of all positive integers. In general, Cl,Lip(Rn) can be replaced by Cb,Lip(Rn), which
is the space of all bounded and Lipschitz continuous functions on R

n. The space H is
considered as a space of random variables.

Definition 1.1 A sublinear expectation E on H is a functional E : H → R ∪ {–∞,∞}
satisfying the following properties: for all X, Y ∈ H , we have

(a) monotonicity: E[X] ≥ E[Y ], if X ≥ Y ;
(b) constant preserving: E[c] = c, for c ∈R;
(c) subadditivity: E[X + Y ] ≤ E[X] + E[Y ] whenever E[X] + E[Y ] is not of the form

∞ – ∞ or –∞ + ∞;
(d) positive homogeneity: E[λX] = λE[X], for λ ≥ 0.
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The triple (Ω ,H ,E) is called a sublinear expectation space. Given a sublinear expectation
E, let us denote the conjugate expectation E of E by

E[X] := –E[–X], for all X ∈ H .

Lemma 1.2 (Lemma 2.4 in Peng [14]) A functional E defined on (Ω ,H ) is a sublinear
expectation if and only if, there exists a family of linear expectations (finite additive) {Eθ :
θ ∈ Θ} such that

E[X] = max
θ∈Θ

Eθ [X], for all X ∈ H .

Obviously, for all X ∈ H , E[X] ≤ E[X]. Furthermore, (E,E) can generate a pair (V , v) of
capacities by

V (A) := sup
θ∈Θ

Eθ [IA], v(A) := 1 – V
(

Ac), for all A ∈F ,

where {Eθ : θ ∈ Θ} is the family of linear expectations in Lemma 1.2 and Ac is the comple-
ment set of A. It is easy to check that V is subadditive, monotonic and

E[X] ≤ V (A) ≤ E[Y ], E[X] ≤ v(A) ≤ E[Y ], if X ≤ IA ≤ Y , X, Y ∈ H . (1)

Moreover, if IA ∈ H , then V (A) = E[IA] and v(A) = E[IA].

Remark 1.3 Zhang [21] introduced another way to define the capacities generated by
(E,E), that is,

V̄ (A) := inf
{

E[X] : IA ≤ X, X ∈ H
}

, v̄(A) := 1 – V
(

Ac), for all A ∈F .

Under this definition, V̄ is also subadditive, monotonic and (V̄ , v̄) satisfy (1). The relation
of these two pair of capacities satisfy v̄(A) ≤ v(A) ≤ V (A) ≤ V̄ (A), for all A ∈ F . More
properties about (V̄ , v̄) can be found in Zhang [21]. It is easy to see that Theorem 2.2,
Proposition 2.5 and Theorem 2.7 in this paper still hold when (V , v) is replaced by (V̄ , v̄),
respectively.

Definition 1.4
(i) In a sublinear expectation space (Ω ,H ,E), a n-dimensional random vector Y is

said to be independent on another m-dimensional random vector X under E if for
each test function ψ ∈ Cl,Lip(Rm+n) we have

E
[

ψ(X, Y)
]

= E
[

E
[

ψ(x, Y)
]∣
∣

x=X

]

,

whenever ψ(x) := E[|ψ(x, Y)|] < ∞ for all x and E[|ψ(X)|] < ∞.
(ii) A sequence of random variables {Xn}n≥1 is said to be independent, if Xn+1 is

independent on (X1, . . . , Xn) for each n ≥ 1.
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Definition 1.5 (Definition 1.5 in Zhang [21]) In a sublinear expectation space (Ω ,H ,E),
a n-dimensional random vector Y is said to be negatively dependent on another m-
dimensional random vector X under E, if for each pair of test function ψ1 ∈ Cl,Lip(Rm) and
ψ2 ∈ Cl,Lip(Rn), we have E[ψ1(X)ψ2(Y)] ≤ E[ψ1(X)]E[ψ2(Y)], whenever ψ1(X) ≥ 0 and
E[ψ2(Y)] ≥ 0, E[|ψ1(X)ψ2(Y)|] < ∞, E[|ψ1(X)|] < ∞, E[|ψ2(Y)|] < ∞ and either ψ1 and
ψ2 are coordinatewise nondecreasing or ψ1 and ψ2 are coordinatewise non-increasing.

2 Kolmogorov type and Hájek–Rényi type maximal inequalities
For convenience, let maxi∈A ai = 0 and

∑

i∈A ai = 0 if A = ∅.
Let {Xi}i≥1 denote a sequence of random variables in the sublinear expectation space

(Ω ,H ,E) and the partial sums of random variables be Sn =
∑n

i=1 Xi for all n ∈ N
∗ and

S0 = 0. The constant c may be different in different places.

Theorem 2.1 Let {αl}n
l=1 be a sequence of non-negative numbers and r > 0. Then the fol-

lowing two statements are equivalent:
(i) there exists a constant c > 0, such that, for any k = 1, . . . , n,

E

[

max
1≤l≤k

|Sl|r
]

≤ c
k
∑

l=1

αl; (2)

(ii) there exists a constant c > 0, such that, for any nondecreasing positive numbers
{βl}n

l=1 and any k = 1, . . . , n,

E

[

max
1≤l≤k

∣
∣
∣
∣

Sl

βl

∣
∣
∣
∣

r]

≤ 4c
k
∑

l=1

αl

βr
l

. (3)

Proof In (ii), for l = 1, . . . , n, let βl ≡ 1, then we can get (i) from (ii). Now we turn to the
proof of (i) ⇒ (ii). The proof is based on the idea of the proof of Theorem 1.1 by Fazekas
and Klesov [9].

