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Stevo Stević1,2,3* and Zhi-Jie Jiang4

*Correspondence: sstevic@ptt.rs
1Mathematical Institute of the
Serbian Academy of Sciences,
Beograd, Serbia
2Department of Medical Research,
China Medical University Hospital,
China Medical University, Taichung,
Taiwan, Republic of China
Full list of author information is
available at the end of the article

Abstract
Let D be the open unit disk of the complex plane C and H(D) be the space of all
analytic functions on D. Let A2γ ,δ (D) be the space of analytic functions that are L

2 with

respect to the weight ωγ ,δ (z) = (ln 1
|z| )

γ [ln(1 – 1
ln |z| )]

δ , where –1 < γ <∞ and δ ≤ 0.
For given g ∈ H(D), the integral-type operator Ig on H(D) is defined as

Igf (z) =
∫ z

0
f (ζ )g(ζ )dζ .

In this paper, we characterize the boundedness of Ig on A2γ ,δ , whereas in the main
result we estimate the essential norm of the operator. Some basic results on the space
A2γ ,δ (D) are also presented.
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1 Introduction
Let D = {z ∈C : |z| < 1} be the open unit disk of the complex plane C, rD = {z ∈D : |z| < r},
H(D) be the space of all analytic functions on D, and dA(z) = 1

π
r dr dθ be the normalized

area measure on D (i.e., A(D) = 1).
A positive continuous function on D is called weight. Let μ(z) be a weight function on D.

The weighted-type space H∞
μ (D) = H∞

μ consists of f ∈ H(D) such that

‖f ‖H∞
μ

:= sup
z∈D

μ(z)
∣∣f (z)

∣∣ < ∞.

The little weighted-type space on D, H∞
μ,0(D) = H∞

μ,0 consists of all f ∈ H(D) such that

lim|z|→1–0
μ(z)

∣∣f (z)
∣∣ = 0

(see, e.g., [1] and the related references therein). For μ(z) = (1 – |z|)α , α > 0, the classical
weighted-type space H∞

α (D) = H∞
α and the classical little weighted-type space H∞

α,0(D) =
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H∞
α,0 are obtained whose special cases frequently appear in the literature, which is also the

case in this paper.
Let –1 < γ < ∞ and δ ≤ 0. The logarithmic Hilbert–Bergman space, denoted by

A2
γ ,δ(D) = A2

γ ,δ , consists of all f ∈ H(D) such that

‖f ‖A2
γ ,δ

:=
(∫

D

∣∣f (z)
∣∣2

ωγ ,δ(z) dA(z)
)1/2

< ∞,

where

ωγ ,δ(z) =
(

ln
1
|z|

)γ [
ln

(
1 –

1
ln |z|

)]δ

.

Under the inner product

〈f , g〉 =
∫
D

f (z)g(z)ωγ ,δ(z) dA(z),

A2
γ ,δ is a Hilbert space. This is why it is called the logarithmic Hilbert–Bergman space. The

space A2
γ ,δ has been recently introduced in [2] as a special case of the logarithmic Bergman

space Ap
γ ,δ , p ∈ (0,∞).

For a given function g ∈ H(D), the integral-type operator Ig is defined by

Ig(f )(z) =
∫ z

0
f (ζ )g(ζ ) dζ (1)

for f ∈ H(D).
As usual, throughout the paper, we will write frequently Ig f instead of Ig(f ).
The operator (1) is clearly a natural generalization of the integral operator (the one ob-

tained for g(z) ≡ 1). The operator can be regarded as a classical/folklore one. A variant of
the operator can be found in [3], which could be one of the first papers studying such an
operator on concrete spaces of analytic functions on D (see [3, Lemma 1]). The topic of
studying integral-type operators on spaces of analytic functions has attracted some con-
siderable recent attention. Much information on the topic, including a large list of refer-
ences up to the end of 2006, can be found in [4]. Some product-type generalizations of the
operator on the unit disc were later introduced and studied, for example, in [5], while the
corresponding operator for the case of the unit ball was introduced in [6] and later studied
in many papers to mention, for example, [7] (for the case of the polydisc, see, e.g., [8]). For
some further generalizations, related operators, and related results, see also [9–11] and
the references therein. We would like to point out that a great majority of these papers are
devoted to characterizing some function-theoretic properties of these operators in terms
of the involved symbols.

Let X, Y be two Banach spaces and T : X → Y be a bounded linear operator (an operator
which maps bounded sets in X to bounded sets in Y ). Recall that the essential norm of the
bounded linear operator T : X → Y , denoted by ‖T‖e, is defined as

‖T‖e := inf
{‖T – K‖ : K is compact from X to Y

}
,
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where ‖ · ‖ denotes the usual operator norm. For some results on the essential norms of
concrete operators (such as the composition, multiplication, weighted composition, dif-
ferentiation, integral, and their various products and relatives) see, for example, [7, 12–18]
and the related references therein. From the definition of the essential norm and since the
set of all compact operators is a closed subset of the space of bounded linear operators, it
follows that the operator T : X → Y is compact if and only if ‖T‖e = 0.

In this paper, first, we characterize the boundedness and compactness of Ig on A2
γ ,δ , when

δ < 0. As it is shown, when δ = 0, the space is equivalent to the classical weighted Hilbert–
Bergman space for which the corresponding results are known even in much more general
settings [19, 20]. We also estimate essential norm of the operator, which is practically the
main result in the paper. This paper, among others, can be regarded as a continuation of
our investigations of integral-type operators (see [4–7] and the references therein), essen-
tial norms of concrete operators on spaces of analytic functions (see [7, 15, 16] and the
references therein), as well as the investigation of concrete operators on A2

γ ,δ . Before this
work, composition operators on, or between, A2

γ ,δ were studied in [2, 18], and product-
type operators from A2

γ ,δ to Zygmund–Orlicz spaces were studied in [21]. We also present
some basic results on the space A2

γ ,δ . For example, we give a completely analytic proof why
the space A2

γ ,δ is the same as the space consisting of all f ∈ H(D) such that

∫
D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z) < +∞. (2)

It is well known that f ∈ A2
γ (D) if and only if f ∈D2

γ +2(D) (the classical weighted Dirichlet
space); moreover,

‖f ‖2
A2

γ

 ∣∣f (0)

∣∣2 +
∫
D

∣∣f ′(z)
∣∣2(1 – |z|2)γ +2 dA(z).

Here, we prove a similar result for the space A2
γ ,δ . We obtain pointwise estimates for func-

tions in A2
γ ,δ , as well as for their derivatives. We also give a complete orthonormal system

in A2
γ ,δ . These basic results on the space A2

γ ,δ seem new (we could not find them in the
literature, so far).

In this paper, the letter C denotes a positive constant which may differ from one oc-
currence to the other. The notation a � b means that there exists a positive constant C
independent of the essential variables in the quantities a and b such that a ≤ Cb. If a � b
and b � a, then we write a 
 b.

2 Some basic results on A2
γ ,δ and auxiliary ones

This section presents several auxiliary results which are employed in the proofs of the
main ones, as well as several basic results on the space A2

γ ,δ . First, we present a completely
analytic proof of the fact that the space is the same as the space consisting of all f ∈ H(D)
satisfying (2), connecting it to a more familiar weight.

