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Abstract
In the present study we provide a unified treatment of fractal Hilbert-type
inequalities. Our main result is a pair of equivalent fractal Hilbert-type inequalities
including a general kernel and weight functions. A particular emphasis is devoted to a
class of homogeneous kernels. In addition, we impose appropriate conditions for
which the constants appearing on the right-hand sides of the established inequalities
are the best possible. As an application, our results are compared with some
previously known ones from the literature.
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1 Introduction
The celebrated Hilbert inequality (see [8]) in its integral form asserts that

∫ ∞

0

∫ ∞

0

f (x)g(y)
x + y

dx dy ≤ π

sin π
p

[∫ ∞

0
f p(x) dx

] 1
p
[∫ ∞

0
gq(y) dy

] 1
q

, (1)

where f , g : (0,∞) → R are non-negative integrable functions and p, q is a pair of non-
negative conjugate exponents, i.e., 1

p + 1
q = 1, p > 1. In addition, the constant π

sin π
p

is the best
possible in the sense that it cannot be replaced by a smaller positive constant so that the
inequality remains valid. Hardy et al. [8], noticed that one can assign to (1) its equivalent
form

∫ ∞

0

[∫ ∞

0

f (x)
x + y

dx
]p

dy ≤
(

π

sin π
p

)p ∫ ∞

0
f p(x) dx, (2)

in the sense that (1) implies (2) and vice versa. During decades, Hilbert-type inequalities
(1) and (2) have been extensively studied by numerous authors. A rich variety of exten-
sions included inequalities with more general kernels, weight functions, and integration
domains, as well as refinements of initial Hilbert-type inequalities (1) and (2). It is im-
portant to point out that these inequalities are still of interest to numerous authors. For
an initial development of the Hilbert-type inequalities, the reader is referred to [8], while
some recent results are collected in monographs [3] and [10].

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-019-2076-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-019-2076-9&domain=pdf
mailto:tsbatbold@hotmail.com


Batbold et al. Journal of Inequalities and Applications        (2019) 2019:117 Page 2 of 13

Nowadays, an interesting topic in connection to classical inequalities is their extension
on certain fractal spaces via the local fractional calculus. The local fractional calculus is
primarily utilized to handle various non-differentiable problems that appear in complex
systems of the real-world phenomena. In particular, the non-differentiability occurring
in science and engineering has been modeled by the local fractional ordinary or partial
differential equations.

On the other hand, local fractional calculus is also an important tool in pure mathe-
matics. Recently, by virtue of the local fractional calculus, a whole series of classical real
inequalities have been extended to hold on certain fractal spaces. For the reader’s conve-
nience, denote by aIα

b f (x) and aIα
b [aIα

b h(x, y)] local fractional integrals

aIα
b f (x) =

1
Γ (1 + α)

∫ b

a
f (x)(dx)α

and

aIα
b
[

aIα
b h(x, y)

]
=

1
Γ 2(1 + α)

∫ b

a

∫ b

a
h(x, y)(dx)α(dy)α ,

where 0 < α ≤ 1 and where Γ stands for a usual gamma function defined by Γ (a) =∫ ∞
0 ta–1e–t dt, a > 0. Further, let Cα(a, b) stand for a set of local fractional continuous func-

tions on the interval (a, b).
Recently, Liu and Sun [13] established a pair of equivalent fractal Hilbert-type inequal-

ities expressed in terms of the above fractional integrals. Namely, they showed that if
1
p + 1

q = 1, p > 1, 0 < α ≤ 1, and if f , g ∈ Cα(a, b) are non-negative functions, then the fol-
lowing inequalities hold:

0Iα
∞

[
0Iα

∞
f (x)g(y)

max{xα , yα}
]

≤ η(α)
[

0Iα
∞

(
x

α
2 (p–2)f p(x)

)] 1
p
[

0Iα
∞

(
y

α
2 (q–2)gq(y)

)] 1
q (3)

and

0Iα
∞

[
y

α(2–q)
2(q–1)

[
0Iα

∞
f (x)

max{xα , yα}
]p]

< ηp(α)0Iα
∞

(
x

α
2 (p–2)f p(x)

)
, (4)

where η(α) = 2α+1

Γ (1+α) and provided that the integrals on the right-hand sides of (3) and (4)
are convergent. In addition, it has been also shown that the constants η(α) and ηp(α) are
the best possible.

