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1 Introduction and results
Let £ = —A + V be the Schridinger operator, where the nonnegative potential V' belongs
to the reverse Holder class RH; with s > n/2, n > 3. Many papers related to Schrodinger
operator have appeared (see [1-5]). In recent years, some researchers have studied the
boundedness of the commutators generated by the operators associated with £ and the
BMO type space (see [6-9]). In this paper, we investigated the boundedness of the com-
mutator [b, Tg], where Ty = V*VL™? and the function b € BMOy(p). We note that the
space BMOy(p) is larger than the space BMO(R").

For s > 1, a nonnegative locally L*-integrable function V is said to belong to RH; if there

exists a constant C > 0 such that the reverse Holder inequality

1 1/s C
— | V(y)*d — | V(y)d
(|B|/B ) y) S|B|/B )y

holds for every ball B C R”. It is obvious that RH,, € RH, for s; > s5.
As in [2], for a given potential V € RH, with s > n/2, we will use the auxiliary function
o(x) defined as

1
p(x):sup{r>0:—2/ V(y)dyfl}, xeR™
r- B(x,r)

It is well known that 0 < p(x) < oo for any x € R".
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Let £ = —A + V be the Schrodinger operator on R”, where V € RH; with s > n/2 and
n > 3. We know L generates a (Cp) semigroup {7 };50. The maximal function with re-
spect to the semigroup {e**};.¢ is defined by M*f (x) = SUP,sg le”t“f (x)|. The Hardy space
associated with L is defined as follows (see [3, 4]).

Definition 1 We say that f is an element of H - (R") if the maximal function M*f belongs
to L}(R"). The quasi-norm of f is defined by

|lf||H1L(R") = ”Mﬁf”Ll(]R”)'

Definition 2 Let 1 < g < 00. A measurable function a is called an (1, g) ,-atom related to
the ball B(xy, ) if r < p(xp) and the following conditions hold:

(1) suppa C B(xo,7);

() llallza@n < |B(xo,r)|M17Y;

(3) fB(XO,r) a(x)dx =0if r < p(xp)/4.

The space Hé(R”) admits the following atomic decomposition (see [3, 4]).

Proposition 1 Let f € L'(R"). Then f € H,(R") if and only if f can be written as f =
Z/’ Ajaj, where a; are (1,q),- atoms, Zj |Aj| < 00, and the sum converges in the Hi(]R”)
quasi-norm. Moreover

s, eomy ~ inf{Z 41 }

]

where the infimum is taken over all atomic decompositions of f into (1,q),- atoms.

Following [10], the space BMOy(p) with 6 > 0is defined as the set of all locally integrable
functions b such that

;/ |b(y)-b3|dy<c(1+L)0
|B(x1r)| B(x,r) - ,o(x)

for all x € R” and r > 0, where bp = \%I fB b(y)dy. A norm for b € BMOy(p), denoted by
[b]p, is given by the infimum of the constants in the inequalities above. Clearly, BMO C
BMOy(p).

We consider the operator

Tp=VeVLP, <p<l,B-a=

1
5

N

The boundedness of operator T, and its commutator have been researched under the
condition V € RH, for n/2 < s < n. In [2], Shen showed that T}/, is bounded on L?(R")
for 1 < p < po, pio = % - % For b € BMO(R"), Guo, Li and Peng [11] investigated the L-
boundedness of commutator [b, T1/;] for 1 < p < po; Li and Peng [12] studied the bound-
edness of [b, T/] from HE(R”) into weak L}(R"). When b € BMOy (), Bongioanni, Har-
boure and Salinas [10] obtained the Z”-boundedness of [b, T12] and Liu, Sheng and Wang
[13] proved that [b, T1/;] is bounded from HE(R”) to weak L' (R"). More boundedness of
commutator [b, T1,;] can be found in [14] and [15].
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For1/2< B <1, 8 —a =1/2,n/2 <s< n, Sugano [5] established the estimate for T; (the
adjoint operator of Tj), and proved that there exists a constant C such that

| T5f ()| < CM(f 1P ) () P

for all f € C°(R"), where 1% = “T” - %, and 1% + pi, = 1. Then, by the boundedness of

maximal function, we get

s

Theorem 1 Suppose V € RH; withn/2<s<n.Let1/2< B <1, p—la = ol % Then
| Taf || 1o ny = CF o

for p,, < p < 00, and by duality we get
I Taf oy < CIf lr@n)

forl<p<py.