If we use the well-known asymptotic relation ln(1 + x) = x + o(x), as x → 0, we easily
obtain

ωγ ,δ(z) =
(

ln
1
|z|

)γ [
ln

(
1 +

1
ln 1

|z|

)]δ

∼
(

ln
1
|z|

)γ –δ

(3)
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as z → 0, and

ωγ ,δ(z) =
(

ln

(
1 +

1 – |z|
|z|

))γ [
ln

(
1 +

1
ln(1 + 1–|z|

|z| )

)]δ

=
(

1 – |z|
|z|

(
1 + O

(
1 – |z|))

)γ [
ln

(
1 +

1
1–|z|
|z| (1 + O(1 – |z|))

)]δ

∼ (
1 – |z|)γ

(
ln

(
1

1 – |z| + O(1)
))δ

(4)

as |z| → 1 – 0.
From (3), (4) and the continuity of the functions therein, it is easy to see that

ωγ ,δ(z) 

(

ln
1
|z|

)γ –δ

(5)

for every |z| ≤ r1 < 1 and each fixed r1 ∈ (0, 1), while

ωγ ,δ(z) 
 (
1 – |z|)γ

(
ln

e
1 – |z|

)δ

, (6)

for every r2 ≤ |z| < 1 and each fixed r2 ∈ (0, 1), where in the proof of relation (6) the fact
that, for each 0 < m ≤ M, there are α1 ∈ (0, 1] and α2 ≥ 1 such that

ln

(
e

1 – |z|
)α1

≤ ln
m

1 – |z| ≤ ln
M

1 – |z| ≤ ln

(
e

1 – |z|
)α2

(7)

for z sufficiently close to the unit circle is also used.

Proposition 1 Let –1 < γ < ∞ and δ ≤ 0. Then the asymptotic relation

‖f ‖A2
γ ,δ



∫
D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z) (8)

holds for every f ∈ A2
γ ,δ .

Proof From (6), we have

∫
D\r0D

∣∣f (z)
∣∣2

ωγ ,δ(z) dA(z) 

∫
D\r0D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z) (9)

for each r0 ∈ (0, 1).
It is easy to see that, for each fixed r0 ∈ (0, 1), we have

∫
r0D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z) 

∫

r0D

∣∣f (z)
∣∣2 dA(z). (10)

From (5), we have

∫
1
e D

∣∣f (z)
∣∣2

ωγ ,δ(z) dA(z) 

∫

1
e D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z). (11)
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If γ – δ ≥ 0, then

∫
1
e D

∣∣f (z)
∣∣2 dA(z) ≤

∫
1
e D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z). (12)

From (9) and (10) with r0 = 1/e, (11) and (12), it follows that
∫
D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z) � ‖f ‖A2
γ ,δ

. (13)

Further, let

C1 := sup
0<r<1/e

(
ln

1
r

)γ –δ√
r.

It is easy to see that C1 ∈ (0, +∞).
We have

∫
1
e D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z)

= 2
∫ 1/e

0
M2

2(f , r)
(

ln
1
r

)γ –δ

r dr

≤ 2C1

∫ 1/e

0
M2

2(f , r)
√

r dr

= 4C1

∫ 1/
√

e

0
M2

2
(
f ,ρ2)ρ2 dρ

≤ 4C1

∫ 1/
√

e

0
M2

2(f ,ρ)ρ dρ

≤ 2C1

∫
1√
e D

∣∣f (z)
∣∣2 dA(z)

≤ 2C1

(∫
1
e D

∣∣f (z)
∣∣2 dA(z) +

∫
1√
e D\ 1

e D

∣∣f (z)
∣∣2 dA(z)

)

�
∫

1
e D

∣∣f (z)
∣∣2 dA(z) +

∫
1√
e D\ 1

e D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z)

�
∫

1
e D

∣∣f (z)
∣∣2 dA(z) +

∫
D\ 1

e D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z), (14)

where we have used the polar coordinates z = reiθ and the monotonicity of the integral
means

M2
2(f , r) =

1
2π

∫ 2π

0

∣∣f (reiθ )∣∣2 dθ , r ∈ [0, 1).

From (9) and (10) with r0 = 1/e, (11), and (14), it follows that

‖f ‖A2
γ ,δ

�
∫
D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z). (15)

From (13) and (15), we obtain that the asymptotic relation (8) holds in this case.
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If γ – δ < 0, then clearly

∫
1
e D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z) ≤
∫

1
e D

∣∣f (z)
∣∣2 dA(z). (16)

Hence, from (9) and (10) with r0 = 1/e, (11), and (16), it follows that

‖f ‖A2
γ ,δ

�
∫
D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z). (17)

On the other hand, we have

C2 := sup
0<r<1/e2/3

r
(

ln
1
r

)δ–γ

∈ (0, +∞),

from which, along with the monotonicity of the integral means and use of the polar coor-
dinates, it follows that

∫
1

e2/3 D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z) = 2
∫ 1/e2/3

0
M2

2(f , r)
(

ln
1
r

)γ –δ

r dr

≥ 2
C2

∫ 1/e2/3

0
M2

2(f , r)r2 dr

≥ 4
3C2

∫ 1/e

0
M2

2
(
f ,ρ2/3)ρ dρ

≥ 4
3C2

∫ 1/e

0
M2

2(f ,ρ)ρ dρ

≥ 2
3C2

∫
1
e D

∣∣f (z)
∣∣2 dA(z). (18)

From (18), we have

∫
1
e D

∣∣f (z)
∣∣2 dA(z) �

∫
1

e2/3 D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z)

�
∫

1
e D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z) +
∫

1
e2/3 D\ 1

e D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z)

�
∫

1
e D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z) +
∫

1
e2/3 D\ 1

e D

∣∣f (z)
∣∣2 dA(z)

�
∫

1
e D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z) +
∫

1
e2/3 D\ 1

e D

∣∣f (z)
∣∣2

ωγ ,δ(z) dA(z)

�
∫

1
e D

∣∣f (z)
∣∣2

(
ln

1
|z|

)γ –δ

dA(z) +
∫
D\ 1

e D

∣∣f (z)
∣∣2

ωγ ,δ(z) dA(z). (19)

From (9) and (10) with r0 = 1/e, (11), and (19), it follows that

∫
D

∣∣f (z)
∣∣2(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z) � ‖f ‖A2
γ ,δ

. (20)
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From (17) and (20) the asymptotic relation (8) follows in this case, completing the proof
of the proposition. �

Remark 1 In [18] it is said that the space A2
γ ,δ is the same as the space consisting of all

f ∈ H(D) satisfying condition (2) not giving a proof of the claim. Due to the estimates in
(7), Proposition 1 gives a pure analytic proof of the equivalence of these two spaces. Note
also that from Proposition 1 with δ = 0 it is obtained that the space A2

γ ,0 is equivalent to
the weighted Bergman space A2

γ .
The proof of Proposition 1 can be shortened by applying the open mapping theorem,

but we decided to present a complete analytic proof for the audience more interested in
inequalities. However, in the proof of one of our next results (see Lemma 1) we will use
the open mapping theorem.

Remark 2 Note that, by using (5), (6), and the polar coordinates, we have

‖1‖A2
γ ,δ

=
∫
D

ωγ ,δ(z) dA(z) =
∫

1
e D

ωγ ,δ(z) dA(z) +
∫
D\ 1

e D
ωγ ,δ(z) dA(z)

�
∫

1
e D

(
ln

1
|z|

)γ –δ

dA(z) +
∫
D\ 1

e D

(
1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z)

≤ 1
π

∫ 1/e

0

∫ 2π

0

(
ln

1
ρ

)γ –δ

dθρ dρ +
(

ln
e2

e – 1

)δ ∫
D\ 1

e D

(
1 – |z|)γ dA(z)

= 2
∫ ∞

1

sγ –δ

e2s ds + 2
(

ln
e2

e – 1

)δ ∫ 1

1/e
(1 – ρ)γ ρ dρ < ∞ (21)

since γ > –1.