For some related extensions of classical inequalities to fractal spaces the reader is re-
ferred to recent papers [4–6, 9, 11–13, 16, 17]. In addition, for some recent results closely
connected to this topic the reader is referred to [1, 2, 7, 15] and the references therein.

The main objective of the present paper is a unified treatment of fractal Hilbert-type in-
equalities. In other words, we will establish a pair of fractal Hilbert-type inequalities with
a general kernel and general weight functions that cover the above presented Hilbert-type
inequalities. The paper is divided into four sections as follows: After this introductory
part, in Sect. 2 we give a brief overview of basic definitions and properties of the local
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fractional calculus that will be the main tools in establishing our results. In Sect. 3, we
derive our main result, i.e., a pair of equivalent fractal Hilbert-type inequalities with a
general kernel and weight functions. A particular emphasis is devoted to a class of ho-
mogeneous kernels. In addition, we impose conditions for which the constants appearing
on the right-hand sides of the corresponding Hilbert-type inequalities are the best pos-
sible. As an application, in Sect. 4 we discuss some particular choices of homogeneous
kernels and power weight functions. In such a way, we show that the fractal Hilbert-type
inequalities presented in this introduction are consequences of our general results.

2 Preliminaries on local fractional calculus
For the reader’s convenience, in this section we give a brief overview of the local fractional
calculus. More precisely, we give basic definitions and properties of the local fractional
derivative and integral developed in [19] (see also [18]).

Let Rα , 0 < α ≤ 1, be an α-type fractal set of real line numbers. For aα , bα ∈R
α , we define

addition and multiplication by

aα + bα := (a + b)α , aα · bα = aαbα := (ab)α .

With these two binary operations, Rα becomes a field with an additive identity 0α and a
multiplicative identity 1α .

The starting point in introducing the local fractional calculus on R
α is the concept of

the local fractional continuity. A non-differentiable function f : R →R
α is said to be local

fractional continuous at x0 if, for any ε > 0, there exists δ > 0 such that |x – x0| < δ implies
that

∣∣f (x) – f (x0)
∣∣ < εα .

The set of local fractional continuous functions on interval I is denoted by Cα(I).
The local fractional derivative of f of order α at x = x0 is defined by

f (α)(x0) =
dαf (x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

Γ (1 + α)(f (x) – f (x0))
(x – x0)α

,

where Γ stands for a usual gamma function. Now, let f (α)(x) = Dα
x f (x). If there exists

f (k+1)α(x) =
k+1︷ ︸︸ ︷

Dα
x · · ·Dα

x f (x) for every x ∈ I , then we denote f ∈ D(k+1)α(I), where k = 0, 1, 2, . . . .
The local fractional integral is defined for a class of local fractional continuous functions.

Let f ∈ Cα[a, b] and let P = {t0, t1, . . . , tN }, N ∈ N, be a partition of interval [a, b] such that
a = t0 < t1 < · · · < tN–1 < tN = b. Further, for this partition P, let �tj = tj+1 – tj, j = 0, . . . , N – 1,
and �t = max{�t1,�t2, . . . ,�tN–1}. Then the local fractional integral of f on the interval
[a, b] of order α (denoted by aIα

b f (x)) is defined by

aIα
b f (x) =

1
Γ (1 + α)

∫ b

a
f (t)(dt)α =

1
Γ (1 + α)

lim
�t→0

N–1∑
j=0

f (tj)(�tj)α .

The above definition implies that aIα
b f (x) = 0 if a = b and aIα

b f (x) = –bIα
a f (x) if a < b.
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Similar to the Riemann integral, we have the following analogue of the Newton–Leibnitz
formula on the fractal space. Namely, if f = g(α) ∈ Cα[a, b], then

aIα
b f (x) = g(b) – g(a).

In particular, if f (x) = xkα , k ∈R, then

1
Γ (1 + α)

∫ b

a
xkα(dx)α =

Γ (1 + kα)
Γ (1 + (k + 1)α)

(
b(k+1)α – a(k+1)α)

. (5)

In order to conclude our discussion regarding fractional integrals, we give a variant of
the change of variables theorem in the present setting. Namely, if g ∈ Dα[a, b] and (f ◦ g) ∈
Cα[g(a), g(b)], then the following relation holds:

aIα
b (f ◦ g)(s)

[
g ′(s)

]α = g(a)Iα
g(b)f (x). (6)

It should be noticed here that if α = 1, then the local fractional calculus reduces to the
classical real calculus. For more details about the above presented concept of fractional
differentiability and integrability, the reader is referred to [19] and the references therein.

