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Abstract
We consider the following inequality:

μ(L)
n–k
n ≤ Ck max

H∈Grn–k
μ(L∩ H),

which is a variant of the notable slicing inequality in convex geometry, where L is an
origin-symmetric star body inR

n and is μ-measurable, μ is a nonnegative measure
on R

n, Grn–k is the Grassmanian of an n – k-dimensional subspaces of Rn, and C is a
constant. By constructing the generalized k-intersection body with respect to μ, we
get some results on this inequality.
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1 Introduction
The notable slicing problem in convex geometry asks whether there exists a constant
C such that for any positive integer n ≥ 1 and any origin-symmetric convex body [1] L
in R

n

|L| n–1
n ≤ Ck max

ξ∈Sn–1

∣
∣L ∩ ξ⊥∣

∣, (1.1)

where ξ⊥ is the hyperplane in R
n, perpendicular to ξ passing through the origin, and

|L| stands for volume of proper dimension. There is a lot of literature focusing on this
problem. We refer the reader to [2–5] [6, Theorem 9.4.11] for the history and more
results. Iterating (1.1) one gets the lower slicing problem asking whether the inequal-
ity

|L| n–k
n ≤ Ck max

H∈Grn–k
|L ∩ H| (1.2)

holds with an absolute constant C, where 1 ≤ k < n and Grn–k is the Grassmanian of
(n – k)-dimensional subspaces of Rn; see [7, 8].

A more general problem considered in [9] is: Does there exist an absolute constant C
such that for every positive integer n and every integer 1 ≤ k < n, and for every origin-
symmetric convex body L and every measure μ with nonnegative even continuous density
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in R
n,

μ(L) ≤ Ck max
H∈Grn–k

μ(L ∩ H)|L| k
n , (1.3)

where |L| stands for volume of proper dimension?
This question is an extension to that of (1.2), general measures taking place of volumes,

a major open problem in convex; see [4, 10–12]. By this reason, (1.3) is also called slicing
inequality in convex geometry; see [9, 13].

In the literature [9] one proved (1.3) for unconditional convex bodies and for duals of
bodies with bounded volume ratio. And it also was proved that for every λ ∈ (0, 1) there ex-
ists a constant C = C(λ) such that (1.3) holds for every positive integer n, for every origin-
symmetric convex body L, the codimensions of whose sections in R

n k ≥ λn, and for every
measure μ with continuous density.

Inequality (1.3) gives a link between μ(L) and μ(L ∩ H), which denote different dimen-
sional measures. Observe (1.3) and we found that there are two kinds of measures with
respect to L, μ(L) and the Lebesgue measure |L|. Therefore, we consider a problem that
whether the Lebesgue measure |L| in (1.3) could be replaced by the general measure μ(L),
that is, whether the following inequality holds:

μ(L)
n–k

n ≤ Ck max
H∈Grn–k

μ(L ∩ H) (1.4)

for some constant C. Inequality (1.4) is a variant of (1.3) and but more concise than (1.3).
And inequality (1.4) is the purpose of this article. Next, we introduce the main tool em-
ployed in this article and the program of this article.

The k-intersection body, introduced by [7, 14], plays an important role in the solution
to the Busemann–Petty problem, which is equivalent to the slicing problem; see [6, 7,
9, 15–17]. In this article, we define the generalized k-intersection body with measure μ,
and denote by BPn

k,μ the class of generalized k-intersection bodies with measure μ, with
BPn

k being the class of k-intersection bodies. If μ is the Lebesgue measure on considered
set, then the generalized k-intersection body with measure μ becomes the k-intersection
body, andBPn

k,μ becomesBPn
k . Using the outer measure ratio distance from μ-measurable

set L to the class BPn
k,μ, denoted by o.m.r.(L,BPn

k,μ) (see (2.3)), we get inequality (1.4) for
some constant C. We also give a comparison of o.m.r.(L,BPn

k,μ) and o.v.r.(L,BPn
k )

o.m.r.
(

L,BPn
k,μ

) ≤ Co.v.r.
(

L,BPn
k
)

,

for some constant C, which depends only on μ. Then the results for o.v.r.(L,BPn
k ) [8, 9,

13] can transfer to that for o.m.r.(L,BPn
k,μ).