Proposition 2 Let g be a nondecreasing integrable function on [0, 1) and h be a positive
function on (0, 1) which is continuous on [0, 1). Then, for each fixed r0 ∈ [0, 1), we have

∫ 1

0
g(r)h(r) dr 


∫ 1

r0

g(r)h(r) dr. (22)

Proof If r0 = 0, then the result is obvious. Hence, assume that r0 ∈ (0, 1). We have

∫ 1

0
g(r)h(r) dr =

∫ r0

0
g(r)h(r) dr +

∫ 1

r0

g(r)h(r) dr. (23)

Now note that there is unique n0 ∈ N0 such that

n0
1 – r0

2
≤ r0 < (n0 + 1)

1 – r0

2
.

Note that by the choice of n0 we have

(n0 + 1)(1 – r0)
2

<
1 + r0

2
< 1.
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Since g is a nondecreasing function and h is positive on (0, 1) and continuous on [0, 1),
we have

∫ r0

0
g(r)h(r) dr ≤ max

0≤r≤r0
h(r)

∫ r0

0
g(r) dr

≤ max
0≤r≤r0

h(r)
∫ (1–r0)(n0+1)/2

0
g(r) dr

= max
0≤r≤r0

h(r)
n0∑
j=0

∫ (1–r0)(j+1)/2

(1–r0)j/2
g(r) dr

≤ (n0 + 1) max
0≤r≤r0

h(r)
∫ (1+r0)/2

r0

g(r) dr

≤ (n0 + 1)
max0≤r≤r0 h(r)

minr0≤r≤(1+r0)/2 h(r)

∫ (1+r0)/2

r0

g(r)h(r) dr

≤ C(r0, h)
∫ 1

r0

g(r)h(r) dr. (24)

From (23) and (24) it follows that

∫ 1

0
g(r)h(r) dr �

∫ 1

r0

g(r)h(r) dr,

from which along with the obvious inequality

∫ 1

r0

g(r)h(r) dr ≤
∫ 1

0
g(r)h(r) dr

the asymptotic relation (22) follows. �

Corollary 1 Let g be an arbitrary nondecreasing integrable function on [0, 1) and h be a
fixed positive function on (0, 1) which is continuous on [0, 1). Then, for each fixed r0 ∈ [0, 1),
we have

∫ 1

r0

g(r)h(r) dr ≤
∫ 1

0
g(r)h(r) dr ≤ C(r0, h)

∫ 1

r0

g(r)h(r) dr

for some positive constant C(r0, h) depending on r0 and h.

Lemma 1 Let –1 < γ < ∞ and δ ≤ 0. Then

‖f ‖2
A2

γ ,δ

 ∣∣f (0)

∣∣2 +
∫
D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z) (25)

for every f ∈ A2
γ ,δ .

Proof Since

√
|a|2 + |b|2 ≤ |a| + |b| ≤

√
2
(|a|2 + |b|2) (26)
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for a, b ∈C, we have

(∣∣f (0)
∣∣2 +

∫
D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z)
)1/2


 ∣∣f (0)
∣∣ +

(∫
D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z)
)1/2

. (27)

Let

‖f ‖1 :=
∣∣f (0)

∣∣ +
(∫

D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z)
)1/2

.

It is clear that ‖f ‖1 ≥ 0 for every f ∈ A2
γ ,δ , that ‖0‖1 = 0 and ‖λf ‖1 = |λ|‖f ‖1 for every

f ∈ A2
γ ,δ and λ ∈C. If ‖f ‖1 = 0, then obviously f (0) = 0, and since ωγ +2,δ(z) > 0, z ∈D \ {0},

it follows that f ′(z) = 0, z ∈ D \ {0}, and since f ∈ H(D), it must be f ′(z) = 0, z ∈ D, from
which it follows that f (z) ≡ f (0) = 0. By using the triangle inequality and the Cauchy–
Schwarz inequality it easily follows that ‖f + g‖1 ≤ ‖f ‖1 + ‖g‖1 for every f , g ∈ A2

γ ,δ . Hence,
‖ · ‖1 is a norm on A2

γ ,δ .
By using the polar coordinates, we have

∫
D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z) = 2
∫ 1

0
M2

2
(
f ′, r

)
ωγ +2,δ(r)r dr. (28)

Employing Proposition 2 with g(r) = M2
2(f ′, r) (here the well-known fact that the inte-

gral means of holomorphic functions are nondecreasing functions is used, which in this
case is a simple statement due the easily checked equality M2

2(f̂ , r) =
∑∞

j=0 |ak|2r2k , if
f̂ (z) =

∑∞
j=0 akzk) and h(r) = rωγ +2,δ(r), which is positive and continuous on (0, 1) and if

it is naturally defined by

h(0) := lim
r→+0

h(r) = 0

it becomes continuous on [0, 1), we have

∫ 1

0
M2

2
(
f ′, r

)
ωγ +2,δ(r)r dr 


∫ 1

r0

M2
2
(
f ′, r

)
ωγ +2,δ(r)r dr, (29)

independently on f .
From (27)–(29) and by using the polar coordinates, it follows that

(∣∣f (0)
∣∣2 +

∫
D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z)
)1/2


 ∣∣f (0)
∣∣ +

(∫
D\r0D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z)
)1/2

(30)

for each r0 ∈ [0, 1).
Since

‖f ‖2
A2

γ ,δ
= 2

∫ 1

0
M2

2(f , r)ωγ ,δ(r)r dr, (31)
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similar as above we obtain

‖f ‖2
A2

γ ,δ



∫
D\r0D

∣∣f (z)
∣∣2

ωγ ,δ(z) dA(z) (32)

for each r0 ∈ [0, 1).
By using the following known formula

M2
2(f , r) =

∣∣f (0)
∣∣2 + 2

∫
rD

∣∣f ′(z)
∣∣2

ln
r
|z| dA(z), (33)

which can be easily checked by direct calculation, in (32) and employing polar coordinates
and the Fubini theorem, we get

‖f ‖2
A2

γ ,δ

 2

∫ 1

r0

M2
2(f , r)ωγ ,δ(r)r dr


 2
∣∣f (0)

∣∣2
∫ 1

r0

ωγ ,δ(r)r dr + 4
∫ 1

r0

ωγ ,δ(r)r
∫

rD

∣∣f ′(z)
∣∣2

ln
r
|z| dA(z) dr

= 2
∣∣f (0)

∣∣2
∫ 1

r0

ωγ ,δ(r)r dr + 8
∫ 1

r0

ωγ ,δ(r)r
∫ r

0
M2

2
(
f ′,ρ

)
ln

r
ρ

ρ dρ dr

= 2
∣∣f (0)

∣∣2
∫ 1

r0

ωγ ,δ(r)r dr + 8
∫ r0

0

∫ 1

r0

ωγ ,δ(r)r ln
r
ρ

drM2
2
(
f ′,ρ

)
ρ dρ

+ 8
∫ 1

r0

∫ 1

ρ

ωγ ,δ(r)r ln
r
ρ

drM2
2
(
f ′,ρ

)
ρ dρ. (34)

By a slight modification of the proof of Lemma 3.1 in [2], we have that

∫ 1

|z|
ωγ ,δ(r)r ln

r
|z| dr 
 ωγ +2,δ(z) (35)

for 0 < r0 ≤ |z| < 1.
From (34) and (35), and by using (26), it follows that

‖f ‖2
A2

γ ,δ
�

∣∣f (0)
∣∣2 +

∫ 1

r0

M2
2
(
f ′,ρ

)
ωγ +2,δ(ρ)ρ dρ

�
∣∣f (0)

∣∣2 +
∫
D\r0D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z)

�
(∣∣f (0)

∣∣ +
(∫

D\r0D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z)
)1/2)2

. (36)

From (30) and (36), we have

‖f ‖1 � ‖f ‖A2
γ ,δ

(37)

for every f ∈ A2
γ ,δ .