Inspired by the above results, in the present work, we are interested in the boundedness
of [b, Tg]. Our main results are as follows.

Theorem 2 Suppose V € RH; with n/2 <s<n.Let 1/2< B <1, b € BMOy(p). Then,
” [b’ T;](f) ”U’(R") < Clifllzr @)
for pl, < p <00, and
a+l

f0r1<p<pa,wherel%= = -

N

Theorem 3 Suppose V € RH; with n/2 <s<n.Let 1/2< B <1, b € BMOy(p). Then,

In this paper, we shall use the symbol A < B to indicate that there exists a universal
positive constant ¢, independent of all important parameters, such that A < c¢B. A ~ B
means that A < Band B S A.

2 Some preliminaries
We recall some important properties concerning the auxiliary function p(x) which have
been proved by Shen [2]. Throughout this section we always assume V' € RH, with n/2 <

s<n.

Proposition 2 There exist constants C and ko > 1 such that

lx =yl
p(x)

ko
%=yl ) o

—ko
) <o) < Cp(x)(l .
p(x)

Cl,o(x)<1 +

forall x,y e R".
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Assume that Q = B(xy, p(xo)), for any x € Q, then Proposition 2 tells us that p(x) ~ p(y),
if |x — y| < Cp(x). It is easy to get the following result from Proposition 2.

Lemma 1 Let k € N and x € 2\ B(xo, r) \ 28B(x0, r). Then we have

1 < 1
25\ Y 2kr \N/(ko+1)
1+ p(x)) 1+ p(xo)) ot

Lemma 2 There exists a constant ly > 0 such that

1 ro\b
2/ V(y)dy§<1+—) .
r B(x,r) p(x)

The following finite overlapping property was given by Dziubanski and Zienkiewicz
in [3].

Proposition 3 There exists a sequence of points {x;}72, in R", so that the family of critical
balls Qx = B(xk, p(xk)), kK > 1, satisfies

0 Ur Qe=R"

(ii) There exists N = N(p) such that for every k € N, card{j : 4Q; N 4Qx} < N.

For a >0, g € L (R") and x € R", we introduce the following maximal functions:

1
Muug@)= sup / 10| d,

x€BeBpu

and

1
M gx)= sup — f g - gs| dy,
|B| Js

xeBeBp o

where B, , ={B(z,r) :z€ R" and r < ap(y)}.
The following Fefferman—Stein type inequality can be found in [10].

Proposition 4 For 1 < p < 00, then there exist § and y such that if {Qx}x is a sequence of
balls as in Proposition 3 then

1 b
M Y </ M; g0\ d ( / )
/Rn\ 08| dx < Rn’ 58] x+2k:|Qk| [Qxl 2Qk|g|

orallge LL (R").
g

loc

We have the following result for the function b € BMOy(p).

Lemma 3 ([10]) Let 1 <s< 00, b€ BMOy(p), and B = B(x,r). Then

1 1/s 2k}" 0
— b(y) —bg|’ d < [blok[1+ ==
(|2kB| 2kB| ) B| y) < [bl < + ,o(x))

forall k e N, with r >0, where 6" = (ko + 1)0 and k is the constant appearing in Proposi-
tion 2.
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We give an estimate of fundamental solutions; this result can be found in [2]. We denote
by I"(x,y, 1) the fundamental solution of —A + (V' (x) + i1), and then I'(x,y,A) = I"(y, %, —A).

Lemma 4 Assume that —Au + (V(x) + iA)u = 0 in B(xo, 2R) for some xy € R". Then, there
exists a ki such that

1/t R ko
(/ |Vu|tdx> 513”’”(1 + ) sup |ul,
Blxo,R) P(®0) /) Bxo2R)

where 1/t =1/s —1/n.

Suppose Wy = VL. Let W be the adjoint operator of Wg, K and K* be the kernels of
Wp and W respectively, then K (%,2z) = K*(z,x), and we have the following estimates.

Lemma 5 Suppose 1/2< 8 <1.

(i) Forevery N there exists a constant Cx such that

|K*(x,z)|§ Cn 1 (/ &d§+ 1 >
B

1+ %)N % — 228 \ J gz, jx—zi/a) 1€ — 2|71 | — 2]

Moreover, the inequality above also holds with p(x) replaced by p(z).