The crucial step in establishing Hilbert-type inequalities is the well-known Hölder in-
equality. A fractal version of the Hölder inequality asserts that if 1

p + 1
q = 1, p > 1, then the

inequality

1
Γ (1 + α)

∫ b

a
f (x)g(x)(dx)α ≤

[
1

Γ (1 + α)

∫ b

a
f p(x)(dx)α

] 1
p

×
[

1
Γ (1 + α)

∫ b

a
gq(x)(dx)α

] 1
q

holds for all f , g ∈ Cα(a, b). However, we will utilize a two-variable version of the fractal
Hölder inequality which claims that

1
Γ 2(1 + α)

∫∫
S(β)

h(x, y)F(x, y)G(x, y)(dx)α(dy)α

≤
[

1
Γ 2(1 + α)

∫∫
S(β)

h(x, y)Fp(x, y)(dx)α(dy)α
] 1

p

×
[

1
Γ 2(1 + α)

∫∫
S(β)

h(x, y)Gq(x, y)(dx)α(dy)α
] 1

q
(7)

holds for all F , G, h ∈ Cα(S(β)), where S(β) is a fractal surface. For the proofs of the above
inequalities, the reader is also referred to [19].

Finally, to conclude this section we give a definition of a fractal beta function. Recall that
the usual beta function is defined by B(a, b) =

∫ 1
0 ta–1(1 – t)b–1 dt, a, b > 0. On the other

hand, the fractal beta function (see [9]) is defined by

Bα(a, b) =
1

Γ (1 + α)

∫ 1

0
tα(a–1)(1 – t)α(b–1)(dt)α .
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Utilizing the substitution t = 1/(x + 1), the above formula can be rewritten as

Bα(a, b) =
1

Γ (1 + α)

∫ ∞

0

xα(b–1)

(1α + xα)a+b (dx)α , (8)

which will be a more suitable form for our further investigation.

3 Main results
In this section, we develop a unified treatment of fractal Hilbert-type inequalities. In other
words, we will establish a pair of general Hilbert-type inequalities that covers particular
fractal inequalities presented in the introduction.

Our main result refers to a general kernel which is local fractional continuous on the
fractal surface (a, b)2 := (a, b) × (a, b).

Theorem 1 Let 1
p + 1

q = 1, p > 1, 0 < α ≤ 1, and let K ∈ Cα(a, b)2, ϕ,ψ ∈ Cα(a, b) be non-
negative functions. If the functions F and G are defined by

Fp(x) = aIα
b
(
K(x, y)ψ–p(y)

)
, Gq(y) = aIα

b
(
K(x, y)φ–q(x)

)
, (9)

then, for all non-negative functions f , g ∈ Cα(a, b), the inequalities

aIα
b
(

aIα
b
(
K(x, y)f (x)g(y)

)) ≤ [
aIα

b (ϕFf )p(x)
] 1

p
[

aIα
b
(
(ψGg)q(y)

)] 1
q (10)

and

aIα
b
(
(Gψ)–p(y)

[
aIα

b
(
K(x, y)f (x)

)]p) ≤ aIα
b (ϕFf )p(x) (11)

hold and are equivalent.

Proof The left-hand side of inequality (10) can be rewritten as

1
Γ 2(1 + α)

∫ b

a

∫ b

a
K(x, y)f (x)g(y)(dx)α(dy)α

=
1

Γ 2(1 + α)

∫ b

a

∫ b

a
K(x, y)f (x)

ϕ(x)
ψ(y)

g(y)
ψ(y)
ϕ(x)

(dx)α(dy)α ,

which is now suitable for the application of the Hölder inequality (7). Hence, we obtain

1
Γ 2(1 + α)

∫ b

a

∫ b

a
K(x, y)f (x)g(y)(dx)α(dy)α

≤
[

1
Γ 2(1 + α)

∫ b

a

∫ b

a
K(x, y)f p(x)

ϕp(x)
ψp(y)

(dx)α(dy)α
] 1

p

×
[

1
Γ 2(1 + α)

∫ b

a

∫ b

a
K(x, y)gq(y)

ψq(y)
ϕq(x)

(dx)α(dy)α
] 1

q
.