Applying the open mapping theorem to the identity map

I :
(
A2

γ ,δ ,‖ · ‖A2
γ ,δ

) → (
A2

γ ,δ ,‖ · ‖1
)
,
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we have that

‖f ‖A2
γ ,δ

� ‖f ‖1,

from which along with (37) the asymptotic relation (25) follows. �

By repeating use of Lemma 1, it follows that the following corollary holds.

Corollary 2 Let –1 < γ < ∞, δ ≤ 0, and m ∈ N. Then

‖f ‖2
A2

γ ,δ



m–1∑
j=0

∣∣f (j)(0)
∣∣2 +

∫
D

∣∣f (m)(z)
∣∣2

ωγ +2m,δ(z) dA(z)

for every f ∈ A2
γ ,δ .

From Corollary 2, we obtain the following corollary.

Corollary 3 Let –1 < γ < ∞, δ ≤ 0, m ∈N, and (fn)n∈N ⊂ A2
γ ,δ . Then

lim
n→∞‖fn – f ‖A2

γ ,δ
= 0

if and only if

lim
n→∞

∫
D

∣∣f (m)
n (z) – f (m)(z)

∣∣2
ωγ +2m,δ(z) dA(z) = 0

and

lim
n→∞ f (j)

n (0) = f (j)(0)

for j = 0, m – 1.

Note that from the proof of Lemma 1 we see that the following result was also proved.

Corollary 4 Let –1 < γ < ∞ and δ ≤ 0. Then, for fixed r0 ∈ [0, 1), we have

‖f ‖2
A2

γ ,δ

 ∣∣f (0)

∣∣2 +
∫
D\r0D

∣∣f ′(z)
∣∣2

ωγ +2,δ(z) dA(z).

We need also the following estimate for the functions in A2
γ ,δ .

Lemma 2 Let –1 < γ < ∞, δ ≤ 0, r0 ∈ (0, 1), and m ∈N0. Then, if |z| ≥ r0, it follows that

∣∣f (m)(z)
∣∣ � [

ωγ +2m+2,δ(z)
]– 1

2 ‖f ‖A2
γ ,δ

for f ∈ A2
γ ,δ .
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Proof From Corollary 2, since

ωγ +2m,δ(ζ ) 
 ωγ +2m,δ(z)

for |ζ – z| < 1–|z|
2 , and by the subharmonicity of the function |f (m)(z)|2, we have

‖f ‖2
A2

γ ,δ
�

∫
D

∣∣f (m)(ζ )
∣∣2

ωγ +2m,δ(ζ ) dA(ζ )

�
∫

|ζ–z|< 1–|z|
2

∣∣f (m)(ζ )
∣∣2

ωγ +2m,δ(ζ ) dA(ζ )

� ωγ +2m,δ(z)
∫

|ζ–z|< 1–|z|
2

∣∣f (m)(ζ )
∣∣2 dA(ζ )

� ωγ +2m,δ(z)
(
1 – |z|)2∣∣f (m)(z)

∣∣2

� ωγ +2m+2,δ(z)
∣∣f (m)(z)

∣∣2,

from which the corollary follows. �

Remark 3 Lemma 2 with m = 0 shows that the point evaluations Λz at the point z ∈ D \
{0} are bounded linear functions on A2

γ ,δ . Then there are reproducing kernels for these z,
denoted by Kγ ,δ(z, ·), such that

Λzf =
〈
f , Kγ ,δ(z, ·)〉 =

∫
D

f (w)Kγ ,δ(z, w)ωγ ,δ(w) dA(w)

and

‖Λz‖ =
∥∥Kγ ,δ(z, ·)∥∥A2

γ ,δ
.

Therefore, from Lemma 2 with m = 0, we have

√
Kγ ,δ(z, z) =

∥∥Kγ ,δ(z, ·)∥∥A2
γ ,δ

�
[
ωγ +2,δ(z)

]– 1
2 (38)

for z ∈D \ {0}.

Remark 4 From the proof of Lemma 2 we see that if –1 < γ < ∞, δ ≤ 0, and m ∈N0, then
for each r ∈ (0, 1), there is a constant cm(r) such that

∣∣f (m)(z)
∣∣ ≤ cm(r)

[
ωγ +2m+2,δ(z)

]– 1
2 ‖f ‖A2

γ ,δ

for |z| ≥ r and every f ∈ A2
γ ,δ .

Lemma 3 Let –1 < γ < ∞, δ ≤ 0, and g ∈ H(D). Then a bounded operator K is compact
on A2

γ ,δ if and only if, for every bounded sequence (fn)n∈N in A2
γ ,δ such that fn → 0 uniformly

on every compact subset of D as n → ∞, it follows that limn→∞ ‖Kfn‖A2
γ ,δ

= 0.
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Proof We will apply Lemma 3 in [8]. Two cases are considered separately, when γ ≥ δ and
γ < δ.

Case γ < δ. We show that ‖fn – f ‖A2
γ ,δ

→ 0 as n → ∞ implies fn → f uniformly on com-
pacts of D.

Since γ < δ, then there exists a positive integer m such that γ + 2m ≥ δ. Therefore, by
Corollary 2, we have that

∣∣f (j)(0)
∣∣ ≤ cj‖f ‖A2

γ ,δ
(39)

for j = 0, m – 1, for some nonnegative constants cj, j = 0, m – 1.
From Lemma 2, we see that for each fixed r ∈ [1/2, 1) it follows that

max
1/2≤|z|≤r

∣∣f (m)(z)
∣∣� max

1/2≤|z|≤r

[
ωγ +2m+2,δ(z)

]– 1
2 ‖f ‖A2

γ ,δ
= ĉm(r)‖f ‖A2

γ ,δ
, (40)

where

ĉm(r) = max
1/2≤t≤r

[
ωγ +2m+2,δ(t)

]– 1
2 ,

which is a finite constant due to the continuity of the function under the sign of maximum
on a compact set.