(i) Forevery N and 0 <8 <min{1,2 — n/qqo} there exists a constant Cy such that

Cn

x=zl\N
a+7m)

x—y° Vv 1
x | njj|2/3+8 (/ (%‘;)4—1 dg + )
lx — 2] Blza—zl/4) 1§ — 2l |x — z|

whenever |x — y| < 1—16 |x — z|. Moreover, the inequality above also holds with p(x)

|K*(x,2) - K*(5,2)| <

replaced by p(z).

Proof The proof of (i) can be found in [5], page 449. Let us prove (ii). By (6) of [5] we know

o [o(—iT) PV (x,2,7)dT, fori<B<1,
VI (x,z,0), for g =1.

K(x,z) =

Then

|K*(%,2) = K*(3,2)] §/ [t |V.I(z,5,7) - V. I (2,9, 7)| dt

—00

for % < B <1and
|K*(x,2) = K*(9,2)| < |V.I"(2,%,0) = V.I'(z,9,0)|

for g =1.
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Fixx,ze R” and let R = |x —2|/8, 1/t =1/s—1/n,8 =2 — n/s > 0. For any |x — y| < R/2, it
follows from the Morrey embedding theorem (see [16]) and Lemma 4 that

VoI (z%,7) = VoI (2,9, 7)|
1/t
S Ix—yll””(f |V,,Vz1"(z,u,r)|tdu>
B(x,R)

k
R 0
< Jx — y|IERMIO2 (1 + —> sup |V.I(zu,7)|.
(x) ueB(x,2R)

It follows from [11, p. 428] that

sup |V.I(zu,7)|
ueB(x,2R)

< C, 1
T (L4 T2z —ul) (1 + %)’q |z —u|"2

V() 1 )
d. .
* (/B@,Z_M) PR R

Then, by the fact that 6R < |z — u| < 10R, we get

|Vl (z,%,7) = VoI (2,9, 7)|

< lx —yI° Cn
Nl =z (14 T2 x — 2 )N(1 +

N

x

o Bn st
X
Blzjx—z/a) 12— &1" T4 |x z|

Thus, for 8 =1,

’I(*(X,Z) —I<*(y,Z)| ,S ’VZF(Z,JC,O) - VZF(Z’y’0)|

ik C 1% 1
< | }’|28 lN‘ (/ (E)ld.§+ )
oo — z["7240 (1 4 B2 )N Bz jx—zl/a) 12— &I lx — 2|

Note that
[ S
coo (L#[TV2 | —2|)k ™
Then, for < B <1, we have

* * |x—y|(S
|I( (x,Z) -K ()/,Z)| /S m

XC_N</ Ve e, 1 )
1+ \x( Z)l) B(z,|x—z|/4) |& —Z|”’1 Xz

By Lemma 2, we know that the inequality above also holds with p(x) replaced by p(z). O
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3 Proof of main results
Before proving Theorem 2, we need to give some necessary lemmas.

Lemma 6 Let V € RH; with n/2 <s < n, [% =l %, and b € BMOy(p). Then, for any

S

P, <t <00, we have
1
— | \[6, T2)f| < [B]p inf M,
i LIp Tl < 0 g0
Sorallf € L{ (R") and every ball Q = B(xo, p(xo)).

Proof Let f € Lj (R") and Q = B(x0, p(%0)). We consider

[, T3]f = (b= bQ)T3f - T5(f(b—bo)). (1)

By Hoélder’s inequality with ¢ > p/, and Lemma 3,

1 1 , 1/¢ 1 ; 1/t
- _ wel < [ 2 _ t - *
|Q|/Q|(b bQ)Tﬂf'N(|Q|/Q'b bQ') <|Q|/Q|Tﬂf|)
1 tl/t
<l — [17") .
”“9<|Q|fQ|Tﬂf|>

Write f = fi + fo with fi = f x2q- By Theorem 1, we know that T} is bounded on L*(IR")
with ¢ > p,, and then

1 i} . 1/t 1 , 1/t .
(g Limal) <( [ ) <o

For x € Q, using (i) in Lemma 5, we get

S hx) + L),

T3 )| = ‘ /( o VK @z

where

L) < / [f(2)] V(2)®
~ Joor (1+ EZW |x — 2|72+
Qe (L+ SN v —2]

and

[f (2)] V(z) / V(&)
I < ———dtd
405 /(ZQ)C 1+ %)N lx = 21"28 [y x—zyiay 1§ —2"71 5 dz

