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Abstract
In this paper, some qualitative approximation results for the (p,q)-Bernstein operators
Bnp,q(f ; x) are obtained for the Cauchy kernel 1

x–α with a pole α ∈ [0, 1] for q > p > 1. The
main focus lies in the study of behavior of operators Bnp,q(f ; x) for the function
fm(x) = 1

x–pmq–m , x �= pmq–m and fm(pmq–m) = a, a ∈ R and the extra parameter p
provides flexibility for the approximation.
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1 Introduction and preliminaries
The uniform convergence of a sequence of operators to a continuous function was in-
troduced by Bohman [9] and Korovkin [16]. Through q-calculus various modifications of
Bernstein operators [7] have been studied so far [10, 18, 31]. The (p, q)-integers are the
generalization of the q-integers, which has an important role in the representation theory
of quantum calculus in the physics literature. Recently, the approximation by the (p, q)-
analog of a positive linear operator has become an active area of research. For the theory
and numerical implementations of the (p, q)-analog of Bernstein operators introduced by
Mursaleen et al. [22] and other (p, q)-analogs, the reader may refer to [1–5, 11–15, 19–21]
and [32]. For most recent work on the (p, q)-approximation we refer to [8, 24, 26].

The (p, q)-integer, (p, q)-binomial expansion and the (p, q)-binomial coefficients are de-
fined by

[m]p,q :=
pm – qm

p – q
, m = 0, 1, 2, . . . , p > q ≥ 1,

(a + b)m
p,q := (a + b)(pa + qb)

(
p2a + q2b

) · · · (pm–1a + qm–1b
)

=
k∑

r=0

p
(m–r)(m–r–1)

2 q
r(r–1)

2

[
m
r

]

p,q

ar ,

[
m
r

]

p,q

:=
[m]p,q!

[r]p,q![m – r]p,q!
.
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It can easily be verified by induction that

(1 + a)(p + qa)
(
p2 + q2a

) · · · (pn–1 + qn–1a
)

=
k∑

r=0

p
(m–r)(m–r–1)

2 q
r(r–1)

2

[
m
r

]

p,q

ar .

The (p, q)-analog of Euler’s identity is defined by

m–1∏

s=0

(
ps – qsa

)
:=

m∑

k=0

p
(m–k)(m–k–1)

2 q
k(k–1)

2

[
m
k

]

p,q

ak .

Let f : [0, 1] −→ R and q > p > 1. The (p, q)-Bernstein operators [22] of f is defined as

Bn
p,q(f ; x) :=

n∑

k=0

f
(

[k]p,q

pk–n[n]p,q

)
pn,k(p, q; x), n ∈N, (1.1)

where the polynomial pn,k(p, q; x) is given by

pn,k(p, q; x) =
1

p
n(n–1)

2

[
n
k

]

p,q

p
k(k–1)

2 xk
n–k–1∏

s=0

(
ps – qsx

)
, x ∈ [0, 1], 0 < q < p < 1. (1.2)

For p = 1, Bn
p,q(f ; x) turns into the q-Bernstein operator. We have

Bn
p,q(f ; 0) = f (0), Bn

p,q(f ; 1) = f (1), n ∈N. (1.3)

The following (p, q)-difference form of Bernstein operators [25] is given by

Bn
p,q(f ; x) :=

n∑

r=0

λn
p,qf

[
0,

pn–1[1]p,q

[n]p,q
, . . . ,

pn–r[r]p,q

[n]p,q

]
xr , (1.4)

where f [x0, x1, . . . , xn] indicates the nth order divided difference of f with pairwise distinct
node, that is,

f [x0] = f (x0), f [x0, x1] =
f (x1) – f (x0)

x1 – x0
,

f [x0, x1, . . . , xn] =
f [x1, . . . , xn] – f [x0, . . . , xn–1]

[xn – x0]

and λn
p,q is given by

λn
p,q =

[
n
r

]

p,q

[r]p,q!
[n]r

p,q
p

(n–r)(n–r–1)
2 q

r(r–1)
2

=
(

1 –
pn–1[1]p,q

[n]p,q

)(
1 –

pn–2[2]p,q

[n]p,q

)
· · ·

(
1 –

pn–r+1[r – 1]p,q

[n]p,q

)
, (1.5)

and λ0
p,q = λ1

p,q = 1, 0 ≤ λn
p,q ≤ 1, r = 0, 1, . . . , n.

