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Abstract
Let a function b belong to the space BMOθ (ρ), which is larger than the space
BMO(Rn), and let a nonnegative potential V belong to the reverse Hölder class RHs

with n/2 < s < n, n ≥ 3. Define the commutator [b, Tβ ]f = bTβ f – Tβ (bf ), where the
operator Tβ = Vα∇L–β , β – α = 1

2 ,
1
2 < β ≤ 1, and L = –� + V is the Schrödinger

operator. We have obtained the Lp-boundedness of the commutator [b, Tβ ]f and we
have proved that the commutator is bounded from the Hardy space H1

L(R
n) into

weak L1(Rn).
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1 Introduction and results
Let L = –� + V be the Schrödinger operator, where the nonnegative potential V belongs
to the reverse Hölder class RHs with s > n/2, n ≥ 3. Many papers related to Schrödinger
operator have appeared (see [1–5]). In recent years, some researchers have studied the
boundedness of the commutators generated by the operators associated with L and the
BMO type space (see [6–9]). In this paper, we investigated the boundedness of the com-
mutator [b, Tβ ], where Tβ = V α∇L–β and the function b ∈ BMOθ (ρ). We note that the
space BMOθ (ρ) is larger than the space BMO(Rn).

For s > 1, a nonnegative locally Ls-integrable function V is said to belong to RHs if there
exists a constant C > 0 such that the reverse Hölder inequality

(
1

|B|
∫

B
V (y)s dy

)1/s

≤ C
|B|

∫
B

V (y) dy

holds for every ball B ⊂R
n. It is obvious that RHs1 ⊆ RHs2 for s1 ≥ s2.

As in [2], for a given potential V ∈ RHs with s > n/2, we will use the auxiliary function
ρ(x) defined as

ρ(x) = sup

{
r > 0 :

1
rn–2

∫
B(x,r)

V (y) dy ≤ 1
}

, x ∈R
n.

It is well known that 0 < ρ(x) < ∞ for any x ∈R
n.
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Let L = –� + V be the Schrödinger operator on R
n, where V ∈ RHs with s > n/2 and

n ≥ 3. We know L generates a (C0) semigroup {e–tL}t>0. The maximal function with re-
spect to the semigroup {e–tL}t>0 is defined by MLf (x) = supt>0 |e–tLf (x)|. The Hardy space
associated with L is defined as follows (see [3, 4]).

Definition 1 We say that f is an element of H1
L(Rn) if the maximal function MLf belongs

to L1(Rn). The quasi-norm of f is defined by

‖f ‖H1
L(Rn) =

∥∥MLf
∥∥

L1(Rn).

Definition 2 Let 1 < q ≤ ∞. A measurable function a is called an (1, q)ρ-atom related to
the ball B(x0, r) if r < ρ(x0) and the following conditions hold:

(1) supp a ⊂ B(x0, r);
(2) ‖a‖Lq(Rn) ≤ |B(x0, r)|1/q–1;
(3)

∫
B(x0,r) a(x) dx = 0 if r < ρ(x0)/4.

The space H1
L(Rn) admits the following atomic decomposition (see [3, 4]).

Proposition 1 Let f ∈ L1(Rn). Then f ∈ H1
L(Rn) if and only if f can be written as f =∑

j λjaj, where aj are (1, q)ρ- atoms,
∑

j |λj| < ∞, and the sum converges in the H1
L(Rn)

quasi-norm. Moreover

‖f ‖H1
L(Rn) ∼ inf

{∑
j

|λj|
}

,

where the infimum is taken over all atomic decompositions of f into (1, q)ρ- atoms.

Following [10], the space BMOθ (ρ) with θ ≥ 0 is defined as the set of all locally integrable
functions b such that

1
|B(x, r)|

∫
B(x,r)

∣∣b(y) – bB
∣∣dy ≤ C

(
1 +

r
ρ(x)

)θ

for all x ∈ R
n and r > 0, where bB = 1

|B|
∫

B b(y) dy. A norm for b ∈ BMOθ (ρ), denoted by
[b]θ , is given by the infimum of the constants in the inequalities above. Clearly, BMO ⊂
BMOθ (ρ).

We consider the operator

Tβ = V α∇L–β ,
1
2

≤ β ≤ 1,β – α =
1
2

.

The boundedness of operator T1/2 and its commutator have been researched under the
condition V ∈ RHs for n/2 < s < n. In [2], Shen showed that T1/2 is bounded on Lp(Rn)
for 1 < p < p0, 1

p0
= 1

s – 1
n . For b ∈ BMO(Rn), Guo, Li and Peng [11] investigated the Lp-

boundedness of commutator [b, T1/2] for 1 < p < p0; Li and Peng [12] studied the bound-
edness of [b, T1/2] from H1

L(Rn) into weak L1(Rn). When b ∈ BMOθ (ρ), Bongioanni, Har-
boure and Salinas [10] obtained the Lp-boundedness of [b, T1/2] and Liu, Sheng and Wang
[13] proved that [b, T1/2] is bounded from H1

L(Rn) to weak L1(Rn). More boundedness of
commutator [b, T1/2] can be found in [14] and [15].
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For 1/2 < β ≤ 1, β – α = 1/2, n/2 < s < n, Sugano [5] established the estimate for T∗
β (the

adjoint operator of Tβ ), and proved that there exists a constant C such that

∣∣T∗
β f (x)

∣∣ ≤ CM
(|f |p′

α
)
(x)1/p′

α

for all f ∈ C∞
0 (Rn), where 1

pα
= α+1

s – 1
n , and 1

pα
+ 1

p′
α

= 1. Then, by the boundedness of
maximal function, we get

Theorem 1 Suppose V ∈ RHs with n/2 < s < n. Let 1/2 < β ≤ 1, 1
pα

= α+1
s – 1

n . Then

∥∥T∗
β f

∥∥
Lp(Rn) ≤ C‖f ‖Lp(Rn)

for p′
α < p ≤ ∞, and by duality we get

‖Tβ f ‖Lp(Rn) ≤ C‖f ‖Lp(Rn)

for 1 ≤ p < pα .