To deal with I5(x), note that p(x) ~ p(xo) and |x — z| ~ |xg — z| for x € Q. We split (2Q)°

into annuli to obtain

29 (2 (o) .
b <Y s | SOV T @) e

k>2
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Observe that 1- +% =1, 1 =1_1'%5p.,and B—a = 1/2. Then by Holder’s inequality
Puo ql s n
and the boundedness of fractlonal integral 7; : L* — L7 with qil = % - %, we get

1
(2kp(x0))" Jakq

, 1/pg
L@ Y27 (2 plxo))” ( If(@)|™ dZ) ’

k>2

1 als 1
Tl /. A\ Sd D —— I « qld
) ((ka(xo))" fsz Vi) Z) ((ka(xo))n f2 k+1Q| 1(V Xk (2)| z)

als
< —kN (~k 2B+n/s-nlqy # s )
N 22 (2 P(xo)) ((ka(xo))" ,/2/<Q V(z)’ dz

k>2

g

1 / 1/s
X — V(z)® dz) inf Mf (y).
((ka(xo))" o JoEMI b
Then, since V € RH;, from Lemma 2 and 28 + n(1/s — 1/gq1) — 2 — 2 = 0, we get

12(96) < 22 _kN 2/<p( ))2/3+n (1/s-1/q1)-2a— 2(1 21() oz+1)lo fMgf()/)
k=2

< inf Mf(y). 2)
y€Q
For I;(x), we split (2Q)¢ into annuli to obtain

27N (2 p (o)) * !

LHx) S)) ——————— (2)|V(2)* dz
! o1 (2K p (o))" 2k+1Qlf ‘
By Holder’s inequality with pi, +5 4+ qi =1,t>p,, B —a=1/2,and Lemma 2, we get
26-1 Ve
Lx) Sy 27(2* N “d
1) S ; (2°p(x0)) (2,( ZMQV z

1 als
- Sd
X ((2k ) /2k+1QV(Z) Z)

2~ kN 1 o '
22 Gy Zﬂ((zkp(xo»" /2k+1QV(Z)"’Z> inf MS©)

k>1

< ZZ"‘N (1+ 2")“10 meJ(y ) S me,;f(y) (3)

k>1

To deal with the second term of (1), we write again f = f; + fo. Choosing p/, < f < ¢ and
denoting v = ;=, using the boundedness of 7 on LY(R") and applying Holder’s inequality,

1 1 : 1/t
R * _ < | — * —
|Ql/QITﬂﬁ(b bQ>|N<|Q|/Q|Tﬂf1(b bl )

1 ; 1/t
<(— b-b
“<|Q|few Q)|)

Page 8 of 18
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1 1/t 1 1/v
<= t — | 1b-b,)"
N<|Q|./2Qlf|> <|Q|/2Q' q')

< bl inf M)

For the remaining term, we have

[f&)(b-bo)l V()"
. x—2| _ »|n-2B+1
ee (1+ 75N lx—2|

I(x) <

and

fox [ @0l ver VO e,
2 ~ .
B(

e (1+ %)N lx — 21" Jp(s x—zyiay 1§ — 2771

Since 1 < pl, < ¢, we can choose ¢ such that p, < ¢ <t. Let v = %, and then by Holder’s

inequality and Lemma 3, we get
1 . 1/pl,
—_— (2)(b(z) — bo)[™ dz)
((2kp(x0))” o/ 0 Bl

_ 1/¢
If (2)(b(z) - bo) |’ dz)

<<7
~\ (2% p(x0))" Jakerg

1 . 1/t
IS (7 f(@)| dZ>
2kQ

(2K p(x0))"

1 ) 1/v
(st 0000l )

< k2" [b], yigg Mf(y). (4)

Then, similar to the estimate of (3), we get

L) Sy 271+ 260 k2% (], yig(gMJ(y) < [bls yiggMJ(y).

k>1

By (4) and similar to the estimate of (2), we can get

L(x) < [blp inf Mf (y).
eQ

This completes the proof of Lemma 6. O

Lemma 7 Let V € RH; for n/2 <s<n, 1% = "—:1 - %, and b € BMOy(p). Then, for any

P, <t<ooandy >1wehave
/( ) |K*(%,2) = K*(9,2)| V(2)* |b(2) - bg||f (2)| dz < [Be itelngJ(u),
2B)¢ u

forall f and x,y € B = B(xo,r) with r < yp(xo).
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Proof Denote Q = B(xg, yp(«x0)). By Lemma 5 and since in our situation p(x) ~ p(xo) and

|z — z| ~ |xo — z|, we need to estimate the following four terms:

[f (2)|V(2)"|b(z) — bs|

5
- dz,
]1 r Q\2B |xO_Z|n—2/3+<S+1 z
s [f (2)|V(2)*|b(z) - bl
Jo =1°p(xo) o= 2" BN dz,
pep [ LRIVEIEE bBI/ Ve
Q\2B g — z|-26+9 Blxo,dlxo—z)) |¥ — 21" |u—z|n-1 ’
and

[f ()| V(2)*|b(2) — bs| V(u)

Ixo _Z|n—2ﬂ+5+N dudz.

Ja=7"pxo)Y

Q° Blxo,4lxg—zl) |4 —2|"1

Splitting into annuli, we have

]1<221‘S (2r) 2/31'2/3'/ [f@)||b(2) - bs|V(2)* dz,

j=2

where jj is the least integer such that 20 > yp(xo)/r. By Hélder’s inequality w1th

q_l =1, t > p,, similar to the estimate of (4), we have

ﬁ /y B[f(z)||b(z)—bB|V(z) dz
_ 1 ) ) p&d 1/p}, 1 VO d als
N(@ QJB(V(Z)H ®- B|) Z) (@ 2B & Z)

(i 2 . 2]7‘ 8 +lox
<50 s 1+ 5 )

<j(2r) by inf Mf ().
ueB
Then, using 8 — o = 1/2, we get
J1 5 [l inf Myf ()

ueB

To deal with I, we split into annuli and get

I < P \" 5 SN (o261 L o
) < > 2 (2r) T QjB[f(z)Hb(z)—bB\V(z) dz.

r =
J=jo-1

+ 5+
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Notice that

ﬁ /2/ 170|662 - b Ve

i\ =20 . Vr 0'+loa
i) Wlaingarg o)1+ )

o p(xg)\ ) 1-28
< j0 o) (—) (2r) " [blo inf Mf (1).
r ue

Then, taking N > 0’ + [oor, we get
Jo < [blo inf Mf (u).
ueB

For /3, splitting into annuli, we obtain

jo o 1
S 27 (2% E /2, @[bG) ~ ba| VTV styp)2)

j=2

By Holder’s inequality with pi, + 94

< qil = 1, similar to the estimate of (2), we get

ﬁ /ﬂ @660 - ba| V& TV )2

1 o 1/p, 1 . als
§<@/2j3([f(z)||b(2)—b3|) dz) (@LBV(@ dZ)

1 q1 ta
X (% /;/B|II(VXW+ZB)(Z)’ dZ)

(o) \—2etn(1l/s=1/q1) . Ur 0'+loa
<i(2r) [blo inf Mf)( 1+

,O(xo)
1 1/s
x (w e dz)

i) bl inf Mf ) (1 +

%y 0’ +lp(a+1)
P(xo)>

Si(@r) P bly inf Mf ().
Then

J3 < [blo inf Myf (u).

ueB

Finally, for /, we have
N o0

Ja S ( ) 3270 ()
jo-1

1
X 5 /2/ r@lle - b5V TV ry)@)

p(x0)
r
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Notice that

1

o |, @@ - bal VI TV )@

L %y 0’ +lp(a+1)
<j(2r) (bl infMJ(y)(l + )
y€B p(xo)

-6 —Ip(a+1)
< 0ot 1) (M) (2r) ™ [Bly inf M,f (w).
r ueB

We choose N large enough such that N > 0’ + [y(« + 1), and then
Ja < [ble inf M,f (w),
ueB
which finishes the proof of Lemma 7. d
Now we are in a position to give the proof of Theorem 2.

Proof of Theorem 2 We will prove part (i), and (ii) follows by duality. We start with a func-
tion f € LP(R") with p/, < p < 00, and by Lemma 6 we have [b, Tglf € Ll (R™).

loc
By Proposition 3 and Lemma 6 with p/, < ¢ < p < 00, we have

|06, T30 Ve < [ Ml 751 s
1 p
S| M b T3] d <—[ b,T; )
< [ it ase X (g [, 071
< [ g, oyl asewr Y [ mapp s
R” T Y20k

By Proposition 2 and the boundedness of M; on L”(R"), the second term is controlled by
[b]‘g |[f||’z,,(Rn). Then, we only need to consider the first term.