In this paper, some qualitative approximation results for the (p, q)-Bernstein operators
Bn

p,q(f ; x) have been obtained for the Cauchy kernel 1
x–α

with a pole α ∈ [0, 1] for q > p > 1.
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The main focus lies in the study of behavior of operators Bn
p,q(f ; x) for the function fm(x) =

1
x–pmq–m , x �= pmq–m and fm(pmq–m) = a, a ∈R and the extra parameter p provides flexibility
for the approximation.

The time scale Jp,q for q > p > 1 is denoted and defined as

Jp,q = {0} ∪ {
pkq–k}∞

k=0. (1.6)

Here, we consider the (p, q)-Bernstein operators with the Cauchy kernel 1
x–α

, α ∈ [0, 1].
The previously obtained results [27–30] lead to the following conclusions.

• If α = 0, that is, f (x) = 1
x , x �= 0 and f (0) = a, then, for q ≥ 2,

lim
n→∞ Bn

p,q(f ; x) =

⎧
⎨

⎩
f (x), x ∈ Jp,q,

∞, x /∈ Jp,q.
(1.7)

• If α ∈ Jp,q \ [0, 1] that is f (x) = 1
(x–α) if x �= α and f (α) = a, then

lim
n→∞ Bn

p,q(f ; x) = f (x), x ∈ Jp,q.

Furthermore, as n → ∞, Bn
p,q(f ; x) → f (x) uniformly on any compact subset of (–α,α)

and Bn
p,q(f ; x) → ∞ for |x| > α, x /∈ Jp,q. Therefore, it is left to examine the case α ∈ Jp,q \{0}

which is exactly the subject of the present paper. Let the function fm : R → R be defined
by

fm(x) =

⎧
⎨

⎩

1
(x–pmq–m)j , x ∈R \ {pmq–m},
a, x = pmq–m,

m ∈ N0, a ∈R. (1.8)

2 Some auxiliary results
In this section, we prove some important lemmas.

Lemma 2.1 For the function fm defined by (1.8), we have
(a) for m ∈N,

lim
n→∞ Bn

p,q
(
fm; pjq–j) = fm

(
pjq–j), j ∈N0 \ {m, m + 1}.

Besides,

lim
n→∞ Bn

p,q
(
fm; pmq–m)

= –∞, and

lim
n→∞ Bn

p,q
(
fm; p–(m+1)q–(m+1)) = fm

(
pm+1q–(m+1)) –

p–mqm[m + 1]p,q

p–1(q – 1)[m]p,q
.

(b) For m = 0,

lim
n→∞ Bn

p,q
(
f0; pjq–j) = f0

(
pjq–j), j ∈N0

i.e., Bn
p,q(f0; ·) approximates f0 on Jp,q.
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This describes the behavior of Bn
p,q(fm; ·) on the time scale Jp,q.

Proof (a) From (1.2), we can easily see that pn,n–k(p, q; pjq–j) = 0 for k > j, whence

Bn
p,q

(
f ; p–jqj) =

min{k,j}∑

k=0

f
(

[n – k]p,q

[n]p,q

)
pn,n–k

(
p, q; pjq–j). (2.1)

Besides

lim
n→∞ pn,n–k

(
p, q; pjq–j) = δk,j and lim

n→∞
[n – k]p,q

[n]p,q
= pkq–k . (2.2)

Thus, limn→∞ fm( [n–k]p,q
[n]p,q

)pn,n–k(p, q; pjq–j) = fm(pkq–k)δj,k for all k �= m.
Now by easy calculation, we have

lim
n→∞ f

(
[n – k]p,q

[n]p,q

)
pn,n–k

(
p, q; pjq–j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–∞, j = m,

– p–mqm[m+1]p,q
p–1(q–1)[m]p,q

, j = m + 1,

0, ≥ m + 2,

and combining with (2.1) and (2.2) yields the result.
(b) It can be obtained easily from (1.3) and (2.2) as f0 is continuous at all points pjq–j,

j ∈ N. �

The next lemma is related to the coefficient of Bn
p,q(f0; ·).