Fix any nondecreasing positive numbers {βl}n
l=1. Without loss of generality we can as-

sume β1 = 1. For any fixed k ∈ {1, . . . , n}, define the following notations:

Ai =
{

l : 1 ≤ l ≤ k and 2i ≤ βr
l < 2i+1}, i ∈N,

I = max{i : Ai �= ∅},

m(i) =

⎧

⎨

⎩

max{l : l ∈ Ai}, if Ai �= ∅,

m(i – 1), if Ai = ∅,
i ∈N, and m(–1) = 0.

It is easy to see that I < ∞, m(0) ≥ 1 and {m(i)}∞i=–1 is nondecreasing. Then, by the subad-
ditivity of E and inequality (2), we have

E

[

max
1≤l≤k

∣
∣
∣
∣

Sl

βl

∣
∣
∣
∣

r]

≤
I
∑

i=0

E

[

max
l∈Ai

∣
∣
∣
∣

Sl

βl

∣
∣
∣
∣

r]

≤
I
∑

i=0

2–i
E

[

max
l∈Ai

|Sl|r
]

≤
I
∑

i=0

2–i
E

[

max
l≤m(i)

|Sl|r
]

≤
I
∑

i=0

2–ic
m(i)
∑

l=1

αl
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≤ c
I
∑

i=0

2–i
i
∑

j=0

m(j)
∑

l=m(j–1)+1

αl = c
I
∑

j=0

m(j)
∑

l=m(j–1)+1

αl

I
∑

i=j

2–i

≤ 2c
I
∑

j=0

2–j
m(j)
∑

l=m(j–1)+1

αl = 2c
I
∑

j=0

2–j
m(j)
∑

l=m(j–1)+1

αl

βr
l
βr

l

≤ 4c
I
∑

j=0

m(j)
∑

l=m(j–1)+1

αl

βr
l

= 4c
k
∑

l=1

αl

βr
l

.

Therefore, the proof of this theorem is completed. �

Theorem 2.2 Let {αl}n
l=1 be a sequence of non-negative numbers and r > 0. Then the fol-

lowing two statements are equivalent:
(i) there exists a constant c > 0, such that, for any k = 1, . . . , n, any ε > 0,

V
(

max
1≤l≤k

|Sl| ≥ ε
)

≤ cε–r
k
∑

l=1

αl; (4)

(ii) there exists a constant c > 0, such that, for any nondecreasing positive numbers
{βl}n

l=1 and any k = 1, . . . , n, any ε > 0,

V
(

max
1≤l≤k

∣
∣
∣
∣

Sl

βl

∣
∣
∣
∣
≥ ε

)

≤ 4cε–r
k
∑

l=1

αl

βr
l

. (5)

Proof In (ii), for l = 1, . . . , n, let βl ≡ 1, then we can get (i) from (ii). Now we focus on the
proof of (i) ⇒ (ii).

Fix any nondecreasing positive numbers {βl}n
l=1 and fix any k ∈ {1, . . . , n}. Without loss of

generality we can assume β1 = 1. We use the same notations Ai, I and m(i) defined in the
proof of Theorem 2.1. Then, by the subadditivity and monotonicity of V and inequality
(4), we have

V
(

max
1≤l≤k

∣
∣
∣
∣

Sl

βl

∣
∣
∣
∣
≥ ε

)

≤
I
∑

i=0

V
(

max
l∈Ai

∣
∣
∣
∣

Sl

βl

∣
∣
∣
∣
≥ ε

)

≤
I
∑

i=0

V
(

max
l∈Ai

|Sl| ≥ ε2i/r
)

≤
I
∑

i=0

V
(

max
l≤m(i)

|Sl| ≥ ε2i/r
)

≤
I
∑

i=0

cε–r2–i
m(i)
∑

l=1

αl.

Through the proof of Theorem 2.1, we have

I
∑

i=0

cε–r2–i
m(i)
∑

l=1

αl ≤ 4cε–r
k
∑

l=1

αl

βr
l

.

Hence, the proof of this theorem is completed. �
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Remark 2.3 Inequalities (2) and (4) are Kolmogorov maximal inequalities in the moment
and capacity types, respectively. As well, inequalities (3) and (5) are Hájek–Rényi maximal
inequalities in the moment and capacity types, respectively.

At the end of this section, we give two Kolmogorov type maximal inequalities for neg-
atively dependent random variables in sublinear expectation spaces. Before we do this,
we prove two propositions which will be used in the proof of Kolmogorov type maximal
inequality.

Proposition 2.4 Let {fi}n1
i=1 ⊂ Cl,Lip(Rn) and {gi}m1

i=1 ⊂ Cl,Lip(Rm) be coordinatewise nonde-
creasing or coordinatewise non-increasing functions. If n-dimensional random vector Y is
negatively dependent on m-dimensional random vector X under E, then (f1(Y), . . . , fn1 (Y))
is negatively dependent on (g1(X), . . . , gm1 (X)). In particular, –Y is negatively dependent on
–X.