Our goal is to find a point-wise estimate of M, [b, T§]f. Let x € R” and B = B(xo, r) with
r < yp(xo) such that x € B. Write f = fi + f, with fj = f x25, then

(b, T3f = (b - bp)Tif — Tj(fi(b - bg)) — Tj(fa(b - bg)).
Then, we need to control the mean oscillation on B of each term that we call O;, O, and

Os.
Let ¢ > p/,, then, by Holder’s inequality and Lemma 3, we get

1 *k
O < ﬁ/B|(b-sz)Tﬂf|

1 p 1/t 1 , 1/t
< fo-v) (g [Jat)
(|B|/B ? 1B] B| |

< [BloML T3 (x0),

since r < yp(xo).

Page 12 0of 18
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To estimate Oy, let p, <f<tand v = % Then

1 k
0,5 ﬁ/B|Tﬂ((b-bB)fl)|

<<|B|/ T3~ bB)ﬁ)')m
(i o)’
: (FB/B”’_Z’B'U)U <|B|/ d )w

< [BloMif (x0).

For O3, note that inf,cp M,f(y) < M,f(xo), and so by Lemma 7 we get

< Bp
< [bloMyf (xo).

Thus, we have showed that

M5, [b, T3 If| < 1610 (M. Taf (6) + Mf ().

Since ¢ < p, we obtain the desired result.

Proof of Theorem 3 Let f € Hk(R”). By Proposition 1, we canwritef =Y = A
pand > i) < 2||f||H1£(]R”)' Suppose

eacha;isa(l,q),-atomwith 1 < g < py, 1% = ‘“1

suppa; C B; = B(xj, r;) with rj < p(x;). Write

[b, Tplf () = Y j[b, Tpla(x) xss, (x)

j=—00

Y 30000~ by) Ty (o

Jiry=p(%5)/4

+ Z Aj(b(x)—bB].)Tlga,(x)X(ggj)c(x)

Jirj<pla) 4

Note that

. 1/q 1,
(/ |a;(x)| dx) SIBjlaT.
5

/ / |T3((6— b)fy) @) — T((b — bi)fs) 0)| dvdly

Page 13 0f 18
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By Holder’s inequality, for 1 < g < p,, and using Theorem 2 we get
1 n
1
”Al,j”Ll(R”) S/ </ “b, Tﬂ]aj(x)’qu) r/q
8B;
Iq
< [blor (/ |a, | dx)

1,1
S [blolBi|7 17 S bl

Thus

o]

S Al gy

LR j=-00

o0
Z AjAy
Jj=—00

o0
<[kl Z S Blo 1 Nzt ey
And so

e e

Sincez € Bj,x € 2"B/ \ 2k‘1Bj, we have [x — z| ~ [x —x;| ~ 2krj, and by Lemma 1 we get

(b
i VI, eny-

Z NAy| >

j=—00

1 < 1
[x—z|\N ~~ ok
1+ P ) 1+ p(xr;))koﬂ

By Holder’s inequality, Lemmas 2 and 3, we get

1
— | |b@) - by |V(x)* d
|sz,|/2kB,| () — by |V(3)* dx
1 sy U(EY 1 als
g(k—/ |b(@) - b | dx> (k— V(x)sdx)
[25B;[ /o5, 125B;[ Joxg,

2%\ 1 “
<k[b ’) ( d )
Ibls <1 * o)) |2 B)| /2k3, Vix)dx

~ ok 0"+l
< k[blo (2%, 2‘”( ! ) . (5)
o(2) p(x)
Note that +%+ q_1 =1, L i ; -+, so by Holder’s and Hardy-Littlewood—Sobolev’s

1nequa11t1es and using the fact that V € RH;, we obtain

_1 o
|2¢B;] /szj‘b(x)‘bB/’V(x) (Z1(V X)) dix

1 . 1/py, 1 als
< —— b(x) - bg, “dx) (— V(x)sdx)
<|2ka| /m,' g 12581 S
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! a Y
* (w /szj(Il(szkB,)(x)) dx)

Vst 2kr4 0’ 1 (a+1)/s
< [blok|28B;| T (1 4+ = V(x)* dx
p(x) 125B;| Jarg,

o 2]( N\ O+l
< [blok(2¢r) 1(1 = x”)> : ©)
]