Lemma 2.2 Let fm be a function as in (1.8). If Bn
p,q(fm; x) =

∑n
k=0 Cp,q

k,nxk and [k]p,q
[n]p,q

�= pmq–m

for k = 0, 1, 2, . . . , n, then

Cp,q
k,n = –

λ
p,q
k,np–m(k+1)qm(k+1)

(1 – pn–m–1qm[1]p,q
[n]p,q

)(1 – pn–m–2qm[2]p,q
[n]p,q

) · · · (1 – pn–m–kqm[k]p,q
[n]p,q

)
, (2.3)

where λ
p,q
k,n are given by (1.5).

Proof Consider fm(z) = 1
z–pmq–m , which is analytic function in C\ {pmq–m}. It is well known

that [17] the kth order divided difference of f can be expressed as

f [x0, x1, . . . , xk] =
1

2π i

∮

L

f (ζ ) dζ

(ζ – x0)(ζ – x1) · · · (ζ – xk)
,

where L is contour encircling x0, . . . , xk and f is assumed to be analytic on and within L.
Hence, when the nodes 0, [1]p,q

[n]p,q
, [2]p,q

[n]p,q
, . . . , [k]p,q

[n]p,q
are inside L and the pole α = pmq–m is out-

side, one has

f
[

0,
pn–1[1]p,q

[n]p,q
, . . . ,

pn–r[r]p,q

[n]p,q

]
=

1
2π i

∮

L

fm(ζ ) dζ

ζ (ζ – pn–1[1]p,q
[n]p,q

) · · · (ζ – pn–r[r]p,q
[n]p,q

)
. (2.4)
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By the residue theorem

f
[

0,
pn–1[1]p,q

[n]p,q
, . . . ,

pn–r[r]p,q

[n]p,q

]
=

k∑

j=0

Res
z=pn–j [j]p,q

[n]p,q

fm(z)
∏k

j=0(z – pn–j [j]p,q
[n]p,q

)

= – Resz=pmq–m
fm(z)

∏k
j=0(z – pn–j [j]p,q

[n]p,q
)

= –
p–m(k+1)qm(k+1)

∏k
j=1(1 – pn–m–j [j]p,q

[n]p,q
)
.

Since fm(z) = fm(x) for z = x ∈ [0, 1], the statement follows from the divided difference rep-
resentation (1.4). �

Now, we find the asymptotic estimates for the coefficient Cp,q
k,n in the next lemma.

Lemma 2.3 We have

lim
n→∞

n–j∏

k=1

(
1 – pn–m–jqm [k]p,q

[n]p,q

)
=

(
p2j–m

qj–m ;
p
q

)

∞

for j > m, q > p > 1.

Proof It is clear that

log
n–j∏

k=1

(
1 – pn–m–jqm [k]p,q

[n]p,q

)
=

n–1∑

k=j

log

(
1 – pn–m–jqm [n – k]p,q

[n]p,q

)
=

∞∑

k=j

ap,q
k,n,

where

ap,q
k,n =

⎧
⎨

⎩
log(1 – pn–m–jqm [n–k]p,q

[n]p,q
), k < n,

0, k ≥ n.

Since

∣∣ap,q
k,n

∣∣ ≤
∣∣∣
∣log

(
1 – pn–m–jqm [n – k]p,q

[n]p,q

)∣∣∣
∣

≤ q
q – p

pn–m–kqm[n – k]p,q

[n]p,q
≤ q

q – p
pn–k–mqm,

which gives
∑∞

k=j |ap,q
k,n| < ∞, and by the Lebesgue dominated convergence theorem, we

have

lim
n→∞

n–1∑

k=j

log

(
1 – pn–m–jqm [n – k]p,q

[n]p,q

)
=

∞∑

k=j

(
lim

n→∞ log

(
1 – pn–m–jqm [n – k]p,q

[n]p,q

))

=
∞∑

k=j

lim
n→∞

(
1 – pn–k–m qm

qk

)
,
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as a result

lim
n→∞ log

n–j∏

k=1

(
1 – pn–m–jqm [n – k]p,q

[n]p,q

)
= log

∞∏

k=j

(
1 – pn–k–m qm

pk

)
,

which completes the proof. �

The following lemma gives an upper bound for n – m – 1.

Lemma 2.4 If m ∈N, k = 0, 1, 2, . . . , n – m – 1, then

∣∣Cp,q
k,n

∣∣ ≤ Cm,p,qp–mnqmn,

where C in RHS is a positive constant, whose value need not to be addressed.