Proof For any test functions ψ1 ∈ Cl,Lip(Rm1 ) and ψ2 ∈ Cl,Lip(Rn1 ) such that ψ1(g1(X), . . . ,
gm1 (X)) ≥ 0 and E[ψ2(f1(Y), . . . , fn1 (Y))] ≥ 0,

E
[∣
∣ψ1
(

g1(X), . . . , gm1 (X)
)

ψ2
(

f1(Y), . . . , fn1 (Y)
)∣
∣
]

< ∞,

E[|ψ1(g1(X), . . . , gm1 (X))|] < ∞, E[|ψ2(f1(Y), . . . , fn1 (Y))|] < ∞ and either ψ1 and ψ2 are
coordinatewise nondecreasing or ψ1 and ψ2 are coordinatewise non-increasing, de-
fine ψ̃1(·) = ψ1(g1(·), . . . , gm1 (·)) and ψ̃2(·) = ψ1(f1(·), . . . , fn1 (·)). Then ψ̃1 ∈ Cl,Lip(Rm) and
ψ̃2 ∈ Cl,Lip(Rn) are coordinatewise nondecreasing or ψ̃1 and ψ̃2 are coordinatewise non-
increasing. Meanwhile ψ̃1(X) ≥ 0 and E[ψ̃2(Y)] ≥ 0, E[|ψ̃1(X)ψ̃2(Y)|] < ∞, E[|ψ̃1(X)|] <
∞, E[|ψ̃2(Y)|] < ∞. Therefore, by the definition of negatively dependence, we have

E
[

ψ1
(

g1(X), . . . , gm1 (X)
)

ψ2
(

f1(Y), . . . , fn1 (Y)
)]

= E
[

ψ̃1(X)ψ̃2(Y)
]≤ E

[

ψ̃1(X)
]

E
[

ψ̃2(Y)
]

= E
[

ψ1
(

g1(X), . . . , gm1 (X)
)]

E
[

ψ2
(

f1(Y), . . . , fn1 (Y)
)]

.

Hence (f1(Y), . . . , fn1 (Y)) is negatively dependent on (g1(X), . . . , gm1 (X)) under E. �

The following proposition gives the Chebyshev inequalities in sublinear expectation
spaces which have been proved in Chen, Wu and Li [5]. But the proof there is not valid for
the capacities defined by Zhang [21] (see Remark 1.3 in this paper). We give a new proof
here which is also valid for the capacities defined by Zhang [21].

Proposition 2.5 (Chebyshev inequalities) Let X be any random variable in H and f be
any nondecreasing positive function in Cl,Lip(R). Then, for any ε ∈R,

V (X ≥ ε) ≤ E[f (X)]
f (ε)

, v(X ≥ ε) ≤ E[f (X)]
f (ε)

.

Proof Notice that

IX≥ε ≤ f (X)
f (ε)

∈ H ,
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then this proposition can be deduced directly from (1) and the positive homogeneity of E
and E . �

Theorem 2.6 (Kolmogorov maximal inequality in moment type) Let 1 ≤ p ≤ 2, {Xl}n
l=1

be a sequence of random variables in sublinear expectation space (Ω ,H ,E) with E[Xl] =
E[Xl] = 0 for all l = 1, . . . , n. If Xk is negatively dependent on (Xk+1, . . . , Xn) for all k =
1, . . . , n – 1, then

E

[

max
1≤l≤n

|Sl|p
]

≤ 23–p
n
∑

l=1

E
[|Xl|p

]

. (6)

Proof By Proposition 2.4, we know that –Xk is negatively dependent on (–Xk+1, . . . , –Xn)
for all k = 1, . . . , n – 1. So by Theorem 2.1 in Zhang [21], we have

E

[∣
∣
∣max
1≤l≤n

Sl

∣
∣
∣

p]≤ 22–p
n
∑

l=1

E
[|Xl|p

]

, and E

[∣
∣
∣max
1≤l≤n

(–Sl)
∣
∣
∣

p]≤ 22–p
n
∑

l=1

E
[|Xl|p

]

.

Notice that

max
1≤l≤n

|Sl|p =
(

max
1≤l≤n

|Sl|
)p ≤

∣
∣
∣max
1≤l≤n

Sl

∣
∣
∣

p
+
∣
∣
∣max
1≤l≤n

(–Sl)
∣
∣
∣

p
,

taking E in the above inequality, we can obtain (6) from the subadditivity of E. �

Theorem 2.7 (Kolmogorov maximal inequality in capacity type) Let 1 ≤ p ≤ 2, {Xl}n
l=1 be

a sequence of random variables in sublinear expectation space (Ω ,H ,E) with E[Xl] =
E[Xl] = 0 for all l = 1, . . . , n. If Xk is negatively dependent on (Xk+1, . . . , Xn) for all k =
1, . . . , n – 1, then, for any ε > 0,

V
(

max
1≤l≤n

|Sl| > ε
)

≤ 23–pε–p
n
∑

l=1

E
[|Xl|p

]

. (7)

Proof By Proposition 2.5, we have

V
(

max
1≤l≤n

|Sl| > ε
)

≤ ε–p
E

[

max
1≤l≤n

|Sl|p
]

.

Then inequality (7) can be deduced from Theorem 2.6. �

3 Strong laws of large numbers and the growth rate of partial sums
In this section and the sequel, we consider the sublinear expectation E can be represented
by

E[X] = sup
P∈P

EP[X], for all X ∈ H ,

where P is a nonempty set of σ -additive probabilities on F . It is easy to check that

E[X] = inf
P∈P

EP[X], for all X ∈ H ,
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and (V , v) can be rewritten as

V (A) = sup
P∈P

P(A), v(A) = inf
P∈P

P(A), for all A ∈F .