On the other hand, by the subharmonicity of the function |f (m)(z)|2, we have that

∣∣f (m)(z)
∣∣2 ≤ 16

∫
|ζ–z|≤1/4

∣∣f (m)(ζ )
∣∣2 dA(ζ ),

from which it follows that

max
|z|≤1/2

∣∣f (m)(z)
∣∣2 ≤ 16

∫
|ζ |≤3/4

∣∣f (m)(ζ )
∣∣2 dA(ζ ) (41)

for m ∈N0.
Since γ + 2m ≥ δ, then there is a positive constant ĉ1 such that

0 < ĉ1 ≤ inf|z|≤3/4
ωγ +2m,δ(z). (42)

Hence, from (41) and (42), we have that

max
|z|≤1/2

∣∣f (m)(z)
∣∣2 ≤ 16

ĉ1

∫
|ζ |≤3/4

∣∣f (m)(ζ )
∣∣2

ωγ +2m,δ(ζ ) dA(ζ ) ≤ 16
ĉ1

‖f ‖2
A2

γ ,δ
. (43)

From (40) and (43) we have that, for each fixed r ∈ [0, 1), there is a constant c̃m(r) such that

max
|z|≤r

∣∣f (m)(z)
∣∣ ≤ c̃m(r)‖f ‖A2

γ ,δ
, (44)

from which it further follows that

max
|z|≤r

∣∣(f (m) – f (m)
n

)
(z)

∣∣ ≤ c̃m(r)‖f – fn‖A2
γ ,δ

,
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and consequently ‖fn – f ‖A2
γ ,δ

→ 0 as n → ∞ implies f (m)
n → f (m) uniformly on compacts

of D. Moreover, (44) means that the point evaluation functionals f �→ f (m)(z) are continu-
ous.

Since

f (m–k)(z) =
k–1∑
j=0

f (m–k+j)(0)
j!

zj +
∫ z

0

∫ ζk

0
· · ·

∫ ζ2

0
f (m)(ζ1) dζ1 · · ·dζk–1 dζk

for each k ∈ {1, . . . , m}, by using (39), (44), and some simple estimates, we obtain

∣∣f (m–k)(z)
∣∣ ≤

k–1∑
j=0

|f (m–k+j)(0)|
j!

|z|j + sup
z∈rD

∣∣∣∣
∫ z

0

∫ ζk

0
· · ·

∫ ζ2

0
f (m)(ζ1) dζ1 · · ·dζk–1 dζk

∣∣∣∣

≤
k–1∑
j=0

|f (m–k+j)(0)|
j!

rj + sup
z∈rD

∣∣f (m)(z)
∣∣
∣∣∣∣zk

k!

∣∣∣∣

≤
( k–1∑

j=0

cm–k+j

j!
rj + c̃m(r)

rk

k!

)
‖f ‖A2

γ ,δ
(45)

for every z ∈ rD.
If we take k = m in (45), it follows that

max
|z|≤r

∣∣f (z)
∣∣ ≤

(m–1∑
j=0

cj

j!
rj + c̃m(r)

rm

m!

)
‖f ‖A2

γ ,δ
, (46)

from which it follows that

max
|z|≤r

∣∣(f – fn)(z)
∣∣ ≤

(m–1∑
j=0

cj

j!
rj + c̃m(r)

rm

m!

)
‖f – fn‖A2

γ ,δ
,

and consequently ‖fn – f ‖A2
γ ,δ

→ 0 as n → ∞ implies fn → f uniformly on compacts of D.
Moreover, from (46) we see that |f (z)| � ‖f ‖A2

γ ,δ
, which means that the point evaluation

functionals are continuous. Hence, Lemma 3 in [8] can be applied in the case.
Case γ ≥ δ. From Lemma 2 we have that, for each fixed r ∈ [1/2, 1), it follows that

max
1/2≤|z|≤r

∣∣f (z)
∣∣ � max

1/2≤|z|≤r

[
ωγ +2,δ(z)

]– 1
2 ‖f ‖A2

γ ,δ
= ĉ0(r)‖f ‖A2

γ ,δ
, (47)

where

ĉ0(r) := max
1/2≤t≤r

[
ωγ +2,δ(t)

]– 1
2 ,

which is a finite constant due to the continuity of the function under the sign of maximum
on a compact set.

Now note that (41) holds for m = 0, that is, we have

max
|z|≤1/2

∣∣f (z)
∣∣2 ≤ 16

∫
|ζ |≤3/4

∣∣f (ζ )
∣∣2 dA(ζ ). (48)
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Since γ ≥ δ, by using (3), it is not difficult to see that there is a positive constant c2 such
that

0 < c2 ≤ inf|z|≤3/4
ωγ ,δ(z). (49)

Hence, from (48) and (49), we have

max
|z|≤1/2

∣∣f (z)
∣∣2 ≤ 16

c2

∫
|ζ |≤3/4

∣∣f (ζ )
∣∣2

ωγ ,δ(ζ ) dA(ζ ) ≤ 16
c2

‖f ‖2
A2

γ ,δ
. (50)

From (47) and (50) we have that, for each fixed r ∈ [0, 1), there is a constant c̃0(r) such that

max
|z|≤r

∣∣f (z)
∣∣ ≤ c̃0(r)‖f ‖A2

γ ,δ
, (51)

from which it follows that

max
|z|≤r

∣∣(f – fn)(z)
∣∣ ≤ c̃0(r)‖f – fn‖A2

γ ,δ
,

and consequently ‖fn – f ‖A2
γ ,δ

→ 0 as n → ∞ implies fn → f uniformly on compacts of D.
Moreover, (51) means that the point evaluation functionals are continuous, which is the
other necessary condition for applying Lemma 3 in [8], finishing the proof of the lemma.�

Remark 5 Note that the proof of Lemma 3 is considerably more complex than those for
the case of some other spaces of analytic functions. For example, the corresponding result
for the weighted Bloch space can be found in [8], for the Zygmund-type space in [12],
while for the Besov and BMOA spaces in [22]. The first result of the type seems the one
in [22], but it has some inaccuracies.

Lemma 4 Let –1 < γ < ∞, δ ≤ 0, r0 ∈ (0, 1), and g ∈ H(D). If Ig is bounded on A2
γ ,δ , then

there exists a positive constant C independent of f ∈ A2
γ ,δ and a ∈D \ r0D such that

∣∣f (a)
∣∣∣∣g(a)

∣∣ ≤ C‖Ig f ‖A2
γ ,δ

∥∥Kγ +2,δ(a, ·)∥∥A2
γ +2,δ

. (52)

Proof Since Ig is bounded on A2
γ ,δ , by Lemma 1 we have that f (z)g(z) = (Ig f )′(z) ∈ A2

γ +2,δ
for every f ∈ A2

γ ,δ . Then, by the reproducing kernel of A2
γ +2,δ , for each a ∈D\ r0D it follows

that

f (a)g(a) =
∫
D

f (z)g(z)Kγ +2,δ(a, z)ωγ +2,δ(z) dA(z). (53)

From (53), the Cauchy–Schwarz inequality, and Lemma 1, it follows that

∣∣f (a)g(a)
∣∣ ≤

∫
D

∣∣f (z)g(z)Kγ +2,δ(a, z)
∣∣ωγ +2,δ(z) dA(z)

≤
(∫

D

∣∣f (z)g(z)
∣∣2

ωγ +2,δ(z) dA(z)
) 1

2

×
(∫

D

∣∣Kγ +2,δ(a, z)
∣∣2

ωγ +2,δ(z) dA(z)
) 1

2
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=
∥∥(Ig f )′

∥∥
A2

γ +2,δ

∥∥Kγ +2,δ(a, ·)∥∥A2
γ +2,δ

≤ C‖Ig f ‖A2
γ ,δ

∥∥Kγ +2,δ(a, ·)∥∥A2
γ +2,δ

.