Inspired by the above results, in the present work, we are interested in the boundedness
of [b, Tβ ]. Our main results are as follows.

Theorem 2 Suppose V ∈ RHs with n/2 < s < n. Let 1/2 < β ≤ 1, b ∈ BMOθ (ρ). Then,

∥∥[
b, T∗

β

]
(f )

∥∥
Lp(Rn) ≤ C‖f ‖Lp(Rn)

for p′
α < p < ∞, and

∥∥[b, Tβ ](f )
∥∥

Lp(Rn) ≤ C‖f ‖Lp(Rn)

for 1 < p < pα , where 1
pα

= α+1
s – 1

n .

Theorem 3 Suppose V ∈ RHs with n/2 < s < n. Let 1/2 < β ≤ 1, b ∈ BMOθ (ρ). Then,

∥∥[b, Tβ ](f )
∥∥

WL1(Rn) ≤ C‖f ‖H1
L(Rn).

In this paper, we shall use the symbol A � B to indicate that there exists a universal
positive constant c, independent of all important parameters, such that A ≤ cB. A ∼ B
means that A � B and B � A.

2 Some preliminaries
We recall some important properties concerning the auxiliary function ρ(x) which have
been proved by Shen [2]. Throughout this section we always assume V ∈ RHs with n/2 <
s < n.

Proposition 2 There exist constants C and k0 ≥ 1 such that

C–1ρ(x)
(

1 +
|x – y|
ρ(x)

)–k0

≤ ρ(y) ≤ Cρ(x)
(

1 +
|x – y|
ρ(x)

) k0
1+k0

for all x, y ∈R
n.
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Assume that Q = B(x0,ρ(x0)), for any x ∈ Q, then Proposition 2 tells us that ρ(x) ∼ ρ(y),
if |x – y| < Cρ(x). It is easy to get the following result from Proposition 2.

Lemma 1 Let k ∈N and x ∈ 2k+1B(x0, r) \ 2kB(x0, r). Then we have

1
(1 + 2k r

ρ(x) )N
� 1

(1 + 2k r
ρ(x0) )N/(k0+1)

.

Lemma 2 There exists a constant l0 > 0 such that

1
rn–2

∫
B(x,r)

V (y) dy �
(

1 +
r

ρ(x)

)l0
.

The following finite overlapping property was given by Dziubański and Zienkiewicz
in [3].

Proposition 3 There exists a sequence of points {xk}∞k=1 in R
n, so that the family of critical

balls Qk = B(xk ,ρ(xk)), k ≥ 1, satisfies
(i)

⋃
k Qk = R

n.
(ii) There exists N = N(ρ) such that for every k ∈ N , card{j : 4Qj ∩ 4Qk} ≤ N .

For α > 0, g ∈ L1
loc(Rn) and x ∈R

n, we introduce the following maximal functions:

Mρ,αg(x) = sup
x∈B∈Bρ,α

1
|B|

∫
B

∣∣g(y)
∣∣dy,

and

M�
ρ,αg(x) = sup

x∈B∈Bρ,α

1
|B|

∫
B

∣∣g(y) – gB
∣∣dy,

where Bρ,α = {B(z, r) : z ∈R
n and r ≤ αρ(y)}.

The following Fefferman–Stein type inequality can be found in [10].

Proposition 4 For 1 < p < ∞, then there exist δ and γ such that if {Qk}k is a sequence of
balls as in Proposition 3 then

∫
Rn

∣∣Mρ,δg(x)
∣∣p dx �

∫
Rn

∣∣M�
ρ,γ g(x)

∣∣p dx +
∑

k

|Qk|
(

1
|Qk|

∫
2Qk

|g|
)p

for all g ∈ L1
loc(Rn).

We have the following result for the function b ∈ BMOθ (ρ).

Lemma 3 ([10]) Let 1 ≤ s < ∞, b ∈ BMOθ (ρ), and B = B(x, r). Then

(
1

|2kB|
∫

2k B

∣∣b(y) – bB
∣∣s dy

)1/s

� [b]θ k
(

1 +
2kr
ρ(x)

)θ ′

for all k ∈ N, with r > 0, where θ ′ = (k0 + 1)θ and k0 is the constant appearing in Proposi-
tion 2.
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We give an estimate of fundamental solutions; this result can be found in [2]. We denote
by Γ (x, y,λ) the fundamental solution of –�+ (V (x) + iλ), and then Γ (x, y,λ) = Γ (y, x, –λ).

Lemma 4 Assume that –�u + (V (x) + iλ)u = 0 in B(x0, 2R) for some x0 ∈ R
n. Then, there

exists a k′
0 such that

(∫
B(x0,R)

|∇u|t dx
)1/t

� Rn/s–2
(

1 +
R

ρ(x0)

)k′
0

sup
B(x0,2R)

|u|,

where 1/t = 1/s – 1/n.