This article is arranged naturally. In Sect. 2, we define the class of generalized k-
intersection body with measure μ, BPn

k,μ, and the outer measure ratio distance from μ-
measurable set L to the class BPn

k,μ. The main results are exposed in Sect. 3. Section 4
contains the proof of the main results. Finally, in the last section, we give the conclusions
and some remarks.

2 Preliminaries
The k-intersection body plays an important role in the solution to the Busemann–Petty
problem, which is equivalent to the slicing problem. An analog to the k-intersection body
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plays an important role in the solution of our problem. In this section, we will construct
the class of generalized k-intersection body with measure μ, BPn

k,μ and define the outer
measure ratio distance from μ-measurable set L to the class BPn

k,μ.
Let g be a continuous nonnegative even function on R

n (g(x) = g(–x) for x ∈R
n; see [9]).

For any Lebesgue measurable set A in R
n, let

μ(A) =
∫

A
g(x) dx,

where dx is the Lebesgue measure. Then μ is a nonnegative measure on R
n, and function

g is called the density of measure μ [9]. At this time, A is called μ-measurable, and μ(A)
is the μ-measure of A.

A closed bounded set L in R
n is called a star body if every straight line passing through

the origin crosses the boundary of L at exactly two points different from the origin and
the origin is an interior point of L, where the Minkowski functional of L defined by

‖x‖L = min{a ≥ 0 : x ∈ aL}

is a continuous function on R
n; see [9]. The radial function of a star body L is defined by

ρL(x) = ‖x‖–1
L for x ∈R

n and x �= 0;

see [9]. If x ∈ S
n–1 then ρL(x) is the radius of L in the direction x.

The generalized k-intersection body was introduced in [9]. An origin-symmetric star
body L in R

n is a generalized k-intersection body, and write L ∈ BPn
k , if there exists a finite

Borel nonnegative measure μ1 on Grn–k so that for every ϕ ∈ C(Sn–1) (class of continuous
functions on Sn–1)

∫

Sn–1
‖θ‖–k

L ϕ(θ ) dθ =
∫

Grn–k

Rn–kϕ(H) dμ1(H),

where Rn–k : C(Sn–1) → C(Grn–k) is the (n – k)-dimensional spherical Radon transform,
defined by

Rn–kϕ(H) =
∫

Sn–1∩H
ϕ(x) dx

for every function ϕ ∈ C(Sn–1) and for every H ∈ Grn–k .
Putting the measure μ into the generalized k-intersection body, we define the gener-

alized k-intersection body with respect to measure μ. An origin-symmetric star body K
in R

n is called a generalized k-intersection body with respect to measure μ, denoted by
K ∈ BPn

k,μ (or K ∈ BPn
k,g ), if there exists a nonnegative finite Borel measure μ1 on Grn–k

such that for every ϕ in C(Sn–1)

∫

Sn–1

(

n
∫ ‖θ‖–1

K

0
rn–1g(rθ ) dr

) k
n
ϕ(θ ) dθ =

∫

Grn–k

Rn–kϕ(H) dμ1(H), (2.1)

where g is the density of measure μ.
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Note that when g ≡ 1 (namely μ is the Lebesgue measure), BPn
k,g becomes BPn

k .
For a convex body L in R

n, the outer volume ratio distance from L to BPn
k is defined by

o.v.r.
(

L,BPn
k
)

= inf

{( |K |
|L|

) 1
n

: L ⊂ K , K ∈ BPn
k

}

; (2.2)

see [9].
Similarly, for a Lebesgue measurable convex body L in R

n, we define the outer measure
ratio distance with respect to measure μ from L to the class BPn

k,μ by

o.m.r.
(

L,BPn
k,μ

)

= inf

{(
μ(K)
μ(L)

) 1
n

: L ⊂ K , K ∈ BPn
k,μ

}

. (2.3)

Now we turn to the main results in the next section.

3 Main results and discussion
In this section, the goal is to establish the inequalities, namely that similar to (1.4), which
reveals the relationship of the general measures of origin-symmetric star bodies and their
n–k (1 ≤ k ≤ n–1) dimensional intersection bodies, and is a variant of the classical slicing
problems (1.3) in convex geometry.