Recall fB laldy S1, B—a = % and rj/p(x;) > 1/4. Then, taking N large enough such

that m > 60"+ lh(a + 1), we get

”AZJ'(’C) ”LI(R”)

1 1
< b(x) — bp.|V(x)*d ()| d
Z 2 2 W (2ki’j)n_2‘3+1 /sz]-\zk-IB/.} ) B]| ® x/B |a](Z)’ ‘
t o

k>4 /

1 1
2k ’/ )N (2, ) 26

+
k>4 (1 +

X /;kBj\zk-lB,-|b(x) - ij|V(x)°‘ (Il(szkB)(x)) dx/B |aj(z)| dz

/

k(2K )28-1 9k \ &' Hoa
3 #(zk ) (1 L 20 )
o4 (1_,_ 2 /)k0+1 p(x))

(2/(,,4)2,3 o1 ok 6" +(a+1)lo
+[blg Z 7/ (Zkr/) 1+ !

e (1 + )ké\il ,o(x,»)

S [bls

ﬂ(x

k
SO Y Bl Y

k>3 (2k)k0+1 k>3 (2/() ko+1

S [ble-

Thus

o0
D hiAy
Jj=—00

b]e Hf”Hk(Rny
LL(R")
Therefore

When x € 2¥B; \ 2¢-1B;, and z € B;, by Lemmas 5 and 1, we have

[b]
—9 I 11, ey

Z AAg| >

j=—

8
! ’j

|K(x,2) = K(%,%)| <

+ 20Nk 1) (2ry)reo=2b e
P(x/)
1 r
j
+ PRY? II(VszBI-)(Z)y

a+ ﬁ)m(kou) (277)
p(xj)
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where § =2 —n/s > 0. Thus, by the vanishing condition of ;, together with (5) and (6), we

have
43| 11 g
< Z/ |b(x)—bB/’V(x)°‘/ |Ko(%,2) = Ko (%,))||a(2) | dz dx
foa ¥ 2B\ B; B;
1 r
< b(x) — bp. |V (x)* dx/ ai(z)| dz
k2>3:' (1+ (k,))ko*1 (2bry)reo-2bet -/2k*‘3/| d B/| A
1 r
+
=3 (1+ 2( :’))ko+1 (2Kry)lrd=26)
/k X |b(x bg |V(x YTi(V xokp, )(x)dx/ |a](z)|dz
2k+1p;
1 1 k
S [bls Z N 2/«3 blg Z R oo o < [l
>3 (1+ e /)) k>3 ( x{))ko*l
/)
So that
n [b]
{xER : Z)‘A"&’J 4} ~ 0”f||H£R”)
i—

Now let us deal with the last part. Since r; < p(x;), we get

, 1/q l/q
|® = by 1 gy < </B |b(x) - bg| dx) (/1; |aj(x)|qu)
i /)

. 9/
5[b]e(1+ ” ) < [bls.

,O(x;‘)
Note that
|Ag@)| < > I Ts(| (b - bs)a]) (6) x(s)c ()
Jj=—00
< T < e bgj)a,'|> ().
Jj=—00

By Theorem 1, we know T} is bounded from L'(R") into weak L'(R"). Then
[o¢]
> My

A
{xER”: >—H
; 4
j=—00

{xeR” <Z|/\(b bB)a,|) (%)
o

o]

Z |2i(b - bg))aj]

gl

1

L1(R")



Hu and Wang Journal of Inequalities and Applications (2019) 2019:126

1 o0
S X Z |)L/‘|H(b_b3j)a/”L1(R”)

j=—00
[blo [ (bl
S e :Z_O:o ) S T”f”Hk(]R”)'
Thus,
4 00
xeR": Z Z }‘inj > A
i=1 j=—00
4

00
A
,SE xeR”: E )\inj>E
i=1 j=—00

[blo
S Tllf”HE(R”)‘ O

4 Conclusion

In this paper, we established the L”-boundedness of commutator operators [, Tg] and
[b, T§], where Tp = VevLP, % <B<l,B-a= %, and b € BMOy(p), which is larger than
the space BMO(R"). At the endpoint, we show that the operator [b, Tg] is bounded from
Hardy space Hk(R”) continuously into weak L}(R”). These results enrich the theory of
Schrodinger operator.
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