Suppose Wβ = ∇L–β . Let W∗
β be the adjoint operator of Wβ , K and K∗ be the kernels of

Wβ and W∗
β respectively, then K(x, z) = K∗(z, x), and we have the following estimates.

Lemma 5 Suppose 1/2 < β ≤ 1.
(i) For every N there exists a constant CN such that

∣∣K∗(x, z)
∣∣ ≤ CN

(1 + |x–z|
ρ(x) )N

1
|x – z|n–2β

(∫
B(z,|x–z|/4)

V (ξ )
|ξ – z|n–1 dξ +

1
|x – z|

)
.

Moreover, the inequality above also holds with ρ(x) replaced by ρ(z).
(ii) For every N and 0 < δ < min{1, 2 – n/q0} there exists a constant CN such that

∣∣K∗(x, z) – K∗(y, z)
∣∣ ≤ CN

(1 + |x–z|
ρ(x) )N

× |x – y|δ
|x – z|n–2β+δ

(∫
B(z,|x–z|/4)

V (ξ )
|ξ – z|n–1 dξ +

1
|x – z|

)

whenever |x – y| < 1
16 |x – z|. Moreover, the inequality above also holds with ρ(x)

replaced by ρ(z).

Proof The proof of (i) can be found in [5], page 449. Let us prove (ii). By (6) of [5] we know

K(x, z) =

⎧⎨
⎩

1
2π

∫
R

(–iτ )–β∇xΓ (x, z, τ ) dτ , for 1
2 < β < 1,

∇xΓ (x, z, 0), for β = 1.

Then

∣∣K∗(x, z) – K∗(y, z)
∣∣ �

∫ ∞

–∞
|τ |–β

∣∣∇zΓ (z, x, τ ) – ∇zΓ (z, y, τ )
∣∣dτ

for 1
2 < β < 1 and

∣∣K∗(x, z) – K∗(y, z)
∣∣ �

∣∣∇zΓ (z, x, 0) – ∇zΓ (z, y, 0)
∣∣

for β = 1.
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Fix x, z ∈ R
n and let R = |x – z|/8, 1/t = 1/s – 1/n, δ = 2 – n/s > 0. For any |x – y| < R/2, it

follows from the Morrey embedding theorem (see [16]) and Lemma 4 that

∣∣∇zΓ (z, x, τ ) – ∇zΓ (z, y, τ )
∣∣

� |x – y|1–n/t
(∫

B(x,R)

∣∣∇u∇zΓ (z, u, τ )
∣∣t du

)1/t

� |x – y|1–n/tR(n/s)–2
(

1 +
R

ρ(x)

)k0

sup
u∈B(x,2R)

∣∣∇zΓ (z, u, τ )
∣∣.

It follows from [11, p. 428] that

sup
u∈B(x,2R)

∣∣∇zΓ (z, u, τ )
∣∣

� Ck1

(1 + |τ |1/2|z – u|)k1 (1 + |z–u|
ρ(z) )k1

1
|z – u|n–2

×
(∫

B(z,|z–u|/4)

V (ξ )
|z – ξ |n–1 dξ +

1
|z – u|

)
.

Then, by the fact that 6R ≤ |z – u| ≤ 10R, we get

∣∣∇zΓ (z, x, τ ) – ∇zΓ (z, y, τ )
∣∣

� |x – y|δ
|x – z|n–2+δ

CN

(1 + |τ |1/2|x – z|)N (1 + |x–z|
ρ(x) )N

×
(∫

B(z,|x–z|/4)

V (ξ )
|z – ξ |n–1 dξ +

1
|x – z|

)
.

Thus, for β = 1,

∣∣K∗(x, z) – K∗(y, z)
∣∣ �

∣∣∇zΓ (z, x, 0) – ∇zΓ (z, y, 0)
∣∣

� |x – y|δ
|x – z|n–2+δ

CN

(1 + |x–z|
ρ(x) )N

(∫
B(z,|x–z|/4)

V (ξ )
|z – ξ |n–1 dξ +

1
|x – z|

)
.

Note that

∫ ∞

–∞
|τ |–β dτ

(1 + |τ |1/2|x – z|)k � |x – z|2β–2.

Then, for 1
2 < β < 1, we have

∣∣K∗(x, z) – K∗(y, z)
∣∣ � |x – y|δ

|x – z|n+δ–2β

× CN

(1 + |x–z|
ρ(x) )N

(∫
B(z,|x–z|/4)

V (ξ )
|ξ – z|n–1 dξ +

1
|x – z|

)
.

By Lemma 2, we know that the inequality above also holds with ρ(x) replaced by ρ(z). �
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3 Proof of main results
Before proving Theorem 2, we need to give some necessary lemmas.

Lemma 6 Let V ∈ RHs with n/2 < s < n, 1
pα

= α+1
s – 1

n , and b ∈ BMOθ (ρ). Then, for any
p′

α < t < ∞, we have

1
|Q|

∫
Q

∣∣[b, T∗
β

]
f
∣∣ � [b]θ inf

y∈Q
Mtf (y)

for all f ∈ Lt
loc(Rn) and every ball Q = B(x0,ρ(x0)).

Proof Let f ∈ Lt
loc(Rn) and Q = B(x0,ρ(x0)). We consider

[
b, T∗

β

]
f = (b – bQ)T∗

β f – T∗
β

(
f (b – bQ)

)
. (1)

By Hölder’s inequality with t > p′
α and Lemma 3,

1
|Q|

∫
Q

∣∣(b – bQ)T∗
β f

∣∣ �
(

1
|Q|

∫
Q

|b – bQ|t′
)1/t′( 1

|Q|
∫

Q

∣∣T∗
β f

∣∣t
)1/t

� [b]θ
(

1
|Q|

∫
Q

∣∣T∗
β f

∣∣t
)1/t

.