Theorem 3.1 Let L be an origin-symmetric star body inR
n and μ-measurable with density

g , and m = infx∈K {g(x)} > 0. Then, for 1 ≤ k ≤ n – 1,

(

μ(L)
) n–k

n ≤ (

o.m.r.
(

L,BPn
k,μ

))k
(

n
m

) k
n |Sn–1| n–k

n

|Sn–k–1| max
H∈Grn–k

μ(L ∩ H). (3.1)

Theorem 3.2 Let L be an origin-symmetric star body inR
n and μ-measurable with density

g , R = 1
2 diam(L), and

∫ ‖θ‖–1
L

0
rn–1g(rθ ) dr ≥ 1

n
(3.2)

for all θ ∈ Sn–1. Then, for 1 ≤ k ≤ n – 1,

(

μ(L)
) n–k

n ≤ (

o.m.r.
(

L,BPn
k,μ

))kRkn
k
n
|Sn–1| n–k

n

|Sn–k–1| max
H∈Grn–k

μ(L ∩ H). (3.3)

By Theorem 3.2 and the relationship (Proposition 4.7) between o.m.r.(L,BPn
k,μ) and

o.v.r.(L,BPn
k ), we have the following.

Theorem 3.3 Under the assumptions of Theorem 3.2,

(

μ(L)
) n–k

n ≤ (

o.v.r.
(

L,BPn
k
))k

(
M
m

) 2k
n

Rkn
k
n
|Sn–1| n–k

n

|Sn–k–1| max
H∈Grn–k

μ(L ∩ H), (3.4)

where m = infx∈Rn g(x) > 0 and M = supx∈Rn g(x) < +∞.
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Theorems 3.1 and 3.2 both contain the coefficient: the outer measure ratio distance with
respect to measure μ from L to the class BPn

k,μ. Moreover, the coefficient in Theorem 3.1
is also relevant to the measure μ, the coefficient in Theorem 3.2 is also relevant to the
diameter of L.

Under the assumptions of Theorem 3.2, the outer measure ratio distance with respect
to measure μ from L to the class BPn

k,μ, o.m.r.(L,BPn
k,μ) can be replaced by the outer

volume ratio distance from L to BPn
k , o.v.r.(L,BPn

k ), which essentially is o.m.r.(L,BPn
k,μ)

specialized by letting μ be the Lebesgue measure. This result is stated as Theorem 3.3.
The coefficient in Theorem 3.3 is also relevant to the measure μ.

4 Proof of the main results
First, using the polar formula for volume of a star body L we get a useful formula

|L| =
1
n

∫

Sn–1
‖θ‖–n

L dθ . (4.1)

To prove Theorem 3.1, we first give the following result.

Lemma 4.1 Let K be in BPn
k,g and μ-measurable with density g , and m = infx∈K g(x) > 0.

Assume that f is a continuous nonnegative even function on K , and ε > 0. If for every H ∈
Grn–k ,

∫

K∩H
f (x) dx ≤ ε,

then, for 1 ≤ k ≤ n – 1,

∫

K
f (x) dx ≤

(
n
m

) k
n |Sn–1| n–k

n

|Sn–k–1|
(

μ(K)
) k

n ε. (4.2)

Proof Writing the integrals in spherical coordinates, we get

∫

K
f (x) dx =

∫

Sn–1

(∫ ‖θ‖–1
K

0
rn–1f (rθ ) dr

)

dθ

and

∫

K∩H
f (x) dx =

∫

Sn–1∩H

(∫ ‖θ‖–1
K

0
rn–k–1f (rθ ) dr

)

dθ

= Rn–k

(∫ ‖·‖–1
K

0
rn–k–1f (r·) dr

)

(H).