Now, by virtue of the Fubini theorem (see, e.g., [14]), we can switch the order of integration
in the double integral, so by taking into account the definitions of functions F and G, we
obtain (10), as claimed.
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Our next step is to show the equivalence of inequalities (10) and (11). Therefore, suppose
that inequality (10) holds and define the function g by

g(y) = G–p(y)ψ–p(y)
[

1
Γ (1 + α)

∫ b

a
K(x, y)f (x)(dx)α

]p–1

.

Now, since 1
p + 1

q = 1, relation (10) implies the inequality

1
Γ (1 + α)

∫ b

a
G–p(y)ψ–p(y)

[
1

Γ (1 + α)

∫ b

a
K(x, y)f (x)(dx)α

]p

(dy)α

=
1

Γ 2(1 + α)

∫ b

a

∫ b

a
K(x, y)f (x)g(y)(dx)α(dy)α

≤
[

1
Γ (1 + α)

∫ b

a
(ϕFf )p(x)(dx)α

] 1
p
[

1
Γ (1 + α)

∫ b

a
(ψGg)q(y)(dy)α

] 1
q

=
[

1
Γ (1 + α)

∫ b

a
(ϕFf )p(x)(dx)α

] 1
p

×
[

1
Γ (1 + α)

∫ b

a
(Gψ)q–pq(y)

[
1

Γ (1 + α)

∫ b

a
K(x, y)f (x)(dx)α

]q(p–1)

(dy)α
] 1

q
,

which reduces to (11).
On the other hand, suppose that inequality (11) holds. Then yet another application of

the Hölder inequality yields

1
Γ 2(1 + α)

∫ b

a

∫ b

a
K(x, y)f (x)g(y)(dx)α(dy)α

=
1

Γ (1 + α)

∫ b

a

[
ψ–1(y)G–1(y)

∫ b

a
K(x, y)f (x)(dx)α

]
ψ(y)G(y)g(y)(dy)α

≤
[

1
Γ (1 + α)

∫ b

a
ψ–p(y)G–p(y)

(
1

Γ (1 + α)

∫ b

a
K(x, y)f (x)(dx)α

)p

(dy)α
] 1

p

×
[

1
Γ (1 + α)

∫ b

a
(ψGg)q(y)(dy)α

] 1
q

≤
[

1
Γ (1 + α)

∫ b

a
(ϕFf )p(x)(dx)α

] 1
p
[

1
Γ (1 + α)

∫ b

a
(ψGg)q(y)(dy)α

] 1
q

,

which provides (10). Consequently, inequalities (10) and (11) are equivalent. �

It is not hard to see that our Theorem 1 covers fractal Hilbert-type inequalities (3) and
(4) presented in the introduction. This follows by choosing a suitable power functions ϕ,
ψ appearing in relations (10) and (11). However, this will not be done at this moment.
Namely, considering kernels K1(x, y) = 1/ max{xα , yα} and appearing in (3) and (4), we see
that they possess a common property, they are both homogeneous functions. Therefore,
our next step is to derive consequence of Theorem 1 which refers to homogeneous ker-
nels. The fractal Hilbert-type inequalities presented in the introduction will then follow
as simple consequences of our next result.
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Recall that the function K ∈ Cα(0,∞)2 is said to be homogeneous of degree –αλ, λ > 0,
if K(tx, ty) = t–αλK(x, y) for all t > 0. In order to formulate and prove the corresponding
result, we need the following definition. For a non-negative function K ∈ Cα(0,∞)2, we
define

kα(η) = 0Iα
∞K(1, t)t–αη. (12)

If nothing else is explicitly stated, we assume that the integral kα(η) converges for consid-
ered values of η. Now, we are ready to establish a pair of fractal Hilbert-type inequalities
that correspond to a class of homogeneous kernels.

Theorem 2 Let 1
p + 1

q = 1, p > 1, and let f , g ∈ Cα(0,∞) be non-negative functions. If K ∈
Cα(0,∞)2 is a non-negative homogeneous function of degree –αλ, λ > 0, then the following
inequalities hold:

0Iα
∞

(
0Iα

∞
(
K(x, y)f (x)g(y)

))

≤ L
[

0Iα
∞

(
xα–αλ+αp(A1–A2)f p(x)

)] 1
p
[

0Iα
∞

(
yα–αλ+αq(A2–A1)gq(y)

)] 1
q (13)

and

0Iα
∞

[
yα(p–1)(λ–1)+αp(A1–A2)(

0Iα
∞

(
K(x, y)f (x)

))p]

≤ Lp[
0Iα

∞xα–αλ+αp(A1–A2)f p(x)
]
, (14)

where L = k1/p
α (pA2)k1/q

α (2 – λ – qA1). In addition, relations (13) and (14) are equivalent.