Write f = f1 + f2 with f1 = f χ2Q. By Theorem 1, we know that T∗
β is bounded on Lt(Rn)

with t > p′
α , and then

(
1

|Q|
∫

Q

∣∣T∗
β f1

∣∣t
)1/t

�
(

1
|Q|

∫
2Q

|f |t
)1/t

� inf
y∈Q

Mtf (y).

For x ∈ Q, using (i) in Lemma 5, we get

∣∣T∗
β f2(x)

∣∣ =
∣∣∣∣
∫

(2Q)c
V (z)αK∗(x, z)f (z) dz

∣∣∣∣ � I1(x) + I2(x),

where

I1(x) �
∫

(2Q)c

|f (z)|
(1 + |x–z|

ρ(x) )N

V (z)α

|x – z|n–2β+1 dz

and

I2(x) �
∫

(2Q)c

|f (z)|
(1 + |x–z|

ρ(x) )N

V (z)α

|x – z|n–2β

∫
B(z,|x–z|/4)

V (ξ )
|ξ – z|n–1 dξ dz.

To deal with I2(x), note that ρ(x) ∼ ρ(x0) and |x – z| ∼ |x0 – z| for x ∈ Q. We split (2Q)c

into annuli to obtain

I2(x) �
∑
k≥2

2–kN (2kρ(x0))2β

(2kρ(x0))n

∫
2k Q

∣∣f (z)
∣∣V (z)αI1(Vχ2k Q)(z) dz.
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Observe that 1
p′
α

+ α
s + 1

q1
= 1, 1

q1
= 1

s – 1
n , t > p′

α , and β –α = 1/2. Then by Hölder’s inequality
and the boundedness of fractional integral I1 : Ls → Lq1 with 1

q1
= 1

s – 1
n , we get

I2(x) �
∑
k≥2

2–kN(
2kρ(x0)

)2β

(
1

(2kρ(x0))n

∫
2k Q

∣∣f (z)
∣∣p′

α dz
)1/p′

α

×
(

1
(2kρ(x0))n

∫
2k Q

V (z)s dz
)α/s( 1

(2kρ(x0))n

∫
2k+1Q

∣∣I1(Vχ2k Q)(z)
∣∣q1 dz

)1/q1

�
∑
k≥2

2–kN(
2kρ(x0)

)2β+n/s–n/q1
(

1
(2kρ(x0))n

∫
2k Q

V (z)s dz
)α/s

×
(

1
(2kρ(x0))n

∫
2k Q

V (z)s dz
)1/s

inf
y∈Q

Mtf (y).

Then, since V ∈ RHs, from Lemma 2 and 2β + n(1/s – 1/q1) – 2α – 2 = 0, we get

I2(x) �
∑
k≥2

2–kN(
2kρ(x0)

)2β+n(1/s–1/q1)–2α–2(1 + 2k)(α+1)l0 inf
y∈Q

Mtf (y)

� inf
y∈Q

Mtf (y). (2)

For I1(x), we split (2Q)c into annuli to obtain

I1(x) �
∑
k≥1

2–kN (2kρ(x0))2β–1

(2kρ(x0))n

∫
2k+1Q

∣∣f (z)
∣∣V (z)α dz.

By Hölder’s inequality with 1
p′
α

+ α
s + 1

q1
= 1, t > p′

α , β – α = 1/2, and Lemma 2, we get

I1(x) �
∑
k≥1

2–kN(
2kρ(x0)

)2β–1
(

1
(2kρ(x0))n

∫
2k+1Q

∣∣f (z)
∣∣p′

α dz
)1/p′

α

×
(

1
(2kρ(x0))n

∫
2k+1Q

V (z)s dz
)α/s

�
∑
k≥1

2–kN

(2kρ(x0))1–2β

(
1

(2kρ(x0))n

∫
2k+1Q

V (z) dz
)α

inf
y∈Q

Mtf (y)

�
∑
k≥1

2–kN(
1 + 2k)αl0 inf

y∈Q
Mtf (y) � inf

y∈Q
Mtf (y). (3)

To deal with the second term of (1), we write again f = f1 + f2. Choosing p′
α < t̄ < t and

denoting ν = t̄t
t–t̄ , using the boundedness of T∗

β on Lt̄(Rn) and applying Hölder’s inequality,

1
|Q|

∫
Q

∣∣T∗
β f1(b – bQ)

∣∣ �
(

1
|Q|

∫
Q

∣∣T∗
β f1(b – bQ)

∣∣t̄
)1/t̄

�
(

1
|Q|

∫
Q

∣∣f1(b – bQ)
∣∣t̄
)1/t̄
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�
(

1
|Q|

∫
2Q

|f |t
)1/t( 1

|Q|
∫

2Q
|b – bq|ν

)1/ν

� [b]θ inf
y∈Q

Mtf (y).

For the remaining term, we have

I ′
1(x) �

∫
(2Q)c

|f (z)(b – bQ)|
(1 + |x–z|

ρ(x) )N

V (z)α

|x – z|n–2β+1 dz

and

I ′
2(x) �

∫
(2Q)c

|f (z)(b – bQ)|
(1 + |x–z|

ρ(x) )N

V (z)α

|x – z|n–2β

∫
B(z,|x–z|/4)

V (ξ )
|ξ – z|n–1 dξ dz.