Clearly, V is inner continuous and v is outer continuous, that is, V (An) ↑ V (A), if An ↑ A;
and v(An) ↓ v(A), if An ↓ A, where An, A ∈ F , n ≥ 1 (see Lemma 2.1 in Chen, Wu and Li
[5]). Theorem 3.2 shows that these properties also hold for E and E .

Definition 3.1 (Definition 3 in Denis, Hu and Peng [7]) A set B is a polar set if V (B) = 0
and a property holds quasi-surely if it holds outside a polar set.

Theorem 3.2 (The monotone convergence theorem)
(i) If random variables Xn ↑ X and there exists a constant c such that Xn ≥ c

quasi-surely for all n ≥ 1, then E[Xn] ↑ E[X].
(ii) If random variables Yn ↓ Y and there exists a constant c such that Yn ≤ c

quasi-surely for all n ≥ 1, then E[Yn] ↓ E[Y ].

Proof It is easy to see that (i) is equivalent to (ii). So we only prove (i). By the monotonic-
ity of E, we know E[Xn] nondecreasing and E[X] ≥ limn→∞ E[Xn]. On the other hand, it
follows from the classical monotone convergence theorem that

E[X] = sup
P∈P

EP[X] = sup
P∈P

lim
n→∞ EP[Xn] ≤ lim

n→∞E[Xn].

Therefore (i) is proved. �

Let ϕ be a positive function satisfying

∞
∑

n=1

ϕ(n)
n2 < ∞ and 0 < ϕ(x) ↑ ∞ on [c,∞) for some c > 0. (8)

For convenience, we define 1
0 = ∞, 1

∞ = 0 and ϕ(∞) = ∞.

Remark 3.3 For any 0 < δ < 1 and α ∈R, functions |x|δ and |x|δ(log |x|)α satisfy (8).

Lemma 3.4 (Lemma 1 in Sung, Hu and Volodin [17]) Let {an}n≥1 be a sequence of non-
negative real numbers such that an > 0 for infinitely many n. Let vn =

∑∞
i=n ai for n ∈ N

∗

and ϕ be a positive function satisfying (8). If
∑∞

n=1 an < ∞, then
∑∞

n=1 anϕ( 1
vn

) < ∞.

Proposition 3.5 Let {bn}n≥1 be a nondecreasing unbounded sequence of positive numbers,
{αn}n≥1 be a sequence of non-negative real numbers, and ϕ be a positive function satisfying
(8). Let r be any fixed positive number and for n ∈N

∗,

vn =
∞
∑

i=n

αib–r
i and βn = max

1≤i≤n
biϕ

(
1
vi

)–1/r

.

If
∑∞

n=1 αnb–r
n < ∞, then

∑∞
n=1 αnβ

–r
n < ∞ and limn→∞ βn

bn
= 0.
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Proof Firstly, we consider that there exists an integer m such that αn = 0 for all n ≥ m,
thus βn = max1≤i≤m biϕ( 1

vi
)–1/r for n ≥ m. Obviously,

∑∞
n=1 αnβ

–r
n < ∞ and we can get

limn→∞ βn
bn

= 0 from limn→∞ bn = ∞.
Secondly, we consider that αn > 0 for infinitely many n. It is easy to see that βn ≤ βn+1

and βn ≥ bnϕ( 1
vn

)–1/r , for n ∈N
∗. Then, by Lemma 3.4, we have

∞
∑

n=1

αnβ
–r
n ≤

∞
∑

n=1

αnb–r
n ϕ

(
1
vn

)

< ∞.

Therefore, for any k ≤ n, we have

βn

bn
≤ max1≤i≤k biϕ( 1

vi
)–1/r

bn
+

maxk≤i≤n biϕ( 1
vi

)–1/r

bn

≤ max1≤i≤k biϕ( 1
vi

)–1/r

bn
+ ϕ

(
1
vk

)–1/r

.

Let n → ∞, we get lim supn→∞
βn
bn

≤ ϕ( 1
vk

)–1/r since limn→∞ bn = ∞. Then let k → ∞, we
have lim supn→∞

βn
bn

≤ 0 since limn→∞ vn = 0 and ϕ(x) ↑ ∞ as x ↑ ∞. Hence limn→∞ βn
bn

= 0.
The proof of this proposition is completed. �

Theorems 3.6, 3.8 and 3.9 give several strong laws of large numbers and the growth rate
of the partial sums for general random variables in sublinear expectation spaces.

Theorem 3.6 Let {bn}n≥1 be a nondecreasing unbounded sequence of positive numbers and
{αn}n≥1 be a sequence of non-negative numbers. Let r and c be any fixed positive numbers
and ϕ be any positive function satisfying (8). For n ∈ N

∗, let

vn =
∞
∑

i=n

αib–r
i and βn = max

1≤i≤n
biϕ

(
1
vi

)–1/r

.

If for each n ∈N
∗,

E

[

max
1≤i≤n

|Si|r
]

≤ c
n
∑

i=1

αi (9)

and
∑∞

n=1 αnb–r
n < ∞, then limn→∞ Sn

bn
= 0 quasi-surely with the convergence rate Sn

bn
= O( βn

bn
)

quasi-surely.

Proof Step 1. We firstly consider that there exists an integer m such that αn = 0 for all
n ≥ m, then βn = max1≤i≤m biϕ( 1

vi
)–1/r for n ≥ m.