So the condition of the lemma can be written as

Rn–k

(∫ ‖·‖–1
K

0
rn–k–1f (r·) dr

)

(H) ≤ ε, for all H ∈ Grn–k .
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Integrate both sides with respect to the measure μ1 that corresponds to K as a generalized
k-intersection body with respect to measure μ by (2.1). We get

∫

Grn–k

Rn–k

(∫ ‖·‖–1
K

0
rn–k–1f (r·) dr

)

(H) dμ1(H) ≤ εμ1(Grn–k). (4.3)

Estimate the integral in the left-hand side of (4.3) using K ∈ BPn
k,g and m > 0, then we

have

∫

Grn–k

Rn–k

(∫ ‖·‖–1
K

0
rn–k–1f (r·) dr

)

(H) dμ1(H)

=
∫

Sn–1

(

n
∫ ‖θ‖–1

K

0
rn–1g(rθ ) dr

) k
n
∫ ‖θ‖–1

K

0
rn–k–1f (rθ ) dr dθ

≥ m
k
n

∫

Sn–1
‖θ‖–k

K

∫ ‖θ‖–1
K

0
rn–k–1f (rθ ) dr dθ . (4.4)

Noting that ‖θ‖–1
K ≥ r in the right-hand side of (4.4), we get

∫

Sn–1
‖θ‖–k

K

∫ ‖θ‖–1
K

0
rn–k–1f (rθ ) dr dθ ≥

∫

Sn–1

∫ ‖θ‖–1
K

0
rn–1f (rθ ) dr dθ =

∫

K
f (x) dx. (4.5)

Now we estimate μ1(Grn–k) in the right-hand side of (4.3).
By the assumptions of Lemma 4.1 and the integral transform of spherical coordinates,

we get

μ(K) =
∫

K
g(x) dx =

∫

Sn–1

∫ ‖θ‖–1
K

0
rn–1g(rθ ) dr dθ . (4.6)

Using 1 = Rn–k1(H)/|Sn–k–1| for every H ∈ Grn–k , definition (2.1) and Hölder’s inequality,
we have

μ1(Grn–k) =
1

|Sn–k–1|
∫

Grn–k

Rn–k1(H) dμ1(H)

=
1

|Sn–k–1|
∫

Sn–1

(

n
∫ ‖θ‖–1

K

0
rn–1g(rθ ) dr

) k
n

dθ

≤ |Sn–1| n–k
n

|Sn–k–1|
(

n
∫

Sn–1

∫ ‖θ‖–1
K

0
rn–1g(rθ ) dr dθ

) k
n

. (4.7)

Putting (4.6) into the right-hand side of (4.7), we have

μ1(Grn–k) ≤ |Sn–1| n–k
n

|Sn–k–1| n
k
n
(

μ(K)
) k

n . (4.8)

Combination of (4.3),(4.4),(4.5) and (4.8) gives

∫

K
f (x) dx ≤

(
n
m

) k
n |Sn–1| n–k

n

|Sn–k–1|
(

μ(K)
) k

n ε,

which completes the proof Lemma 4.1. �
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Next let us prove Theorem 3.1.

Proof of Theorem 3.1 Set constant C > o.m.r.(L,BPn
k,μ). Then there exists a star body K ∈

BPn
k,μ such that L ⊂ K and (μ(K)) 1

n ≤ C(μ(L)) 1
n

Let f = gχL, where χL is the indicator function of L, then f is nonnegative on K .
Put ε = maxH∈Grn–k

∫

K∩H f (x) dx = maxH∈Grn–k

∫

L∩H g(x) dx = maxH∈Grn–k μ(L ∩ H). Apply
Lemma 4.1 to f and K (f may be not continuous, but we do an easy approximation) and
we have

μ(L) =
∫

L
g(x) dx =

∫

K
f (x) dx ≤

(
n
m

) k
n |Sn–1| n–k

n

|Sn–k–1|
(

μ(K)
) k

n max
H∈Grn–k

μ(L ∩ H)

≤ Ck
(

n
m

) k
n |Sn–1| n–k

n

|Sn–k–1|
(

μ(L)
) k

n max
H∈Grn–k

μ(L ∩ H). (4.9)

Let C → o.m.r.(L,BPn
k,μ) in (4.9). Then

μ(L) ≤ (

o.m.r.
(

L,BPn
k,μ

))k
(

n
m

) k
n |Sn–1| n–k

n

|Sn–k–1|
(

μ(L)
) k

n max
H∈Grn–k

μ(L ∩ H),

i.e.,

(

μ(L)
) n–k

n ≤ (

o.v.r.
(

L,BPn
k,μ

))k
(

n
m

) k
n |Sn–1| n–k

n

|Sn–k–1| max
H∈Grn–k

μ(L ∩ H),

which completes the proof of Theorem 3.1. �

To prove Theorem 3.2, we need to apply the following lemma which comes from the
proof of Lemma 4.1.