Since 1 ≤ p′
α < t, we can choose t̄ such that p′

α < t̄ < t. Let ν = t̄t
t–t̄ , and then by Hölder’s

inequality and Lemma 3, we get

(
1

(2kρ(x0))n

∫
2k Q

∣∣f (z)
(
b(z) – bQ

)∣∣p′
α dz

)1/p′
α

�
(

1
(2kρ(x0))n

∫
2k+1Q

∣∣f (z)
(
b(z) – bQ

)∣∣t̄ dz
)1/t̄

�
(

1
(2kρ(x0))n

∫
2k Q

∣∣f (z)
∣∣t dz

)1/t

×
(

1
(2kρ(x0))n

∫
2k Q

∣∣(b(z) – bQ
)∣∣ν dz

)1/ν

� k2kθ ′
[b]θ inf

y∈Q
Mtf (y). (4)

Then, similar to the estimate of (3), we get

I ′
1(x) �

∑
k≥1

2–kN(
1 + 2k)αl0 k2kθ ′

[b]θ inf
y∈Q

Mtf (y) � [b]θ inf
y∈Q

Mtf (y).

By (4) and similar to the estimate of (2), we can get

I ′
2(x) � [b]θ inf

y∈Q
Mtf (y).

This completes the proof of Lemma 6. �

Lemma 7 Let V ∈ RHs for n/2 < s < n, 1
pα

= α+1
s – 1

n , and b ∈ BMOθ (ρ). Then, for any
p′

α < t < ∞ and γ ≥ 1 we have

∫
(2B)c

∣∣K∗(x, z) – K∗(y, z)
∣∣V (z)α

∣∣b(z) – bB
∣∣∣∣f (z)

∣∣dz � [b]θ inf
u∈B

Mtf (u),

for all f and x, y ∈ B = B(x0, r) with r < γρ(x0).
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Proof Denote Q = B(x0,γρ(x0)). By Lemma 5 and since in our situation ρ(x) ∼ ρ(x0) and
|x – z| ∼ |x0 – z|, we need to estimate the following four terms:

J1 = rδ

∫
Q\2B

|f (z)|V (z)α|b(z) – bB|
|x0 – z|n–2β+δ+1 dz,

J2 = rδρ(x0)N
∫

Qc

|f (z)|V (z)α|b(z) – bB|
|x0 – z|n–2β+δ+1+N dz,

J3 = rδ

∫
Q\2B

|f (z)|V (z)α|b(z) – bB|
|x0 – z|n–2β+δ

∫
B(x0,4|x0–z|)

V (u)
|u – z|n–1 du dz,

and

J4 = rδρ(x0)N
∫

Qc

|f (z)|V (z)α|b(z) – bB|
|x0 – z|n–2β+δ+N

∫
B(x0,4|x0–z|)

V (u)
|u – z|n–1 du dz.

Splitting into annuli, we have

J1 �
j0∑

j=2

2–jδ(2jr
)2β–1 1

|2jB|
∫

2jB

∣∣f (z)
∣∣∣∣b(z) – bB

∣∣V (z)α dz,

where j0 is the least integer such that 2j0 ≥ γρ(x0)/r. By Hölder’s inequality with 1
p′
α

+ α
s +

1
q1

= 1, t > p′
α , similar to the estimate of (4), we have

1
|2jB|

∫
2jB

∣∣f (z)
∣∣∣∣b(z) – bB

∣∣V (z)α dz

�
(

1
|2jB|

∫
2jB

(∣∣f (z)
∣∣∣∣b(z) – bB

∣∣)p′
α dz

)1/p′
α
(

1
|2jB|

∫
2jB

V (z)s dz
)α/s

� j
(
2jr

)–2α[b]θ inf
y∈B

Mtf (y)
(

1 +
2jr

ρ(x0)

)θ ′+l0α

� j
(
2jr

)1–2β[b]θ inf
u∈B

Mtf (u).

Then, using β – α = 1/2, we get

J1 � [b]θ inf
u∈B

Mtf (u).

To deal with I2, we split into annuli and get

J2 �
(

ρ(x0)
r

)N ∞∑
j=j0–1

2–j(δ+N)(2jr
)2β–1 1

|2jB|
∫

2jB

∣∣f (z)
∣∣∣∣b(z) – bB

∣∣V (z)α dz.
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Notice that

1
|2jB|

∫
2jB

∣∣f (z)
∣∣∣∣b(z) – bB

∣∣V (z)α dz

� j
(
2jr

)–2α[b]θ inf
y∈B

Mtf (y)
(

1 +
2jr

ρ(x0)

)θ ′+l0α

� j2j(θ ′+l0α)
(

ρ(x0)
r

)–(θ ′+l0α)(
2jr

)1–2β[b]θ inf
u∈B

Mtf (u).

Then, taking N > θ ′ + l0α, we get

J2 � [b]θ inf
u∈B

Mtf (u).

For J3, splitting into annuli, we obtain

J3 �
j0∑

j=2

2–jδ(2jr
)2β 1

|2jB|
∫

2jB

∣∣f (z)
∣∣∣∣b(z) – bB

∣∣V (z)αI1(Vχ2j+2B)(z) dz.