Proof We employ inequalities (10) and (11) with power functions ϕ(x) = xαA1 and ψ(y) =
yαA2 . Furthermore, making use of (9), it follows that

Fp(x) =
1

Γ (1 + α)

∫ ∞

0
K(x, y)y–αpA2 (dy)α

and

Gq(x) =
1

Γ (1 + α)

∫ ∞

0
K(x, y)x–αqA1 (dx)α .

In addition, since K is a homogeneous function of degree –αλ, λ > 0, a change of variables
t = y/x provides

Fp(x) = xα–αλ–αpA2
1

Γ (1 + α)

∫ ∞

0
K

(
1,

y
x

)(
y
x

)–αpA2 1
xα

(dy)α

= xα–αλ–αpA2
1

Γ (1 + α)

∫ ∞

0
K(1, t)t–αpA2 (dt)α

= xα–αλ–αpA2 kα(pA2) (15)

due to (6). Following the lines as in the previous step, we also obtain

Gq(y) = yα–αλ–αqA1
1

Γ (1 + α)

∫ ∞

0
K(t, 1)t–αqA1 (dt)α .



Batbold et al. Journal of Inequalities and Applications        (2019) 2019:117 Page 8 of 13

Now, yet another application of the change of variables rule (6) with u = t–1, gives

Gq(y) = –yα–αλ–αqA1
1

Γ (1 + α)

∫ ∞

0
K

(
1,

1
t

)(
1
t

)αλ+αqA1–2α(
–t–2α

)
(dt)α

= yα–αλ–αqA1
1

Γ (1 + α)

∫ ∞

0
K(1, u)uαλ+αqA1–2α(du)α

= yα–αλ–αqA1 kα(2 – λ – qA1). (16)

Finally, inequalities (13) and (14) follow from relations (10), (11), (15), and (16). �

It should be noticed here that Theorem 2 holds for arbitrary parameters A1 and A2 such
that the constant L and the integrals on the right-hand sides of (13) and (14) are conver-
gent.

Generally speaking, we are not able to prove whether or not the constants L and Lp

appearing on the right-hand sides of (13) and (14) are the best possible. However, it turns
out that these constants are the best possible for a wide set of parameters A1, A2 and a
weak condition on the kernel K . In order to establish the corresponding result, we first
need the following lemma.

Lemma 1 Let λ > 0, and let 1
p + 1

q = 1, p > 1. If K ∈ Cα(0,∞)2 is a non-negative function
such that K(1, t) is bounded on (0, 1), then the following relation holds:

1Iα
∞

[
x–α(1+ε)

0Iα
1/x

(
t–αpA2– εα

q K(1, t)
)] ≤ O(1), ε → 0+, (17)

where A2 ≤ 1
2p .

Proof From the hypotheses, we have K(1, t) ≤ C for some C > 0 and every t ∈ (0, 1). Then
it follows that

1Iα
∞

[
x–α(1+ε)

0Iα
1/x

(
t–αpA2– εα

q K(1, t)
)]

≤ C1Iα
∞

[
x–α

0Iα
1/x

(
t– α

2 – εα
q
)]

. (18)

Furthermore, utilizing the change of variables rule (6) with g(t) = t
1
2 – ε

q , [g ′(t)]α = ( 1
2 –

ε
q )αt– α

2 – εα
q , we obtain

1Iα
∞

[
x–α

(
0Iα

1/x
(
t– α

2 – εα
q
))]

=
1

Γ 2(1 + α)

∫ ∞

1
x–α

(∫ 1/x

0
t– α

2 – εα
q (dt)α

)
(dx)α

=
1

Γ 2(1 + α)

∫ ∞

1
x–α

(
1

( 1
2 – ε

q )α

∫ x– 1
2 + ε

q

0
(du)α

)
(dx)α

=
1

Γ 2(1 + α)( 1
2 – ε

q )α

∫ ∞

1
x– 3α

2 + εα
q (dx)α .
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Now, if g(x) = x– 1
2 + ε

q , then [g ′(x)]α = –( 1
2 – ε

q )–αx– 3α
2 + εα

q , so by (6), we have

1Iα
∞

[
x–α

0Iα
1/x

(
t– α

2 – εα
q
)]