Proof For n > m + 1 and from (2.3), we have

∣∣Cp,q
k,n

∣∣ ≤ p–m(k+1)qm(k+1)

(1 – pn–m–1qm[1]p,q
[n]p,q

)(1 – pn–m–2qm[2]p,q
[n]p,q

) · · · (1 – pn–m–k qm[k]p,q
[n]p,q

)

≤ p–m(n–m)qm(n–m)

(1 – p2(n–m–1)qm

qn–1 )(1 – p2(n–m–2)qm[2]p,q
[n]p,q

) · · · (1 – pn–m–k qm[k]p,q
[n]p,q

)
,

∣∣Cp,q
k,n

∣∣ ≤ p–mnqmn

p2mq2m( p
q ; p

q )∞
.

Further, we discuss the nature of Cn–m+1,n, . . . , Cn,n as follows. �

Lemma 2.5 For m ∈N, q > p > 1,

∣
∣Cp,q

n–m,n
∣
∣ ∼ Cp,q,mp–(m+1)nq(m+1)n, n → ∞.

Proof Using (2.3), we obtain the following

∣∣Cp,q
n–m

∣∣ = λp,q
n–m,n

p–m(n–m+1)qm(n–m+1)

(1 – pn–m–1qm[1]p,q
[n]p,q

)(1 – pn–m–2qm[2]p,q
[n]p,q

) · · · (1 – pn–m–(n–m)qm[n–m]p,q
[n]p,q

)
.

From Lemma 2.3, we have

∣∣Cp,q
n–m

∣∣ ∼
( pm+1

qm+1 ; p
q )∞qm(n–m+1)p–m(n–m+1)pm(pn – qn)

( p
q ; p

q )∞pn(pm – qm)

∼
( pm+1

qm+1 ; p
q )∞qmnp–mnpm(pn – qn)

( p
q ; p

q )∞qm(m–1)pm(m–1)(pm – qm)
,

Cp,q
n–m,n = Cp,q

m p–n(m+1)qn(m+1).

(2.5)

The nature of the remaining coefficients Cn–m+1,n, . . . , Cn,n is given as follows. �
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Lemma 2.6 For j = 1, 2, . . . , m, we have

lim
n→∞

Cp,q
n–m+j,n

Cp,q
n–m,n

= (–1)j

[
m
j

]

p,q

p
(n–j)(n–j–1)

2 q
j(j–1)

2 .

Proof Using (2.3) and (1.5), we get

Cp,q
n–m+j,n = Cp,q

n–m,n

(1 – pm[n–m]p,q
[n]p,q

) · · · (1 – pm–j+1 [n–m+j–1]p,q
[n]p,q

)

(1 – p–1qm [n–m+1]
[n]p,q

) · · · (1 – p–jqm [n–m+j]p,q
[n]p,q

)
,

lim
n→∞

Cp,q
n–m+j,n

Cp,q
n–m,n

=
(1 – pm

qm ) · · · (1 – pm–j+1

qm–j+1 )

(1 – q
p ) · · · (1 – qj

pj )
,

lim
n→∞

Cp,q
n–m+j,n

Cp,q
n–m,n

= (–1)j

[
m
j

]

p,q

p
(n–j)(n–j–1)

2 q
j(j–1)

2 .
�

Corollary 2.7 The following estimate holds:

∣∣Cp,q
k,n

∣∣ ≤ Cp,q,mp–(m+1)nq(m+1)n, k = 0, 1, 2, . . . , n, (2.6)

and Cp,q,m is independent of both k and n.

Corollary 2.8 We have the following:

lim
n→∞

Cn–m,n + · · · + Cn–m+j,nxj + · · · + Cn,nxn

Cn–m,n
= (x; p, q)m. (2.7)

Proof The statement follows from Rothe’s identity [6],

(x; p, q)m =
m∑

j=0

(–1)j

[
m
j

]

p,q

p
(n–j)(n–j–1)

2 q
j(j–1)

2 .
�

3 Main results
• First we consider the case when pole α ∈ Jp,q \ {0, 1}.
Now, we obtain the results that concern with the uniform approximation of fm(x), m ∈N

by its (p, q)-Bernstein operators. It may be noted that, while the case when α ∈ [0, 1] \
Jp,q can easily be examined by using the result and method of [27], the condition α ∈ Jp,q

requires a different approach.