By Hölder’s inequality with 1
p′
α

+ α
s + 1

q1
= 1, similar to the estimate of (2), we get

1
|2jB|

∫
2jB

∣∣f (z)
∣∣∣∣b(z) – bB

∣∣V (z)αI1(Vχ2j+2B)(z) dz

�
(

1
|2jB|

∫
2jB

(∣∣f (z)
∣∣∣∣b(z) – bB

∣∣)p′
α dz

)1/p′
α
(

1
|2jB|

∫
2jB

V (z)s dz
)α/s

×
(

1
|2jB|

∫
2jB

∣∣I1(Vχ2j+2B)(z)
∣∣q1 dz

)1/q1

� j
(
2jr

)–2α+n(1/s–1/q1)[b]θ inf
y∈B

Mtf (y)
(

1 +
2jr

ρ(x0)

)θ ′+l0α

×
(

1
|2jB|

∫
2jB

V (z)s dz
)1/s

� j
(
2jr

)–2β[b]θ inf
y∈B

Mtf (y)
(

1 +
2jr

ρ(x0)

)θ ′+l0(α+1)

� j
(
2jr

)–2β[b]θ inf
u∈B

Mtf (u).

Then

J3 � [b]θ inf
u∈B

Mtf (u).

Finally, for J4 we have

J4 �
(

ρ(x0)
r

)N ∞∑
j0–1

2–j(δ+N)(2jr
)2β

× 1
|2jB|

∫
2jB

∣∣f (z)
∣∣∣∣b(z) – bB

∣∣V (z)αI1(Vχ2j+2B)(z) dz.
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Notice that

1
|2jB|

∫
2jB

∣∣f (z)
∣∣∣∣b(z) – bB

∣∣V (z)αI1(Vχ2j+2B)(z) dz

� j
(
2jr

)–2β[b]θ inf
y∈B

Mtf (y)
(

1 +
2jr

ρ(x0)

)θ ′+l0(α+1)

� j2j(θ ′+l0(α+1))
(

ρ(x0)
r

)–θ ′–l0(α+1)(
2jr

)–2β [b]θ inf
u∈B

Mtf (u).

We choose N large enough such that N > θ ′ + l0(α + 1), and then

J4 � [b]θ inf
u∈B

Mtf (u),

which finishes the proof of Lemma 7. �

Now we are in a position to give the proof of Theorem 2.

Proof of Theorem 2 We will prove part (i), and (ii) follows by duality. We start with a func-
tion f ∈ Lp(Rn) with p′

α < p < ∞, and by Lemma 6 we have [b, T∗
β ]f ∈ L1

loc(Rn).
By Proposition 3 and Lemma 6 with p′

α < t < p < ∞, we have

∥∥[
b, T∗

β

]
f
∥∥p

Lp(Rn) �
∫
Rn

∣∣Mρ,δ
[
b, T∗

β

]
f
∣∣p dx

�
∫
Rn

∣∣M�
ρ,γ

[
b, T∗

β

]
f
∣∣p dx +

∑
k

|Qk|
(

1
|Qk|

∫
2Qk

∣∣[b, T∗
β

]
f
∣∣)p

�
∫
Rn

∣∣M�
ρ,γ

[
b, T∗

β

]
f
∣∣p dx + [b]p

θ

∑
k

∫
2Qk

∣∣Mt(f )
∣∣p dx.

By Proposition 2 and the boundedness of Mt on Lp(Rn), the second term is controlled by
[b]p

θ‖f ‖p
Lp(Rn). Then, we only need to consider the first term.

Our goal is to find a point-wise estimate of Mρ,γ [b, T∗
β ]f . Let x ∈R

n and B = B(x0, r) with
r < γρ(x0) such that x ∈ B. Write f = f1 + f2 with f1 = f χ2B, then

[
b, T∗

β

]
f = (b – bB)T∗

β f – T∗
β

(
f1(b – bB)

)
– T∗

β

(
f2(b – bB)

)
.

Then, we need to control the mean oscillation on B of each term that we call O1, O2 and
O3.

Let t > p′
α , then, by Hölder’s inequality and Lemma 3, we get

O1 � 1
|B|

∫
B

∣∣(b – bB)T∗
β f

∣∣

�
(

1
|B|

∫
B
|b – bB|t′

)1/t′( 1
|B|

∫
B

∣∣T∗
β f

∣∣t
)1/t

� [b]θ MtT∗
β f (x0),

since r < γρ(x0).
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To estimate O2, let p′
α < t̄ < t and ν = t̄t

t–t̄ . Then

O2 � 1
|B|

∫
B

∣∣T∗
β

(
(b – bB)f1

)∣∣

�
(

1
|B|

∫
B

∣∣T∗
β

(
(b – bB)f1

)∣∣t̄
)1/t̄

�
(

1
|B|

∫
B

∣∣(b – bB)f1
∣∣t̄
)1/t̄

�
(

1
|B|

∫
B
|b – bB|ν

)1/ν( 1
|B|

∫
2B

|f |t
)1/t

� [b]θ Mtf (x0).

For O3, note that infy∈B Mtf (y) ≤ Mtf (x0), and so by Lemma 7 we get

O3 � 1
|B|2

∫
B

∫
B

∣∣T∗
β

(
(b – bB)f2

)
(x) – T∗

β

(
(b – bB)f2

)
(y)

∣∣dx dy

� [b]θ Mtf (x0).

Thus, we have showed that

∣∣M�
ρ,γ

[
b, T∗

β

]
f
∣∣ � [b]θ

(
MtT∗

β f (x) + Mtf (x)
)
.