In this case, the sequence {βn}n≥1 is bounded and it follows from the monotone conver-
gence theorem (Theorem 3.2) that

E

[

sup
n≥1

|Sn|r
]

= lim
n→∞E

[

max
1≤i≤n

|Si|r
]

≤ c
∞
∑

i=1

αi < ∞,

thus supn≥1 |Sn| < ∞ quasi-surely.
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Therefore limn→∞ Sn
bn

= 0 quasi-surely since limn→∞ bn = ∞. Because of Sn
bn

= Sn
βn

βn
bn

, we
obtain the convergence rate of Sn

bn
= O( βn

bn
) quasi-surely.

Step 2. We consider that αn > 0 for infinitely many n. By Proposition 3.5, we have
∑∞

n=1 αnβ
–r
n < ∞, and limn→∞ βnb–1

n = 0. It follows from Theorem 2.1 that

E

[

max
1≤l≤n

∣
∣
∣
∣

Sl

βl

∣
∣
∣
∣

r]

≤ 4c
n
∑

l=1

αl

βr
l

≤ 4c
∞
∑

l=1

αl

βr
l

< ∞.

By the monotone convergence theorem (Theorem 3.2), we have

E

[

sup
n≥1

∣
∣
∣
∣

Sn

βn

∣
∣
∣
∣

r]

= lim
n→∞E

[

max
1≤l≤n

∣
∣
∣
∣

Sl

βl

∣
∣
∣
∣

r]

≤ 4c
∞
∑

l=1

αl

βr
l

< ∞.

So supn≥1 | Sn
βn

| < ∞ quasi-surely and

0 ≤
∣
∣
∣
∣

Sn

bn

∣
∣
∣
∣
≤
∣
∣
∣
∣

βn

bn

∣
∣
∣
∣
sup
n≥1

∣
∣
∣
∣

Sn

βn

∣
∣
∣
∣
.

Hence, limn→∞ Sn
bn

= 0 quasi-surely and Sn
bn

= O( βn
bn

) quasi-surely. The proof of this theorem
is completed. �

Proposition 3.7 Under the assumptions of Theorem 3.6, the following statements hold:
(i) if the sequence {βn}n≥1 is bounded, then Sn

βn
= O(1) quasi-surely;

(ii) if the sequence {βn}n≥1 is unbounded, then Sn
βn

= o(1) quasi-surely.

Proof (i) Assume that {βn}n≥1 is bounded by a constant D > 0. Then

∞
∑

n=1

αn ≤ Dr
∞
∑

n=1

αnβ
–r
n < ∞.

It follows from the monotone convergence theorem (Theorem 3.2) that

E

[

sup
n≥1

|Sn|r
]

= lim
n→∞E

[

max
1≤l≤n

|Sl|r
]

≤ c
∞
∑

l=1

αl < ∞.

Therefore supn≥1 |Sn| < ∞ quasi-surely. Since {βn}n≥1 is bounded, we obtain Sn
βn

= O(1)
quasi-surely.

(ii) We turn to the case that {βn}n≥1 is unbounded. Now {βn}n≥1 is a nondecreasing un-
bounded sequence of positive numbers. It follows from Proposition 3.5 that

∑∞
n=1 αnβ

–r
n <

∞. Then, by Theorem 3.6, we get limn→∞ Sn
βn

= 0 quasi-surely, that is, Sn
βn

= o(1) quasi-
surely. �

Theorem 3.8 Under the assumptions of Theorem 3.6, the following statements hold:
(i) if the sequence {βn}n≥1 is bounded, then Sn

bn
= O( βn

bn
) quasi-surely;

(ii) if the sequence {βn}n≥1 is unbounded, then Sn
bn

= o( βn
bn

) quasi-surely.

Proof Due to Sn
bn

= Sn
βn

βn
bn

, these two statements can easily be got from Theorem 3.6 and
Proposition 3.7. �
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Theorem 3.9 Let {bn}n≥1 be a nondecreasing unbounded sequence of positive numbers
and {αn}n≥1 be a sequence of non-negative numbers and r be any fixed positive number.
For n ∈N, let

vn =
∞
∑

i=n

αib–r
i and βn = max

1≤i≤n
biϕ

(
1
vi

)–1/r

.

Assume that
∑∞

n=1 αnb–r
n < ∞ and there exists a constant c > 0 such that for any n ∈N

∗ and
any ε > 0

V
(

max
1≤i≤n

|Si| ≥ ε
)

≤ cε–r
n
∑

i=1

αi. (10)

Then the following statements hold:
(i) limn→∞ Sn

bn
= 0 quasi-surely and Sn

bn
= O( βn

bn
) quasi-surely;

(ii) if the sequence {βn}n≥1 is bounded, then Sn
βn

= O(1) quasi-surely and Sn
bn

= O( βn
bn

)
quasi-surely;

(iii) if the sequence {βn}n≥1 is unbounded, then Sn
βn

= o(1) quasi-surely and Sn
bn

= o( βn
bn

)
quasi-surely.

Proof (i) By Theorem 2.2, we have for any n ∈N
∗ and any ε > 0

V
(

max
1≤i≤n

∣
∣
∣
∣

Si

βi

∣
∣
∣
∣
≥ ε

)

≤ 4cε–r
n
∑

i=1

αi

βr
i

.