This finishes the proof of the lemma. �

For fixed a ∈D, let

ka(z) =
(1 – |a|)–δ

(1 – az)
γ
2 +1–δ

[
ln

(
1 –

1
ln |a|

)]– δ
2

, z ∈D. (54)

It is easy to see that

ka(a) 
 1
(1 – |a|) γ

2 +1

[
ln

(
1 –

1
ln |a|

)]– δ
2

. (55)

It was essentially proved in [2] that for each r ∈ (0, 1)

sup
|a|≥r

‖ka‖A2
γ ,δ

� 1. (56)

When δ < 0, it is easily seen that ka → 0 uniformly on compacts of D as |a| → 1. Note that
this is not true if δ = 0, a claim which is stated in [2] as a minor oversight.

Let

ϕw(z) =
w – z

1 – wz

and D(w, δ) = {z : |ϕw(z)| < δ}.
The following simple lemma is proved by a slight modification of the proof of Lemma 3.2

in [18], so the proof is omitted.

Lemma 5 Let r0 ∈ (0, 1), a ∈D \ r0D. Then

ln

(
1 –

1
ln |w|

)

 ln

(
1 –

1
ln |a|

)

for w ∈ D(a, 1/2).

Now we present a lower bound estimate for the quantity ‖ka‖A2
γ ,δ

.

Lemma 6 Let –1 < γ < ∞, δ < 0, r0 ∈ (0, 1), and a ∈D \ r0D. Then ‖ka‖A2
γ ,δ

� 1.

Proof By Lemma 1 and the expression of ka, we have

‖ka‖2
A2

γ ,δ
≥ C1

∫
D

∣∣k′
a(w)

∣∣2
ωγ +2,δ(w) dA(w)

= c(γ , δ, a)
∫
D

1
|1 – aw|γ –2δ+4 ωγ +2,δ(w) dA(w), (57)
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where

c(γ , δ, a) =
(

γ

2
+ 1 – δ

)2

|a|2(1 – |a|2)–2δ

[
ln

(
1 –

1
ln |a|

)]–δ

C1.

On the other hand,

∫
D

1
|1 – au|γ –2δ+4 ωγ +2,δ(u) dA(u) � 1

(1 – |a|2)γ –2δ+4

∫
D(a,1/2)

ωγ +2,δ(u) dA(u). (58)

Then, from Lemma 5 and since 1 – |w| 
 1 – |a| and A(D(a, 1/2)) 
 (1 – |a|2)2, when w ∈
D(a, 1/2), it follows that

∫
D(a,1/2)

ωγ +2,δ(w) dA(w) ≥ C2
(
1 – |a|2)γ +4

[
ln

(
1 –

1
ln |a|

)]δ

. (59)

Hence, from (57)–(59), we have that

‖ka‖2
A2

γ ,δ
≥ r2

0C1C2

(
γ

2
+ 1 – δ

)2

for |a| ≥ r0, from which the desired result follows. �

Remark 6 With the help of Lemma 6, we see that when δ < 0 the functions

fa(z) =
ka(z)

‖ka‖A2
γ ,δ

, z ∈D,

converge uniformly to zero on the compact subsets of D as |a| → 1. The functions fa will
be used in the characterization of the compactness of Ig on A2

γ ,δ .

3 Main results and proofs
First, we characterize the boundedness of the operator Ig on A2

γ ,δ .

Theorem 1 Let –1 < γ < ∞, δ < 0, and g ∈ H(D). Then the operator Ig is bounded on A2
γ ,δ

if and only if g ∈ H∞
1 .

Proof Suppose that g ∈ H∞
1 . First, note that

(Ig f )′(z) = f (z)g(z) and Ig f (0) = 0. (60)

Using (60), Corollary 4, and the fact that

ln
1
x


 1 – x (61)
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for x ∈ (r, 1), where r is a fixed number in the interval (0, 1), it follows that

‖Ig f ‖2
A2

γ ,δ



∫
D\rD

∣∣(Ig f )′(z)
∣∣2

ωγ +2,δ(z) dA(z)

=
∫
D\rD

∣∣f (z)
∣∣2∣∣g(z)

∣∣2
ωγ +2,δ(z) dA(z)

≤ sup
{z∈D:|z|≥r}

(
ln

1
|z|

)2∣∣g(z)
∣∣2‖f ‖2

A2
γ ,δ

� sup
{z∈D:|z|≥r}

(
1 – |z|)2∣∣g(z)

∣∣2‖f ‖2
A2

γ ,δ

≤ ‖g‖2
H∞

1
‖f ‖2

A2
γ ,δ

. (62)

From (62), it follows that Ig is bounded on A2
γ ,δ , and moreover that ‖Ig‖� ‖g‖H∞

1
.

Conversely, suppose that Ig is bounded on A2
γ ,δ and that r ∈ (0, 1). By Lemma 4, we ob-

tain

∣∣f (a)
∣∣∣∣g(a)

∣∣ ≤ C‖Ig f ‖A2
γ ,δ

∥∥Kγ +2,δ(a, ·)∥∥A2
γ +2,δ

(63)

for f ∈ A2
γ ,δ and a ∈ D \ rD. Specially, for every f ∈ A2

γ ,δ with f (a) �= 0, by (63) we
have

(
1 – |a|)∣∣g(a)

∣∣ ≤ C
(1 – |a|)
|f (a)| ‖Ig f ‖A2

γ ,δ

∥∥Kγ +2,δ(a, ·)∥∥A2
γ +2,δ

. (64)

Applying (64) to the function ka, from (38), (55), and (56), it follows that

(
1 – |a|)∣∣g(a)

∣∣ ≤ C
(1 – |a|)
|ka(a)| ‖Ig‖‖ka‖A2

γ ,δ

∥∥Kγ +2,δ(a, ·)∥∥A2
γ +2,δ

� ‖Ig‖,

from which it follows that

sup
|a|≥r

(
1 – |a|)∣∣g(a)

∣∣ < +∞. (65)

From (65) along with the obvious fact

sup
|a|≤r

(
1 – |a|)∣∣g(a)

∣∣ < +∞,

we obtain that g ∈ H∞
1 . �

Next we characterize the compactness of the operator Ig on A2
γ ,δ . We will present a direct

proof of it for the presentational reasons and an obvious connectedness with Theorem 1,
although it will be also a consequence of our next theorem.

Theorem 2 Let –1 < γ < ∞, δ < 0, and g ∈ H(D). Then the operator Ig is compact on A2
γ ,δ

if and only if g ∈ H∞
1,0(D).
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Proof First, assume that g ∈ H∞
1,0(D). Then, for sufficiently small ε > 0, there exists δ0 ∈

(0, 1) such that

(
1 – |z|)∣∣g(z)

∣∣ < ε (66)

for z ∈D \ δ0D.
Now note that by (3) and since γ – δ > –1, we have

∫
δ0D

ωγ +2,δ(z) dA(z) 

∫ δ0

0

∫ 2π

0

(
ln

1
ρ

)γ –δ+2

ρ dθ dρ = 2π

∫ ∞

ln 1
δ0

sγ –δ+2

e2s ds < ∞. (67)

Let (fn)n∈N be a sequence in A2
γ ,δ such that ‖fn‖A2

γ ,δ
≤ M and fn → 0 uniformly on com-

pact subsets of D.
For above chosen ε, choose a positive integer N such that

∣∣fn(z)
∣∣ <

ε∫
δ0D

|g(z)|2ωγ +2,δ(z) dA(z)
(68)

for all z ∈ δ0D and n ≥ N , which is possible since due to (67) we have

∫
δ0D

∣∣g(z)
∣∣2

ωγ +2,δ(z) dA(z) ≤ max
|z|≤δ0

∣∣g(z)
∣∣2

∫
δ0D

ωγ +2,δ(z) dA(z) < ∞.