Since t < p, we obtain the desired result. �

Proof of Theorem 3 Let f ∈ H1
L(Rn). By Proposition 1, we can write f =

∑∞
j=–∞ λjaj, where

each aj is a (1, q)ρ-atom with 1 < q < pα , 1
pα

= α+1
q0

– 1
n and

∑∞
j=–∞ |λj| ≤ 2‖f ‖H1

L(Rn). Suppose
supp aj ⊂ Bj = B(xj, rj) with rj < ρ(xj). Write

[b, Tβ ]f (x) =
∞∑

j=–∞
λj[b, Tβ ]aj(x)χ8Bj (x)

+
∑

j:rj≥ρ(xj)/4

λj
(
b(x) – bBj

)
Tβaj(x)χ(8Bj)c (x)

+
∑

j:rj<ρ(xj)/4

λj
(
b(x) – bBj

)
Tβaj(x)χ(8Bj)c (x)

–
∞∑

j=–∞
λjTβ

(
(b – bBj )aj

)
(x)χ(8Bj)c (x)

=
4∑

i=1

∞∑
j=–∞

λjAij(x).

Note that

(∫
Bj

∣∣aj(x)
∣∣q dx

)1/q

� |Bj|
1
q –1.
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By Hölder’s inequality, for 1 < q < pα , and using Theorem 2 we get

‖A1,j‖L1(Rn) �
(∫

8Bj

∣∣[b, Tβ ]aj(x)
∣∣q dx

) 1
q

r
n
q′
j

� [b]θ r
n
q′
j

(∫
Bj

∣∣aj(x)
∣∣q dx

)1/q

� [b]θ |Bj|
1
q′ + 1

q –1 � [b]θ .

Thus
∥∥∥∥∥

∞∑
j=–∞

λjA1j

∥∥∥∥∥
L1(Rn)

�
∞∑

j=–∞
|λj|‖A1j‖L1(Rn)

� [b]θ
∞∑

j=–∞
|λj| � [b]θ‖f ‖H1

L(Rn).

And so
∣∣∣∣∣
{

x ∈R
n :

∣∣∣∣∣
∞∑

j=–∞
λjA1j

∣∣∣∣∣ >
λ

4

}∣∣∣∣∣ � [b]θ
λ

‖f ‖H1
L(Rn).

Since z ∈ Bj, x ∈ 2kBj \ 2k–1Bj, we have |x – z| ∼ |x – xj| ∼ 2krj, and by Lemma 1 we get

1
(1 + |x–z|

ρ(x) )N
� 1

(1 + 2krj
ρ(xj)

)
N

k0+1
.

By Hölder’s inequality, Lemmas 2 and 3, we get

1
|2kBj|

∫
2k Bj

∣∣b(x) – bBj

∣∣V (x)α dx

�
(

1
|2kBj|

∫
2k Bj

∣∣b(x) – bBj

∣∣( s
α )′ dx

)1/( s
α )′( 1

|2kBj|
∫

2k Bj

V (x)s dx
)α/s

� k[b]θ
(

1 +
2krj

ρ(xj)

)θ ′(
1

|2kBj|
∫

2k Bj

V (x) dx
)α

� k[b]θ
(
2krj

)–2α

(
1 +

2krj

ρ(xj)

)θ ′+l0α

. (5)

Note that 1
p′
α

+ α
s + 1

q1
= 1, 1

q1
= 1

s – 1
n , so by Hölder’s and Hardy–Littlewood–Sobolev’s

inequalities and using the fact that V ∈ RHs, we obtain

1
|2kBj|

∫
2k Bj

∣∣b(x) – bBj

∣∣V (x)α
(
I1(Vχ2k B)(x)

)
dx

�
(

1
|2kBj|

∫
2k Bj

∣∣b(x) – bBj

∣∣p′
α dx

)1/p′
α
(

1
|2kBj|

∫
2k Bj

V (x)s dx
)α/s
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×
(

1
|2kBj|

∫
2k Bj

(
I1(Vχ2k Bj )(x)

)q1 dx
)1/q1

� [b]θ k
∣∣2kBj

∣∣1/s–1/q1
(

1 +
2krj

ρ(xj)

)θ ′(
1

|2kBj|
∫

2k Bj

V (x)s dx
)(α+1)/s

� [b]θ k
(
2krj

)–2α–1
(

1 +
2krj

ρ(xj)

)θ ′+(α+1)l0
. (6)

Recall
∫

Bj
|aj(y)|dy � 1, β – α = 1

2 and rj/ρ(xj) ≥ 1/4. Then, taking N large enough such
that N

k0+1 > θ ′ + l0(α + 1), we get

∥∥A2,j(x)
∥∥

L1(Rn)

�
∑
k≥4

1

(1 + 2k rj
ρ(x) )N

1
(2krj)n–2β+1

∫
2k Bj\2k–1Bj

∣∣b(x) – bBj

∣∣V (x)α dx
∫

Bj

∣∣aj(z)
∣∣dz

+
∑
k≥4

1

(1 + 2k rj
ρ(x) )N

1
(2krj)n–2β

×
∫

2k Bj\2k–1Bj

∣∣b(x) – bBj

∣∣V (x)α
(
I1(Vχ2k B)(x)

)
dx

∫
Bj

∣∣aj(z)
∣∣dz

� [b]θ
∑
k≥4

k(2krj)2β–1

(1 + 2k rj
ρ(xj)

)
N

k0+1

(
2krj

)–2α

(
1 +

2krj

ρ(xj)

)θ ′+l0α

+ [b]θ
∑
k≥4

(2krj)2β

(1 + 2k rj
ρ(xj)

)
N

k0+1

(
2krj

)–2α–1
(

1 +
2krj

ρ(xj)

)θ ′+(α+1)l0

� [b]θ
∑
k≥3

k

(2k)
N

k0+1 –θ ′–l0α
+ [b]θ

∑
k≥3

k

(2k)
N

k0+1 –θ ′–l0(α+1)

� [b]θ .