=
1

Γ 2(1 + α)( 1
2 – ε

q )2α
. (19)

Finally, combining (18) and (19), we obtain (17), as claimed. �

Our next intention is to impose the condition on parameters A1 and A2 for which the
constants appearing on the right-hand sides of inequalities (13) and (14) are the best pos-
sible. It should be noticed here that if

pA2 + qA1 = 2 – λ, (20)

then the constant L from Theorem 2 reduces to the form without exponents, i.e.,

L∗ = kα(pA2). (21)

We will show that if the parameters A1 and A2 are related by (20), then the constants
appearing on the right-hand sides of (13) and (14) are the best possible. In fact, if (20)
holds, inequalities (13) and (14) reduce to

0Iα
∞

(
0Iα

∞
(
K(x, y)f (x)g(y)

))

≤ L∗[
0Iα

∞
(
xαpqA1–αf p(x)

)] 1
p
[

0Iα
∞

(
yαpqA2–αgq(y)

)] 1
q (22)

and

0Iα
∞

[
yαp(λ–1)+αpqA1

(
0Iα

∞
(
K(x, y)f (x)

))p]

≤ (
L∗)p[

0Iα
∞

(
xαpqA1–αf p(x)

)]
, (23)

where L∗ is defined by (21).

Theorem 3 Suppose that 1
p + 1

q = 1, p > 1, and let f , g ∈ Cα(0,∞) be non-negative functions.
Further, let K ∈ Cα(0,∞)2 be a non-negative homogeneous function of degree –αλ, λ > 0,
such that K(1, t) is bounded on (0, 1). If the parameters A1 and A2 satisfy relation pA2 +
qA1 = 2 – λ, then the constants L∗ and (L∗)p appearing on the right-hand sides of (22) and
(23) are the best possible.

Proof Let f (x) = x–αqA1– εα
p χ[1,∞)(x) and g(y) = y–αpA2– εα

q χ[1,∞)(y), where χA stands for a
characteristic function of a set A. Now, let us suppose that there exists a smaller constant
0 < M < L∗ such that inequality (22) holds. Denote by J the right-hand side of inequality
(22). Then, with the above defined functions f and g , we have

J = M
(

1
Γ (1 + α)

∫ ∞

1
x–αε–α(dx)α

) 1
p
(

1
Γ (1 + α)

∫ ∞

1
y–αε–α(dy)α

) 1
q

=
M

εαΓ (1 + α)
. (24)
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Further, utilizing substitution t = y
x and taking into account Lemma 1, we obtain the fol-

lowing estimate:

0Iα
∞

(
0Iα

∞
(
K(x, y)f (x)g(y)

))

= 1Iα
∞

[
x–αqA1– αε

p 1Iα
∞

(
y–αpA2– αε

q K(x, y)
)]

= 1Iα
∞

[
x–α(1+ε)(

0Iα
∞

(
t–αpA2– αε

q K(1, t)
)

– 0Iα
1/x

(
t–αpA2– αε

q K(1, t)
))]

≥ 1
εαΓ (1 + α)

(
kα

(
pA2 +

ε

q

)
+ o(1)

)
. (25)

Moreover, from (22), (24), and (25), we get

kα

(
pA2 +

ε

q

)
+ o(1) ≤ M. (26)

Now, by letting ε → 0+, it follows that relation (26) contradicts with our assumption M <
L∗ = kα(pA2).

Finally, equivalence of inequalities (22) and (23) means that the constant (L∗)p =
[kα(pA2)]p is also the best possible in (23). The proof is now completed. �

4 Applications
In this section, we apply our Theorems 2 and 3 to some particular settings. More precisely,
we will consider derived fractal Hilbert-type inequalities for some particular choices of
homogeneous kernels and parameters A1 and A2 related by (20).

Our first example refers to the kernel K1(x, y) = 1/ max{xαλ, yαλ}, λ > 0, and the param-
eters A1 = 2–λ

2q , A2 = 2–λ
2p . Obviously, K1 is a homogeneous function of degree –αλ and

K1(1, t) is bounded on (0, 1). Moreover, the parameters A1 and A2 satisfy condition (20),
so the hypotheses of Theorem 3 are satisfied. In addition, the constant in inequality (22),
denoted here by L∗

1, reduces to

L∗
1 = kα

(
1 –

λ

2

)
=

2α+1

λαΓ (1 + α)
.