Lemma 4.2 Assume that K is in BPn
k,g and μ-measurable with density g , m = infx∈K g(x) >

0. Let f be continuous nonnegative even function on K , 1 ≤ k ≤ n – 1 and ε > 0. If

∫

K∩H
f (x) dx ≤ ε for all H ∈ Grn–k ,

then

∫

Sn–1

(

n
∫ ‖θ‖–1

K

0
rn–1g(rθ ) dr

) k
n
∫ ‖θ‖–1

K

0
rn–k–1f (rθ ) dr dθ

≤ n
k
n
|Sn–1| n–k

n

|Sn–k–1|
(

μ(K)
) k

n ε. (4.10)

Now we use Lemma 4.2 to prove Theorem 3.2.

Proof of Theorem 3.2 Set constant C > o.m.r.(L,BPn
k,μ). Then there exists a star body K ∈

BPn
k,μ such that L ⊂ K and

(

μ(K)
) 1

n ≤ C
(

μ(L)
) 1

n . (4.11)
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Put f = gχL, where χL is the indicator function of L, then f is nonnegative on K .
Let

ε = max
H∈Grn–k

∫

K∩H
f (x) dx = max

H∈Grn–k

∫

L∩H
g(x) dx = max

H∈Grn–k
μ(L ∩ H). (4.12)

Apply Lemma 4.2 to f and K (f may be not continuous, but we can do an easy approxima-
tion) and we have

∫

Sn–1

(

n
∫ ‖θ‖–1

K

0
rn–1g(rθ ) dr

) k
n
∫ ‖θ‖–1

K

0
rn–k–1f (rθ ) dr dθ

≤ n
k
n
|Sn–1| n–k

n

|Sn–k–1|
(

μ(K)
) k

n ε. (4.13)

By L ⊂ K , we get

‖θ‖–1
L ≤ ‖θ‖–1

K (4.14)

for every θ ∈ Sn–1. Then (3.2) and (4.14) implies

∫

Sn–1

(

n
∫ ‖θ‖–1

K

0
rn–1g(rθ ) dr

) k
n
∫ ‖θ‖–1

K

0
rn–k–1f (rθ ) dr dθ

≥
∫

Sn–1

(

n
∫ ‖θ‖–1

L

0
rn–1g(rθ ) dr

) k
n
∫ ‖θ‖–1

L

0
rn–k–1g(rθ ) dr dθ

≥ 1
nRk

∫

Sn–1

(

n
∫ ‖θ‖–1

L

0
rn–1g(rθ ) dr

)1+ k
n

dθ

≥ 1
Rk μ(L). (4.15)

Combination of (4.11), (4.12), (4.13) and (4.15) gives

1
Rk μ(L) ≤ Ckn

k
n
|Sn–1| n–k

n

|Sn–k–1|
(

μ(L)
) k

n max
H∈Grn–k

μ(L ∩ H). (4.16)

Let C → o.m.r.(L,BPn
k,μ) in (4.16). Then

(

μ(L)
) n–k

n ≤ (

o.m.r.
(

L,BPn
k,μ

))kRkn
k
n
|Sn–1| n–k

n

|Sn–k–1| max
H∈Grn–k

μ(L ∩ H),

which completes the proof of Theorem 3.2. �

In order to prove Theorem 3.3, we need using Proposition 4.3∼4.7 below.
First, in R

n the dialation of a generalized k-intersection body with respect to measure μ

is also a generalized k-intersection body with respect to measure μ.