By using (61), (66), and (68), we have

‖Ig fn‖2
A2

γ ,δ
=

∫
D

∣∣Ig fn(z)
∣∣2

ωγ ,δ(z) dA(z)

≤ C
∫
D

∣∣fn(z)g(z)
∣∣2

ωγ +2,δ(z) dA(z)

�
∫

δ0D
+

∫
D\δ0D

∣∣fn(z)g(z)
∣∣2

ωγ +2,δ(z) dA(z)

� ε2 + ε2‖fn‖2
A2

γ ,δ
.

Thus, the condition g ∈ H∞
1,0(D) implies the compactness of Ig on A2

γ ,δ .
Now suppose that Ig is compact on A2

γ ,δ . Put

fa(z) =
ka(z)

‖ka‖A2
γ ,δ

.

As we have seen in Remark 6, fa → 0 uniformly on compacts of D as |a| → 1. Since Ig is
compact on A2

γ ,δ , by Lemma 3 we have

lim|a|→1–
‖Ig fa‖A2

γ ,δ
= 0.
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From (64) we have

(
1 – |a|)∣∣g(a)

∣∣� 1 – |a|
|fa(a)| ‖Ig fa‖A2

γ ,δ

∥∥Kγ +2,δ(a, ·)∥∥A2
γ +2,δ

� ‖Ig fa‖A2
γ ,δ

→ 0 (69)

as |a| → 1, from which it follows that g ∈ H∞
1,0(D). �

We now consider the essential norm of the operator Ig on A2
γ ,δ . Before this we formulate

and prove an auxiliary result on a complete orthonormal system in A2
γ ,δ . For some basics

on the topic see, for example, [23] and [24].

Lemma 7 Let

ϕn(z) =
zn

‖zn‖A2
γ ,δ

, n ∈N0. (70)

Then the sequence (ϕn(z))n∈N0 is a complete orthonormal system in A2
γ ,δ .

Proof By using the polar coordinates, we have

〈ϕn,ϕm〉 =
∫
D

ϕn(z)ϕm(z)ωγ ,δ(z) dA(z)

=
1

π‖zn‖A2
γ ,δ

‖zm‖A2
γ ,δ

∫ 1

0

∫ 2π

0
rneinθ rme–imθωγ ,δ(r)r dr dθ

=
1

π‖zn‖A2
γ ,δ

‖zm‖A2
γ ,δ

∫ 1

0
rn+m+1ωγ ,δ(r) dr

∫ 2π

0
ei(n–m)θ dθ , (71)

from which it easily follows that

〈
zn, zm〉

= δn,m,

where δn,m is the δ Kronecker symbol. Hence, the system is orthonormal.
To prove that the system is complete, we prove that the system span A2

γ ,δ , for which it is
enough to prove that the polynomials are dense in A2

γ ,δ .
Let f ∈ A2

γ ,δ . Then, for every ε > 0, there is r0 ∈ (0, 1) such that
∫
D\r0D

∣∣f (z)
∣∣2

ωγ ,δ(z) dA(z) < ε,

which is equivalent to

2
∫ 1

r0

M2
2(f , r)ωγ ,δ(r) dr < ε. (72)

Since M2(f , r) is a nondecreasing function, we have also that

2
∫ 1

r0

M2
2(fρ , r)ωγ ,δ(r) dr < ε (73)

for every ρ ∈ [0, 1), where fρ(z) = f (ρz).
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Due to the uniform continuity of f on the compact r0D, we have that, for every ε > 0,
there is δ0 ∈ (0, 1) such that

∣∣fρ(z) – f (z)
∣∣ <

√
ε (74)

for every ρ ∈ (1 – δ0, 1) and z ∈ r0D.
By using (72)–(74), we have

‖fρ – f ‖2
A2

γ ,δ
=

∫
D

∣∣f (ρz) – f (z)
∣∣2

ωγ ,δ(z) dA(z)

=
∫

r0D

∣∣f (ρz) – f (z)
∣∣2

ωγ ,δ(z) dA(z) +
∫
D\r0D

∣∣f (ρz) – f (z)
∣∣2

ωγ ,δ(z) dA(z)

< ε

∫
r0D

ωγ ,δ(z) dA(z) + 2
∫
D\r0D

(∣∣f (ρz)
∣∣2 +

∣∣f (z)
∣∣2)

ωγ ,δ(z) dA(z)

< ε

(∫
D

ωγ ,δ(z) dA(z) + 2
)

. (75)

Since f ∈ H(D), the Taylor polynomials sn(fρ) =
∑n–1

j=0 aj(fρ)zj of fρ converge uniformly to
the function on D. Hence, for every ε > 0, there is n0 ∈N0 such that

∣∣fρ(z) – sn(fρ)(z)
∣∣ <

√
ε (76)

for n ≥ n0 and z ∈ D.
From (76), we have

∥∥fρ – sn(fρ)
∥∥2

A2
γ ,δ

=
∫
D

∣∣f (ρz) – sn(fρ)(z)
∣∣2

ωγ ,δ(z) dA(z)

< ε

∫
D

ωγ ,δ(z) dA(z). (77)

From (75) and (77), it follows that

∥∥f – sn(fρ)
∥∥

A2
γ ,δ

<
√

ε

((∫
D

ωγ ,δ(z) dA(z)
)1/2

+
(∫

D

ωγ ,δ(z) dA(z) + 2
)1/2)

(78)

for ρ ∈ (1 – δ0, 1), from which the result follows. �

Theorem 3 Let –1 < γ < ∞, δ < 0, and g ∈ H(D). If the operator Ig is bounded on A2
γ ,δ ,

then

‖Ig‖e 
 A := lim sup
|z|→1

(
1 – |z|)∣∣g(z)

∣∣.
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Proof Let K : A2
γ ,δ → A2

γ ,δ be compact and ka be the functions defined in (54). Then by
Lemma 3 we have that ‖Kka‖A2

γ ,δ
→ 0 as |a| → 1 – 0, from which it follows that

‖Ig – K‖ ≥ lim sup
|a|→1

‖Igka – Kka‖A2
γ ,δ

≥ lim sup
|a|→1

‖Igka‖A2
γ ,δ

– lim sup
|a|→1

‖Kka‖A2
γ ,δ

= lim sup
|a|→1

‖Igka‖A2
γ ,δ

. (79)

By (55) and Remark 3, we have that

∥∥Kγ +2,δ(a, ·)∥∥A2
γ +2,δ

�
(
1 – |a|)–1ka(a). (80)

Hence, from Lemma 4 it follows that

∣∣ka(a)g(a)
∣∣ ≤ C‖Igka‖A2

γ ,δ

∥∥Kγ +2,δ(a, ·)∥∥A2
γ +2,δ

� ‖Igka‖A2
γ ,δ

(
1 – |a|)–1ka(a)

for |a| ≥ r > 0, from which we obtain

(
1 – |a|)∣∣g(a)

∣∣� ‖Igka‖A2
γ ,δ

. (81)

From (79) and (81), we have

‖Ig – K‖ � lim sup
|a|→1

(
1 – |a|)∣∣g(a)

∣∣,

which shows that

‖Ig‖e � lim sup
|a|→1

(
1 – |a|)∣∣g(a)

∣∣. (82)

For a holomorphic function f (z) =
∑∞

m=0 amzm on D, let

Pjf (z) =
j∑

m=0

amzm

and

Rjf (z) =
∞∑

m=j+1

amzm.

