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Abstract
In this paper, we derive a new discrete Hilbert-type inequality involving partial sums.
Moreover, we show that the constant on the right-hand side of this inequality is the
best possible. As an application, we consider some particular settings.
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1 Introduction
The Hilbert inequality [5] asserts that
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holds for non-negative sequences am and bn, provided that (
∑∞
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1
p > 0 and

(
∑∞
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1
q > 0. The parameters p and q appearing in (1) are mutually conjugate, i.e.

1
p + 1

q = 1, where p > 1. In addition, the constant π
sin(π/p) is the best possible in the sense

that it can not be replaced with a smaller constant so that (1) still holds.
The Hilbert inequality is one of the most interesting inequalities in mathematical anal-

ysis. For a detailed review of the starting development of the Hilbert inequality the reader
is referred to monograph [5]. The most important recent results regarding Hilbert-type
inequalities are collected in monographs [4] and [7].

In 2006, Krnić and Pečarić [6], obtained the following generalization of classical Hilbert
inequality.
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q = 1, and let 2 < s ≤ 14. Suppose that α1 ∈ [– 1
q , 1
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where the constant B(1 – pα2, pα2 + s – 1) is the best possible.
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In the last few years, considerable attention is given to a class of Hilbert-type inequalities
where the functions and sequences are replaced by certain integral or discrete operators.
For example: in 2013, Azar [3] introduced a new Hilbert-type integral inequality including
functions F(x) =

∫ x
0 f (t) dt and g(y) =

∫ y
0 g(t) dt. For some related Hilbert-type inequalities

where the functions and sequences are replaced by certain integral or discrete operators,
the reader is referred to [1] and [2].

The main objective of this paper is to derive a discrete Hilbert-type inequality involving
partial sums, similar to a result of Azar [3]. Such inequality is derived by virtue of inequal-
ity (2) and some well-known classical inequalities. As an application, we consider some
particular settings.

2 Preliminaries and lemma
Recall that the Gamma function Γ (θ ) and the Beta function B(μ,ν) are defined, respec-
tively, by

Γ (θ ) =
∫ ∞

0
tθ–1e–t dt, θ > 0,

B(μ,ν) =
∫ ∞

0

tμ–1

(t + 1)μ+ν
dt, μ,ν > 0,

and they satisfy the following relation

B(μ,ν) =
Γ (μ)Γ (ν)
Γ (μ + ν)

.

By the definition of the Gamma function, the following equality holds:

1
(m + n)λ
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1

Γ (λ)
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0
tλ–1e–(m+n)t dt. (3)

To prove our main results we need the following lemma.

Lemma 2 Let am > 0, am ∈ �1, Am =
∑m

k=1 ak , then for t > 0, we have
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Proof Using Abel’s summation by parts formula and the inequality 1 – 1
et ≤ t, we have
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The lemma is proved. �
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3 Main results
Theorem 3 Let p > 1, 1

p + 1
q = 1, λ > 0, am, bn > 0, am, bn ∈ �1, define Am =
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where α1 ∈ [– 1
q , 0), α2 ∈ [– 1

p , 0) and pα2 + qα1 = –λ. In addition, the constant C =
pqα1α2B(–pα2, –qα1) is the best possible in (5).

Proof Using (3), the left-hand side of inequality (5) can be expressed in the following form:
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Now, by applying inequality (4) and equality (3) to the previous equality, we have
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Moreover, the last double series represents the left-hand side of the Hilbert-type inequality
(2) for s = 2 + λ, that is, we have the inequality
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so by (7) we get
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Now we shall prove that the constant factor is the best possible. Assuming that the con-
stant C is not the best possible, then there exists a positive constant K such that K < C
and (5) still remains valid if C is replaced by K . Further, consider the ãm = m–qα1–1– ε

p and
b̃n = n–pα2–1– ε

q , where ε > 0 is sufficiently small number. Then, we have
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and similarly
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Inserting the above sequences in (5), the right-hand side of (5) becomes
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Now, let us estimate the left-hand side of inequality (5). Namely, by inserting the above
defined sequences ãm and b̃n in the left-hand side of inequality (5), we get the inequality

∞∑

m=1

∞∑

n=1
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Now, letting ε → 0+, relation (10) yields a contradiction with the assumption K < C. So
the constant C, in inequality (5) is the best possible. �

Considering Theorem 3, equipped with parameters λ = 1, α1 = – 1
q2 , α2 = – 1

p2 , we obtain
the following result.

Corollary 4 Let p > 1, 1
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where the constant π
pq sin(π/p) is the best possible.

Remark 5 It should be noticed here that if sequences am, bn ∈ �1 such that
∑∞

m=1 ap
m < ∞

and
∑∞

n=1 bq
n < ∞, inequality (11) provides refinement of the Hilbert inequality. Indeed, by

Hardy’s inequality, the series
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m=1( Am
m )p and

∑∞
n=1( Bn

n )q are converge. So, inequality (11)
holds. The Hilbert inequality becomes after applying Hardy’s inequality on the right-hand
side of inequality (11).

Letting α1 = α2 = –λ
pq in Theorem 3, we can obtain the following Hilbert-type inequality.

Corollary 6 Let p > 1, 1
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where the constant λ2

pq B( λ
q , λ

p ) is the best possible.

4 Conclusion
In the present study, we have established a discrete Hilbert-type inequality involving par-
tial sums. Moreover, we have proved that the constant on the right-hand side of this in-
equality is the best possible. As an application, we considered some particular settings.
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