Proposition 4.3 If K ∈ BPn
k,g then TK ∈ BPn

k,g(T–1·), where T is a dialation in R
n.
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Proof Suppose that Tx = ax (a > 0) for all x ∈ R
n, where a is a constant. By the definition

of K ∈ BPn
k,g (see (2.1)), there exists a nonnegative finite Borel measure μ1 on Grn–k such

that, for every ϕ in C(Sn–1),

∫

Sn–1

(

n
∫ ‖θ‖–1

K

0
rn–1g(rθ ) dr

) k
n
ϕ(θ ) dθ =

∫

Grn–k

Rn–kϕ(H) dμ1(H). (4.17)

Then from

‖θ‖–1
aK = a‖θ‖–1

K for every θ ∈ Sn–1,

and (4.17) it follows that

ak
∫

Sn–1

(

n
∫ ‖θ‖–1

K

0
rn–1g(rθ ) dr

) k
n
ϕ(θ ) dθ

=
∫

Sn–1

(

n
∫ ‖θ‖–1

aK

0
rn–1g

(
r
a
θ

)

dr
) k

n
ϕ(θ ) dθ

=
∫

Grn–k

Rn–kϕ(H) dμ2(H),

where μ2 = akμ1 is a nonnegative finite Borel measure on Grn–k . This implies that aK ∈
BPn

k,g(a–1·), i.e. TK ∈ BPn
k,g(T–1·). �

For given generalized k-intersection body, we can construct a generalized k-intersection
body with respect to some measure μ.

Proposition 4.4 Suppose that K ∈ BPn
k and

‖θ‖–1
K ≤

(

n
∫ +∞

0
rn–1g(rθ ) dr

) 1
n

for every θ ∈ Sn–1.

Let the star body D satisfy

n
∫ ‖θ‖–1

D

0
rn–1g(rθ ) dr = ‖θ‖–n

K for every θ ∈ Sn–1. (4.18)

Then D ∈ BPn
k,g .

Proof This result follows from the definitions of BPn
k and BPn

k,g . �

Proposition 4.5 Under the assumptions of Proposition 4.4, let m = infx∈Rn g(x) > 0 and
M = supx∈Rn g(x) < +∞. Then

1
M1/n K ⊂ D ⊂ 1

m1/n K .

Proof By (4.18) for every θ ∈ Sn–1

m‖θ‖–n
D ≤ ‖θ‖–n

K ≤ M‖θ‖–n
D ,
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which implies

1
M1/n ‖θ‖–1

K ≤ ‖θ‖–1
D ≤ 1

m1/n ‖θ‖–1
K ,

i.e.,

1
M1/n ρK (θ ) ≤ ρD(θ ) ≤ 1

m1/n ρK (θ ),

where ρK is the radial function of K . Therefore,

1
M1/n K ⊂ D ⊂ 1

m1/n K . �

Proposition 4.6 Suppose that K ∈ BPn
k , m = infx∈Rn g(x) > 0 and M = supx∈Rn g(x) < +∞.

Let the star body D satisfy

n
∫ ‖θ‖–1

D

0
rn–1g

(

M
1
n rθ

)

dr = ‖θ‖–n
K for every θ ∈ Sn–1. (4.19)

Then K ⊂ M 1
n D ∈ BPn

k,g and

μ(M 1
n D)

μ(K)
≤ M

m
. (4.20)

Proof Similarly to the proof of Proposition 4.5 and Proposition 4.4, we get

K ⊂ M
1
n D ∈ BPn

k,g .

By the polar formula for integrals and (4.19),

μ
(

M
1
n D

)

=
∫

M
1
n D

g(x) dx

=
∫

Sn–1

∫ ‖θ‖–1
M1/nD

0
rn–1g(rθ ) dr dθ

= M
∫

Sn–1

∫ ‖θ‖–1
D

0
rn–1g

(

M
1
n rθ

)

dr dθ

=
M
n

∫

Sn–1
‖θ‖–n

K dθ

= M|K |,

which implies

μ(M 1
n D)

μ(K)
=

M|K |
∫

K g(x) dx
≤ M

m
. �

Next using Proposition 4.6, for given measure μ with density function g , we have a result
on o.m.r.(L,BPn

k,μ) and o.v.r.(L,BPn
k ).
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Proposition 4.7 Let L be an origin-symmetric star body in R
n and μ-measurable with

density g ,

m = inf
x∈Rn

g(x) > 0, M = sup
x∈Rn

g(x) < +∞ and 1 ≤ k ≤ n – 1.