Theorem 3.1 If m ∈N, then Bn
p,q(fm; x) → fm(x) as n → ∞ uniformly on any compact sub-

set of (–p(m+1)q(m+1), p(m+1)q(m+1)).

Proof We consider the complex (p, q)-Bernstein operators given by

Bn
p,q(f ; x) =

n∑

k=0

f
(

[k]p,q

pk–n[n]p,q

)
pn,k(p, q; x), n ∈N, z ∈C, (3.1)
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and the function fm(z) = 1
(z–pmq–m) , z ∈ C. Let n be large enough to satisfy the condition

[k]p,q
[n]p,q

�= pmq–m. Then

Bn
p,q(fm; z) =

n∑

k=0

Cp,q
k,nzk ,

where Cp,q
k,n is given by (2.3). Let ρ ∈ (0, p(m+1)q–(m+1)). Therefore for |z| ≤ ρ the following

estimate is valid by Corollary 2.7:

∣
∣Bn

p,q(fm; z)
∣
∣ ≤

n∑

k=0

∣
∣Cp,q

k,nρk∣∣ ≤ Cp,q,m

n∑

k=0

(
p–(m+1)q(m+1)ρ

)k ≤ Cp,q,m
1

(1 – p–(m+1)q(m+1)ρ)
.

Hence it follows that the operators {Bn
p,q(fm, z)} are uniformly bounded in the disk {z :

|z| ≤ ρ} and convergent on the sequence {pjq–j}∞j=m+2 having an accumulation point at
0 to the function fm(z) analytic in this disc. Using Vitali’s convergence theorem, we
have Bn

p,q(fm; z) → fm(z) (n → ∞) uniformly on any compact set in {z : |z| ≤ ρ} as ρ ∈
(0, p(m+1)q–(m+1)) was arbitrary. This completes the proof. �

Next we demonstrate that, outside of the interval, operators diverge everywhere except
a finite number of points.

Theorem 3.2 If m ∈ N, then limn→∞ Bn
p,q(fm; x) = ∞ for |x| > p(m+1)q–(m+1), x �= p(m+1) ×

q–(m+1), x �= p(m–1)q–(m–1), x �= p(m–2)q–(m–2), . . . , 1.

Proof For exceptional points p(m–1)q–(m–1), p(m–2)q–(m–2), . . . , 1, the situation has been ana-
lyzed in Lemma 2.1(a). We take x satisfying |x| > p(m–1)q–(m–1) different from these values.
Let n > m be sufficiently large such that (2.3) holds. By Lemma 2.4, we obtain

∣∣
∣∣
∣

∞∑

k=0

Cp,q
k,nxk

∣∣
∣∣
∣
≤ Cm,p,q

n–m–1∑

k=0

p–mkqmkxk = Cm,p,q
(p–mqmx)n–m – 1

p–mqmx – 1

= o
((

p–(m+1)q(m+1)x
)n), n → ∞.

Hence

Bn
p,q(fm; x) =

n∑

k=n–m

Cp,q
k,nxk + o

((
p–(m+1)q(m+1)x

)n)

= Cp,q
n–mxn–mgn(x) + o

((
p–(m+1)q(m+1)x

)n), n → ∞.

By Lemma 2.5, |Cp,q
n–m| ∼ Cp,q,m(x)(p–(m+1)q(m+1)x)n as n → ∞ whenever |x| > p(m+1)q–(m+1),

since limn→∞ gn(x) = (x; p, q)m �= 0, when x /∈ {p(m+1)q–(m+1), . . . , 1}. �

Lemma 3.1 Let f0 be given by putting m = 0 in (1.8). If Bn
p,q(f0; x) =

∑n
k=0 Cp,q

k,nxk then

Cp,q
k,n =

–1
(1 – pn–k [k]p,q

[n]p,q
)
, k = 0, 1, 2, . . . , n – 1, Cp,q

n,n = a +
n–1∑

k=0

1
(1 – pn–k [k]p,q

[n]p,q
)
.
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Proof For k = 0, 1, . . . , n – 1, on a specific choice of the contour L, such that the nodes
0, [1]p,q

[n]p,q
, . . . , [k]p,q

[n]p,q
are inside L while the pole α = 1 is outside, formula (2.4) implies

Cp,q
k,n =

–λ
p,q
k,n

∏k
j=0(1 – pn–j [j]p,q

[n] )
=

–1
(1 – pn–k [k]p,q

[n]p,q
)
,

since by (1.3), Bn
p,q(f0; 1) = f0(1) = a and the statement is proved. �

Corollary 3.2 For k = 0, 1, 2, . . . , n – 1 with q > p > 1 we have the following result:

∣∣Cp,q
k,n

∣∣ ≤ q
q – p

.