As a finite-rank operator, Pj is compact on A2
γ ,δ , and

‖Ig‖e =
∥∥Ig(Pj + Rj)

∥∥
e ≤ ‖IgPj‖e + ‖IgRj‖e = ‖IgRj‖e ≤ ‖IgRj‖ (83)

for each j ∈N.
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Thus

‖Ig‖e ≤ lim inf
j→∞ ‖IgRj‖.

Hence, we have

‖Ig‖2
e ≤ lim inf

j→∞ ‖IgRj‖2 = lim inf
j→∞ sup

‖f ‖A2
γ ,δ

≤1
‖IgRjf ‖2

A2
γ ,δ


 lim inf
j→∞ sup

‖f ‖A2
γ ,δ

≤1

∫
D

∣∣(IgRjf )′(z)
∣∣2

ωγ +2,δ(z) dA(z)

= lim inf
j→∞ sup

‖f ‖A2
γ ,δ

≤1

∫
D

∣∣Rjf (z)g(z)
∣∣2

ωγ +2,δ(z) dA(z). (84)

For every ε > 0, there is r0 ∈ (0, 1) such that

(
1 – |z|)∣∣g(z)

∣∣ < A + ε (85)

for r0 ≤ |z| < 1.
From (84) and (85), it follows that

‖Ig‖2
e ≤ lim inf

j→∞

(
sup

‖f ‖A2
γ ,δ

≤1

∫
r0D

∣∣Rjf (z)g(z)
∣∣2

ωγ +2,δ(z) dA(z)

+ sup
‖f ‖A2

γ ,δ
≤1

∫
D\r0D

∣∣Rjf (z)g(z)
∣∣2

ωγ +2,δ(z) dA(z)
)

� lim inf
j→∞

(∫
r0D

∣∣g(z)
∣∣2

ωγ +2,δ(z) dA(z) sup
‖f ‖A2

γ ,δ
≤1

M2
∞(Rjf , r0)

+ (A + ε)2 sup
‖f ‖A2

γ ,δ
≤1

∫
D\r0D

∣∣Rjf (z)
∣∣2

ωγ ,δ(z) dA(z)
)

. (86)

By Lemma 7 we know that the system ϕn(z) = zn/‖zn‖A2
γ ,δ

, n ∈N0, is a complete orthonor-
mal system in the space A2

γ ,δ . Then, by a known theory, we have that the reproducing kernel
of A2

γ ,δ is

Kγ ,δ(z, w) =
∞∑

n=0

ϕn(z)ϕn(w) =
∞∑

n=0

znwn

‖zn‖2
A2

γ ,δ

.

Now we estimate the quantity of ‖zn‖2
A2

γ ,δ
. From Proposition 1, we have

∥∥zn∥∥2
A2

γ ,δ



∫
D

|z|2n(1 – |z|)γ

(
ln

e
1 – |z|

)δ

dA(z)

=
∫ 1

0

∫ 2π

0
r2n+1(1 – r)γ

(
ln

e
1 – r

)δ dr dθ

π
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≥ 2
∫ (1+r0)/2

0
r2n+1(1 – r)γ

(
ln

e
1 – r

)δ

dr

�
∫ (1+r0)/2

0
r2n+1 dr

=
1

2n + 2

(
1 + r0

2

)2n+2

. (87)

Since Kγ ,δ(z, w) is the kernel of A2
γ ,δ and Rjf ∈ A2

γ ,δ for f ∈ A2
γ ,δ (see (95) below), we have

Rjf (z) =
∫
D

Rjf (w)Kγ ,δ(z, w)ωγ ,δ(w) dA(w).

The orthogonality of wn with respect to ωγ ,δ(w) dA(w) shows that

Rjf (z) =
∫
D

f (w)RjKγ ,δ(z, w)ωγ ,δ(w) dA(w) (88)

(for a related idea, see [25]).
From the expression of Kγ ,δ(z, w), the Cauchy–Schwarz inequality, and by using (21), we

have

∣∣Rjf (z)
∣∣ ≤

∫
D

∣∣f (w)
∣∣∣∣RjKγ ,δ(z, w)

∣∣ωγ ,δ(w) dA(w)

≤ ‖f ‖A2
γ ,δ

(∫
D

( ∞∑
n=j+1

|zn||wn|
‖zn‖2

Aγ ,δ

)2

ωγ ,δ(w) dA(w)

) 1
2

≤ ‖f ‖A2
γ ,δ

(∫
D

ωγ ,δ(w) dA(w)
)1/2 ∞∑

n=j+1

|z|n
‖zn‖2

Aγ ,δ

� ‖f ‖A2
γ ,δ

∞∑
n=j+1

|z|n
‖zn‖2

Aγ ,δ

. (89)

Therefore, from (87) and (89) it follows that

∣∣Rjf (z)
∣∣� ‖f ‖A2

γ ,δ

∞∑
n=j+1

(2n + 2)
(

2
1 + r0

)2n

|z|n. (90)

Now, from (90) we have

M∞(Rjf , r0) = max
|z|=r0

∣∣Rjf (z)
∣∣ � ‖f ‖A2

γ ,δ

∞∑
n=j+1

(2n + 2)
(

4r0

(1 + r0)2

)n

. (91)

Since for r0 ∈ (0, 1) we have

4r0

(1 + r0)2 ∈ (0, 1),
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the series

∞∑
n=0

(2n + 2)
(

4r0

(1 + r0)2

)n

converges, which shows that

lim
j→∞

∞∑
n=j+1

(2n + 2)
(

4r0

(1 + r0)2

)n

= 0. (92)

Using (92) in (91), it follows that

lim
j→∞ M∞(Rjf , r0) = 0. (93)

Employing (93) in (86), we obtain

‖Ig‖2
e ≤ (A + ε)2 lim inf

j→∞ sup
‖f ‖A2

γ ,δ
≤1

∫
D\r0D

∣∣Rjf (z)
∣∣2

ωγ ,δ(z) dA(z). (94)

On the other hand, since
∫
D\r0D

∣∣Pjf (z)
∣∣2

ωγ ,δ(z) dA(z) ≤
∫
D

∣∣Pjf (z)
∣∣2

ωγ ,δ(z) dA(z)

=
∫ 1

0

∫ 2π

0

∣∣∣∣∣
j∑

n=0

anrneinθ

∣∣∣∣∣
2

ωγ ,δ(r)r
dr dθ

π

= 2
j∑

n=0

|an|2
∫ 1

0
r2n+1ωγ ,δ(r) dr

≤ 2
∞∑

n=0

|an|2
∫ 1

0
r2n+1ωγ ,δ(r) dr

= ‖f ‖2
A2

γ ,δ
,

we have

‖Rjf ‖A2
γ ,δ

= ‖f – Pjf ‖A2
γ ,δ

≤ 2‖f ‖A2
γ ,δ

. (95)

From (94) and (95), we obtain

‖Ig‖2
e ≤ 4(A + ε)2.

From this and since ε is an arbitrary positive number, it follows that ‖Ig‖e ≤ 2A, finishing
the proof of the theorem. �

Remark 7 If δ = 0, then by using the following test functions

ka(z) =
(1 – |a|)c

(1 – az)
γ
2 +1+c

, z ∈D,



Stević and Jiang Journal of Inequalities and Applications        (2019) 2019:121 Page 26 of 27

for a ∈ D and some fixed c > 0, it can be proved in the same fashion that Theorems 1–3
also hold in the case.
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