Then

o.m.r.
(

L,BPn
k,μ

) ≤
(

M
m

) 2
n

o.v.r.
(

L,BPn
k
)

. (4.21)

Proof By Proposition 4.6 and the definition of o.m.r.(L,BPn
k,μ) (see (2.1)) and (2.2)), we

can get Proposition 4.7. �

Proof of Theorem 3.3 Combining Theorem 3.2 and Proposition 4.7, we can get Theo-
rem 3.3. �

5 Conclusions
This article discusses the following inequality:

μ(L)
n–k

n ≤ Ck max
H∈Grn–k

μ(L ∩ H), (5.1)

which is a variant of the notable slicing inequality in convex geometry but more concise,
for some constant C, for every positive integer n and every integer 1 ≤ k < n, and for every
origin-symmetric convex body L and every measure μ with nonnegative even continu-
ous density in R

n. The k-intersection body, introduced by [7], plays an important role in
the solution to the Busemann–Petty problem, which is equivalent to the slicing problem.
By constructing the tool of generalized k-intersection body with measure μ and relevant
concepts, we get (5.1) for some constant C.

Next, we give some remarks as the end of this article. Equation (4.21) gives a relationship
between o.m.r.(L,BPn

k,μ) and o.v.r.(L,BPn
k ). Combining this result with Theorem 3.1 or

Theorem 3.2, we get estimates for μ(L) and maxH∈Grn–k μ(L∩H), in which o.m.r.(L,BPn
k,μ)

is replaced by o.v.r.(L,BPn
k ). Theorem 3.3 can also follows from the combination of (4.21)

and Theorem 3.2.
The combination of (4.21) and Theorem 3.1 yields the following theorem.

Theorem 5.1 Let L be an origin-symmetric star body inR
n and μ-measurable with density

g ,

m = inf
x∈Rn

g(x) > 0, M = sup
x∈Rn

g(x) < +∞ and 1 ≤ k ≤ n – 1.

Then

(

μ(L)
) n–k

n ≤ (

o.v.r.
(

L,BPn
k
))k M 2k

n

m 3k
n

n
k
n
|Sn–1| n–k

n

|Sn–k–1| max
H∈Grn–k

μ(L ∩ H). (5.2)

It is worth noting that Theorem 5.1 can also be derived from Corollary 1 in [9].
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Another point that needs noticing is that all the estimates for o.v.r.(L,BPn
k ) (for exam-

ple, [8, 9, 13]) can lead to different results on μ(L) and maxH∈Grn–k μ(L ∩ H), just using
Theorem 3.3 or Theorem 5.1.

For example, there is an estimate [8] for o.v.r.(L,BPn
k ) as follows.

Theorem 5.2 (see [8]) Let K be a symmetric convex body in R
n and 1 ≤ k ≤ n – 1. Then

o.v.r.
(

K ,BPn
k
) ≤ c

√

n log en
k

k
, (5.3)

where c > 0 is an absolute constant.

Then this result united with Theorem 3.2 can yields the following.

Corollary 5.3 Under the assumptions of Theorem 3.2,

(

μ(L)
) n–k

n ≤ ck
(n log en

k
k

) k
2
(

M
m

) 2k
n

Rkn
k
n
|Sn–1| n–k

n

|Sn–k–1| max
H∈Grn–k

μ(L ∩ H), (5.4)

where m = infx∈Rn g(x) > 0, M = supx∈Rn g(x) < +∞, and c > 0 is an absolute constant.

The shortcoming of this paper is that the direct estimate of the outer measure ratio dis-
tance with respect to measure μ from L to the class BPn

k,μ, o.m.r.(L,BPn
k,μ) is not offered,

and Theorems 3.1–3.3 contain the coefficient relevant to the measure μ or the diameter
of the star body L.

We want to obtain the best result as follows:

μ(L)
n–k

n ≤ Ck max
H∈Grn–k

μ(L ∩ H),

where C is an absolute constant, irrelevant to μ and L. But we have not realized it at
present.
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