Thus
∥∥∥∥∥

∞∑
j=–∞

λjA2j

∥∥∥∥∥
L1(Rn)

� [b]θ‖f ‖H1
L(Rn).

Therefore
∣∣∣∣∣
{

x ∈R
n :

∣∣∣∣∣
∞∑

j=–∞
λjA2j

∣∣∣∣∣ >
λ

4

}∣∣∣∣∣ � [b]θ
λ

‖f ‖H1
L(Rn).

When x ∈ 2kBj \ 2k–1Bj, and z ∈ Bj, by Lemmas 5 and 1, we have

∣∣K(x, z) – K(x, xj)
∣∣ � 1

(1 + 2k rj
ρ(xj)

)N/(k0+1)

rδ
j

(2krj)n+δ–2β+1

+
1

(1 + 2krj
ρ(xj)

)N/(k0+1)

rδ
j

(2krj)n+δ–2β
I1(Vχ2k Bj )(z),
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where δ = 2 – n/s > 0. Thus, by the vanishing condition of aj, together with (5) and (6), we
have

∥∥A3,j(x)
∥∥

L1(Rn)

�
∑
k≥4

∫
2kBj\2k–1Bj

∣∣b(x) – bBj

∣∣V (x)α
∫

Bj

∣∣Kα(x, z) – Kα(x, xj)
∣∣∣∣aj(z)

∣∣dz dx

�
∑
k≥3

1

(1 + 2k rj
ρ(xj)

)
N

k0+1

rδ
j

(2krj)n+δ–2β+1

∫
2k+1Bj

∣∣b(x) – bBj

∣∣V (x)α dx
∫

Bj

∣∣aj(z)
∣∣dz

+
∑
k≥3

1

(1 + 2k rj
ρ(xj)

)
N

k0+1

rδ
j

(2krj)(n+δ–2β)

×
∫

2k+1Bj

∣∣b(x) – bBj

∣∣V (x)αI1(Vχ2k Bj )(x) dx
∫

Bj

∣∣aj(z)
∣∣dz

� [b]θ
∑
k≥3

1

(1 + 2k rj
ρ(xj)

)
N

k0+1 –θ ′–l0α

k
2kδ

+ [b]θ
∑
k≥3

1

(1 + 2k rj
ρ(xj)

)
N

k0+1 –θ ′–l0(α+1)

k
2kδ

� [b]θ .

So that
∣∣∣∣∣
{

x ∈R
n :

∣∣∣∣∣
∞∑

j=–∞
λjA3j

∣∣∣∣∣ >
λ

4

}∣∣∣∣∣ � [b]θ
λ

‖f ‖H1
L(Rn).

Now let us deal with the last part. Since rj ≤ ρ(xj), we get

∥∥(b – bBj )aj
∥∥

L1(Rn) ≤
(∫

Bj

∣∣b(x) – bBj

∣∣q′
dx

)1/q′(∫
Bj

∣∣aj(x)
∣∣q dx

)1/q

� [b]θ
(

1 +
rj

ρ(xj)

)θ ′

� [b]θ .

Note that

∣∣A4j(x)
∣∣ ≤

∞∑
j=–∞

|λj|Tβ

(∣∣(b – bBj )aj
∣∣)(x)χ(8Bj)c (x)

≤ Tβ

( ∞∑
j=–∞

∣∣λj(b – bBj )aj
∣∣
)

(x).

By Theorem 1, we know Tβ is bounded from L1(Rn) into weak L1(Rn). Then
∣∣∣∣∣
{

x ∈R
n :

∣∣∣∣∣
∞∑

j=–∞
λjA4j

∣∣∣∣∣ >
λ

4

}∣∣∣∣∣

≤
∣∣∣∣∣
{

x ∈ R
n :

∣∣∣∣∣Tβ

( ∞∑
j=–∞

∣∣λj(b – bBj )aj
∣∣
)

(x)

∣∣∣∣∣ >
λ

4

}∣∣∣∣∣

� 1
λ

∥∥∥∥∥
∞∑

j=–∞

∣∣λj(b – bBj )aj
∣∣
∥∥∥∥∥

L1(Rn)
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� 1
λ

∞∑
j=–∞

|λj|
∥∥(b – bBj )aj

∥∥
L1(Rn)

� [b]θ
λ

( ∞∑
j=–∞

|λj|
)

� [b]θ
λ

‖f ‖H1
L(Rn).

Thus,

∣∣∣∣∣
{

x ∈R
n :

∣∣∣∣∣
4∑

i=1

∞∑
j=–∞

λjAij

∣∣∣∣∣ > λ

}∣∣∣∣∣

�
4∑

i=1

∣∣∣∣∣
{

x ∈R
n :

∣∣∣∣∣
∞∑

j=–∞
λjAij

∣∣∣∣∣ >
λ

4

}∣∣∣∣∣
� [b]θ

λ
‖f ‖H1

L(Rn). �

4 Conclusion
In this paper, we established the Lp-boundedness of commutator operators [b, Tβ ] and
[b, T∗

β ], where Tβ = V α∇L–β , 1
2 < β ≤ 1, β – α = 1

2 , and b ∈ BMOθ (ρ), which is larger than
the space BMO(Rn). At the endpoint, we show that the operator [b, Tβ ] is bounded from
Hardy space H1

L(Rn) continuously into weak L1(Rn). These results enrich the theory of
Schrödinger operator.
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