So for any k ∈N
∗, it follows from the inner continuity of V that

V
(

sup
n≥1

∣
∣
∣
∣

Sn

βn

∣
∣
∣
∣

> k
)

≤ lim
n→∞ V

(

max
1≤i≤n

∣
∣
∣
∣

Si

βi

∣
∣
∣
∣
≥ k
)

≤ 4ck–r
∞
∑

i=1

αi

βr
i

.

From Proposition 3.5, we have
∑∞

i=1 αiβ
–r
i < ∞. Therefore

lim
k→∞

V
(

sup
n≥1

∣
∣
∣
∣

Sn

βn

∣
∣
∣
∣

> k
)

= 0.

By the monotonicity of V , we have

V
(

sup
n≥1

∣
∣
∣
∣

Sn

βn

∣
∣
∣
∣

= ∞
)

= V

( ∞
⋂

k=1

{

sup
n≥1

∣
∣
∣
∣

Sn

βn

∣
∣
∣
∣

> k
})

≤ lim
k→∞

V
(

sup
n≥1

∣
∣
∣
∣

Sn

βn

∣
∣
∣
∣

> k
)

= 0.

Consequently supn≥1 |Sn|/βn < ∞ quasi-surely. Due to

|Sn|
bn

=
|Sn|
βn

βn

bn

and Proposition 3.5, we have limn→∞ Sn
bn

= 0 and Sn
bn

= O( βn
bn

) quasi-surely.
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(ii) If the sequence {βn}n≥1 is bounded by constant D > 0, then

∞
∑

n=1

αn ≤ Dr
∞
∑

n=1

αnβ
–r
n < ∞.

So for any k ∈N
∗, it follows from the inner continuity of V and (10) that

V
(

sup
n≥1

|Sn| > k
)

≤ lim
n→∞ V

(

max
1≤i≤n

|Si| ≥ k
)

≤ ck–r
∞
∑

i=1

αi.

Therefore

lim
k→∞

V
(

sup
n≥1

|Sn| > k
)

= 0.

By the monotonicity of V , we have

V
(

sup
n≥1

|Sn| = ∞
)

= V

( ∞
⋂

k=1

{

sup
n≥1

|Sn| > k
}
)

≤ lim
k→∞

V
(

sup
n≥1

|Sn| > k
)

= 0.

Consequently supn≥1 |Sn| < ∞ quasi-surely. Hence, Sn
βn

= O(1) quasi-surely and Sn
bn

= O( βn
bn

)
quasi-surely.

(iii) If the sequence {βn}n≥1 is unbounded, then, by Proposition 3.5 we have

∞
∑

n=1

αnβ
–r
n < ∞.

From (i) of this theorem, we get limn→∞ Sn/βn = 0 quasi-surely, and thus Sn/bn = o(βn/bn)
quasi-surely. �

The result of Theorem 3.8 is more precise than Theorem 3.6. When the sublinear expec-
tation space degenerates to the classical probability space, Theorem 3.8 and Theorem 3.9
give more precise results than Theorem 2.1 in Fazekas and Klesov [9], Lemma 1.2 in Hu
and Hu [10], Theorem 3.4 in Tómács [19] and Theorem 2.4 in Tómács and Líbor [20].

Theorem 3.10 (Strong law of large numbers for negatively dependent random vari-
ables) Let 1 ≤ p ≤ 2, {Xn}n≥1 be a sequence of random variables in sublinear expectation
space (Ω ,H ,E) with E[Xn] = E[Xn] = 0 for all n ∈ N

∗. If Xk is negatively dependent on
(Xk+1, . . . , Xk+n) for all n, k ∈ N

∗ and {bn}n≥1 is a nondecreasing unbounded sequence of
positive numbers with

∞
∑

n=1

E[|Xn|p]
bp

n
< ∞,

then

lim
n→∞

Sn

bn
= 0 quasi-surely
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with the convergence rate Sn
bn

= O( βn
bn

) when {βn}n≥1 is bounded, Sn
bn

= o( βn
bn

) when {βn}n≥1 is
unbounded, where for n ∈N

∗,

βn = max
1≤i≤n

biϕ

(
1
vi

)–1/p

, vn =
∞
∑

i=n

E
[|Xi|p

]

b–p
i

and ϕ is any positive function satisfying (8).

Proof Set αk = E[|Xk|p] for all k ∈N
∗, then, by Theorem 2.6, we have

E

[

max
1≤k≤n

|Sk|p
]

≤ 23–p
n
∑

k=1

αk , n ≥ 1.

Due to

∞
∑

n=1

αn

bp
n

=
∞
∑

n=1

E[|Xn|p]
bp

n
< ∞,

we can deduce this theorem from Theorem 3.6 and 3.8. �

4 An application to the logarithmically weighted sums
By using Theorem 3.6 and 3.8 to the logarithmically weighted sums, we can get Theo-
rem 4.2, which sharpens the result of Theorem 8.1 in Fazekas and Klesov [9] and Theo-
rem 2.5 in Hu and Hu [10] under the same condition in the classical probability theory and
extends it to the sublinear expectation space. Some of our idea for obtaining Theorem 4.2
come from these papers.

Lemma 4.1 (Lemma 8.1 in Fazekas and Klesov [9]) Set g(i, j) =
∑j

k=i
1
k for i ≤ j. Then, for

any 0 < β < 1 and 1 < γ < 2, we have

j
∑

k=i

k
∑

l=i

1
k1+β

1
l1–β

≤ 2
β

gγ (i, j).