• Now, we consider the case when pole α = 1.
Here the point of singularity x = 1 is one of the nodes [k]p,q

[n]p,q
. Consider the function f0

f0(x) =

⎧
⎨

⎩

1
x–1 , x ∈R \ {1},
a, x = 1.

(3.2)

Theorem 3.3 If f0 is given by (3.2), then the following holds:
(1) For all x ∈ (–1, 1],

lim
n→∞ Bn

p,q(f0; x) = f0(x)

and the convergence is uniform on any compact subset of (–1, 1).
(2) For all x ∈R \ (–1, 1],

lim
n→∞ Bn

p,q(f0; x) = ∞.

Proof (1) Since Bn
p,q(f0; 1) = f0(1), we need to prove only the uniform convergence of the

compact subset of (–1, 1). For any ρ ∈ (0, 1) and |z| ≤ ρ . From Corollary 3.2, we have

∣
∣∣
∣∣

n–1∑

k=0

Cp,q
k,nzk

∣
∣∣
∣∣
≤ Cp,q

1 – ρ
.

Apart from that,

∣
∣Cp,q

n,nzk∣∣ ≤ |a| +
n–1∑

k=0

1
1 – pn–k [k]p,q

[n]p,q

≤ |a| + n
∣
∣Cp,q

k,n
∣
∣ ≤ |a| +

nq
q – p

,

whence

∣∣Cp,q
n,nzn∣∣ ≤ |a|ρn + ρn nq

q – p
≤ Cp,q,ρ .

Therefore, we conclude that the operators Bn
p,q(f ; z) are uniformly bounded in any disk

{z : |z| ≤ ρ} where ρ ∈ (0, 1). From Lemma 2.1(b) and Vitali’s convergence theorem we
arrive at our result.
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(2) Given that x satisfies |x| > 1, by Able’s inequality, we have

∣∣
∣∣∣

n–1∑

k=0

Cp,q
k,nxk

∣∣
∣∣∣
≤ |x|n – 1

|x| – 1
(∣∣Cp,q

0,n
∣∣ + 2

∣∣Cp,q
n–1,n

∣∣) ≤ |x|n
|x| – 1

(
1 +

2p
p – q

)
= Cp,q,x|x|n.

Meanwhile,

∣∣Cp,q
n,nxn∣∣ ≥

( n–1∑

k=0

1
1 – pn–k [k]p,q

[n]p,q

)

|x|n – |a| · |x|n ≥ (
n – |a|)|x|n.

Thus, |Bn
p,q(f0; x)| ≥ n|x|n – (Cp,q,x + |a|)|x|n → ∞ as n → ∞.

At x = –1, we have

Bn
p,q(f0; –1) =

n–1∑

k=0

Cp,q
k,n(–1)k +

(

a +
n–1∑

k=0

1
1 – pn–k [k]p,q

[n]p,q

)

(–1)n,

and again applying Able’s inequality,

∣
∣∣
∣∣

n–1∑

k=0

Cp,q
k,n,(–1)k

∣
∣∣
∣∣
≤ |C0,n| + 2|Cn–1,n| ≤ 1 +

2p
p – q

.

On the other hand
∣
∣∣∣
∣

(

a +
n–1∑

k=0

1
1 – pn–k [k]p,q

[n]p,q

)

(–1)n

∣
∣∣∣
∣
≥ n – |a|,

which implies that

∣
∣Bn

p,q(f0; –1)
∣
∣ ≥ n – |a| –

(
1 +

2p
p – q

)
→ ∞, n → ∞. �

Remark For justification of the statement that the extra parameter p provides flexibility
for approximation, one can see Remark 1 of [23].

Moreover, since for q > p = 1 we recapture the q-Bernstein operators studied in
[30], it is clear that the interval of uniform convergence for Bn

p,q in Theorem 3.1, i.e.
(–pm+1qm+1, pm+1qm+1), is larger than the interval of uniform convergence (–qm+1, qm+1),
obtained by Theorem 2.1 in [30].
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