Theorem 4.2 Let {Xn}n≥1 satisfy the following condition (11):

there exist constants β > 0, c > 0 such that

∣
∣E
[(

Xk – E[Xk]
)(

Xl – E[Xl]
)]∣
∣≤ c
(

l
k

)β

, 1 ≤ l ≤ k. (11)

Then

lim
n→∞

1
log n

n
∑

k=1

Xk – E[Xk]
k

= 0 quasi-surely (12)

and for any ε ∈ (0, 1/2),

1
log n

n
∑

k=1

Xk – E[Xk]
k

= o
(

1
(log n)ε

)

quasi-surely.
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Proof Without loss of generality we may assume 0 < β < 1. Using the assumption (11) and
Lemma 4.1 we have for all i < j, 1 < γ < 2

E

[( j
∑

k=i

Xk – E[Xk]
k

)2]

≤ 2c
j
∑

k=i

k
∑

l=i

1
k1+β

1
l1–β

≤ 4c
β

( j
∑

k=i

1
k

)γ

.

By Theorem 1 in Longnecker and Serfling [11], we get, for every P ∈P ,

EP

[

max
1≤i≤n

∣
∣
∣
∣
∣

i
∑

k=1

Xk – E[Xk]
k

∣
∣
∣
∣
∣

2]

≤ A2,γ
4c
β

( n
∑

k=1

1
k

)γ

,

then

E

[

max
1≤i≤n

∣
∣
∣
∣
∣

i
∑

k=1

Xk – E[Xk]
k

∣
∣
∣
∣
∣

2]

≤ A2,γ
4c
β

( n
∑

k=1

1
k

)γ

, (13)

where A2,γ is a constant defined in Theorem 1 of Longnecker and Serfling [11]. Since
∑n

k=1 1/k = O(1) log n as n → ∞, we denote

αn =
(

log(n + 1)
)γ – (log n)γ

and then by (13) we have for all n ≥ 1

E

[

max
1≤i≤n

∣
∣
∣
∣
∣

i
∑

k=1

Xk – E[Xk]
k

∣
∣
∣
∣
∣

2]

≤ c1

n
∑

k=1

αk ,

where c1 is a positive constant. Due to limn→∞ γ n–1(log n)γ –1/αn = 1, there exists n0 ≥ 3,
c2 > 0 and c3 > 0 such that, for all n ≥ n0,

c2n–1(log n)γ –1 ≤ αn ≤ c3n–1(log n)γ –1.

Take bn = log(n ∨ 2), then

v1 =
∞
∑

n=1

αnb–2
n < ∞.

Hence by Theorem 3.6, (12) holds.
Meanwhile, for n ≥ n0, we have

c2

2 – γ
(log n)γ –2 ≤ vn =

∞
∑

i=n

αib–2
i ≤ c3

2 – γ

(

log(n – 1)
)γ –2.

Therefore, for any δ ∈ (0, 1), n ≥ n0,

βn = max
1≤i≤n

bivδ/2
i ≥

(
c2

2 – γ

)δ/2

(log n)1–(2–γ )δ/2,
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which implies {βn}n≥1 is unbounded since 1 – (2 – γ )δ/2 ∈ (0, 1/2). Therefore, by Theo-
rem 3.8, the convergence rate of 1

log n
∑n

k=1
Xk –E[Xk ]

k is o(βn/bn) quasi-surely.
On the other hand, for n ≥ n0, we have

βn = max
1≤i≤n

bivδ/2
i = max

{

βn0 , max
n0≤i≤n

bivδ/2
i

}

≤ max

{

βn0 ,
(

c3

2 – γ

)δ/2

(log n)
(

log(n – 1)
)(γ –2)δ/2

}

≤ max

{

βn0 ,
(

c3

2 – γ

)δ/2( log 3
log 2

)(2–γ )δ/2

(log n)1–(2–γ )δ/2
}

.

Since {βn}n≥1 is unbounded, for sufficient large n, we have

βn

bn
≤ c4(log n)–(2–γ )δ/2,

where c4 = ( c3
2–γ

)δ/2( log 3
log 2 )(2–γ )δ/2. Let ε = (2 – γ )δ/2, then ε can be any value in (0, 1/2) since

δ is an arbitrary number in (0, 1) and 1
log n
∑n

k=1
Xk –E[Xk ]

k = o( 1
(log n)ε ) quasi-surely. �

Throughout the sequel of this section, the sublinear expectation spaces and the random
variable sequence {Xn}n≥1 are further supposed to satisfy the following two assumptions.

Assumption 1 The sublinear expectation spaces (Ω ,H ,E) and (Ω̃ ,H̃ , Ẽ) satisfy for all
X ∈ H (or H̃ ) and fn ∈ Cb,Lip(R), fn ↓ 0: E(or Ẽ)[fn(X)] ↓ 0.

Assumption 2 Having fixed the ratio λ ≥ 1 as a constant, the sequence {Xn}n≥1 is
a sequence of independent random variables in any fixed sublinear expectation space
(Ω ,H ,E) with E[Xn] = E[Xn] = 0, σ n =

√

E[X2
n] and σ n =

√

E[X2
n], for n ≥ 1, and 0 <

infn≥1 σ 2
n ≤ supn≥1 σ 2

n < ∞. For n ≥ 1, denote S0 = 0, Sn =
∑n

i=1 Xi and σn := σn+σn
2 , λn :=

σn
σn

≡ λ, Bn :=
√
∑n

i=1 σ 2
i , Wn := Sn

Bn
.

A random variable ξ is G-normal distributed (denoted by ξ ∼ N(0, [σ 2,σ 2])) under a
sublinear expectation Ẽ, if and only if for any f ∈ Cb,Lip(R), the function u(t, x) = Ẽ[f (x +√

tξ )] (x ∈R, t ≥ 0) is the unique viscosity solution of the following G-heat equation:

⎧

⎨

⎩

∂tu – G(∂2
xxu) = 0, (x, t) ∈ R× (0,∞),

u(0, x) = f (x),

where G(a) = 1
2 Ẽ[aξ 2], a ∈ R, is determined by the variances σ̄ 2 := Ẽ[ξ 2] and σ 2 := Ẽ[ξ 2].

If σ̄ 2 = σ 2, then G-normal distribution is just the classical normal distribution N(0, σ̄ 2).

Lemma 4.3 (Theorem 5.1 in Song [16]) Let (Ω ,H ,E) and (Ω̃ ,H̃ , Ẽ) be sublinear expec-
tation spaces satisfying Assumption 1 and {Xn}n≥1 be a sequence of random variables in
(Ω ,H ,E) satisfying Assumption 2. Then there exist a constant α ∈ (0, 1), depending on λ,
and a constant Cα,λ > 0, depending on α, λ such that, for any n ≥ 1,

sup
|f |Lip≤1

∣
∣E
[

f (Wn)
]

– Ẽ
[

f (ξ )
]∣
∣≤ Cα,λ sup

1≤i≤n

{
E[|Xi|2+α]

σ 2+α
i

(
σi

Bn

)α}

,
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where ξ is G-normal distribution under Ẽ with the fixed λ and
√

Ẽ[ξ 2] = 2λ
1+λ

,
√

Ẽ[ξ 2] = 2
1+λ

and |f |Lip is the Lipschitz constant of f .

Theorem 4.4 Let (Ω ,H ,E) and (Ω̃ ,H̃ , Ẽ) be sublinear expectation spaces satisfying As-
sumption 1 and {Xn}n≥1 be a sequence of random variables in (Ω ,H ,E) satisfying As-
sumption 2. For the α in Lemma 4.3, if supi≥1 E[|Xi|2+α] < ∞, then, for any f ∈ Cb,Lip(R), we
have

lim
n→∞

1
log n

n
∑

k=1

E[f (Wk)]
k

= Ẽ
[

f (ξ )
]

(14)

and

lim
n→∞

1
log n

n
∑

k=1

E[f (Wk)]
k

= Ẽ
[

f (ξ )
]

, (15)

and the convergence rate is O( 1
log n ), where ξ is G-normal distribution under Ẽ with the

fixed λ and
√

Ẽ[ξ 2] = 2λ
1+λ

,
√

Ẽ[ξ 2] = 2
1+λ

.

Proof We can get (15) by considering –f in (14). So we only need to prove (14). It follows
from Lemma 4.3 that

lim sup
n→∞

∣
∣
∣
∣
∣

1
log n

n
∑

k=1

E[f (Wk)]
k

– Ẽ
[

f (ξ )
]

∣
∣
∣
∣
∣

= lim sup
n→∞

∣
∣
∣
∣
∣

1
log n

n
∑

k=1

E[f (Wk)] – Ẽ[f (ξ )]
k

∣
∣
∣
∣
∣

≤ lim sup
n→∞

1
log n

n
∑

k=1

|E[f (Wk)] – Ẽ[f (ξ )]|
k

≤ lim sup
n→∞

1
log n

n
∑

k=1

|f |LipCα,λ

k
sup

1≤i≤k

{
E[|Xi|2+α]

σ 2+α
i

(
σi

Bk

)α}

≤ lim sup
n→∞

|f |LipCα,λ sup
i≥1

E
[|Xi|2+α

] 1
log n

n
∑

k=1

1
k(infi≥1 σ 2

i )(k infi≥1 σ 2
i ) α

2

=
|f |LipCα,λ supi≥1 E[|Xi|2+α]

(infi≥1 σ 2
i )1+ α

2
lim sup

n→∞
1

log n

n
∑

k=1

1
k1+ α

2

= 0.

Therefore, equality (14) holds and the convergence rate is O( 1
log n ). �

Theorem 4.5 Under the assumptions of Theorem 4.4, for f ∈ Cb,Lip(R) satisfying the fol-
lowing condition (16): for all 1 ≤ l ≤ k,

there exist constants β , c > 0 such that

∣
∣E
[(

f (Wk) – E
[

f (Wk)
])(

f (Wl) – E
[

f (Wl)
])]∣
∣≤ c
(

l
k

)β

, (16)
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we have

lim
n→∞

1
log n

n
∑

k=1

f (Wk)
k

= Ẽ
[

f (ξ )
]

quasi-surely, (17)

and the convergence rate is o( 1
(log n)ε ), for any ε ∈ (0, 1/2).

Proof Under the condition (16), it follows from Theorem 4.2 that, for any ε ∈ (0, 1/2),

1
log n

n
∑

k=1

f (Wk) – E[f (Wk)]
k

= o
(

1
(log n)ε

)

quasi-surely.

On the other hand, from Theorem 4.4, we have

lim
n→∞

1
log n

n
∑

k=1

E[f (Wk)]
k

– Ẽ
[

f (ξ )
]

= O
(

1
log n

)

.

Consequently, we can get (17) and the convergence rate. �
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