This follows by virtue of (5), after a straightforward calculation. The corresponding result
covers fractal Hilbert-type inequalities presented in the introduction.

Corollary 1 Let 1
p + 1

q = 1, p > 1, λ > 0, and let f , g ∈ Cα(0,∞) be non-negative functions.
Then the inequalities

0Iα
∞

(
0Iα

∞

(
f (x)g(y)

max{xαλ, yαλ}
))

≤ 2α+1

λαΓ (1 + α)
[

0Iα
∞

(
xα(p–1)– αλp

2 f p(x)
)] 1

p
[

0Iα
∞

(
yα(q–1)– αλq

2 gq(y)
)] 1

q (27)

and

0Iα
∞

(
y

αpλ
2

[
0Iα

∞

(
f (x)

max{xαλ, yαλ}
)]p)
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≤
(

2α+1

λαΓ (1 + α)

)p[
0Iα

∞
(
xα(p–1)– αλp

2 f p(x)
)]

(28)

hold and the constants appearing on their right-hand sides are the best possible.

Remark 1 It should be noticed here that our Corollary 1 is an extension of fractal Hilbert-
type inequalities discussed in the introduction. More precisely, by substituting λ = 1 in
inequalities (27) and (28), we obtain relations (3) and (4).

Our next example deals with a homogeneous kernel K2(x, y) = 1/(xα + yα)λ, λ > 0, and the
parameters A1 = 2–λ

2q , A2 = 2–λ
2p . Clearly, K2 is a homogeneous function of degree –αλ and

K2(1, t) is bounded on (0, 1). Now, if the parameters A1 and A2 are related by (20), then the
constant in inequality (22), denoted here by L∗

2, can be expressed in terms of the fractal
beta function Bα . More precisely, utilizing the integral representation (8), it follows that

L∗
2 = Bα

(
λ

2
,
λ

2

)
,

so we have the following consequence.

Corollary 2 Let 1
p + 1

q = 1, p > 1, and let f , g ∈ Cα(0,∞) be non-negative functions. Then
the inequalities

0Iα
∞

(
0Iα

∞

(
f (x)g(y)

(xα + yα)λ

))

≤ Bα

(
λ

2
,
λ

2

)[
0Iα

∞
(
xα(p–1)– αλp

2 f p(x)
)] 1

p
[

0Iα
∞

(
yα(q–1)– αλq

2 gq(y)
)] 1

q (29)

and

0Iα
∞

(
y

αpλ
2

[
0Iα

∞

(
f (x)

(xα + yα)λ

)]p)

≤
(

Bα

(
λ

2
,
λ

2

))p[
0Iα

∞
(
xα(p–1)– αλp

2 f p(x)
)]

(30)

hold and the constants appearing on their right-hand sides are the best possible.

At the end of the paper, we discuss the case of the kernel K3(x, y) = 1/(xα + yα). In this
setting, the constant in inequality (22), denoted here by L∗

3, becomes

L∗
3 = Bα(pA2, 1 – pA2),

provided that pA2 + qA1 = 1. The resulting pair of relations is given in the following result.

Corollary 3 Let 1
p + 1

q = 1, p > 1, and let f , g ∈ Cα(0,∞) be non-negative functions. If A1

and A2 are real parameters such that pA2 + qA1 = 2α – 1, then the inequalities

0Iα
∞

(
0Iα

∞

(
f (x)g(y)
xα + yα

))

≤ Bα(pA2, 1 – pA2)
[

0Iα
∞

(
xαpqA1–αf p(x)

)] 1
p
[

0Iα
∞

(
yαpqA2–αgq(y)

)] 1
q (31)
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and

0Iα
∞

(
yαpqA1–α

[
0Iα

∞

(
f (x)

xα + yα

)]p)

≤ (
Bα(pA2, 1 – pA2)

)p[
0Iα

∞
(
xαpqA1–αf p(x)

)]
(32)

hold and the constants appearing on their right-hand sides are the best possible.

Remark 2 In particular, if A1 = A2 = 1
pq , then the constant L∗

2 from Corollary 2 reduces to
the form L∗

2 = Bα( 1
q , 1

p ). In this case, the weight functions x → xαpqA1–α and y → yαpqA2–α

in inequalities (29) and (30) disappear. The resulting pair of non-weighted inequalities is
an immediate fractal extension of the initial Hilbert-type inequalities (1) and (2). It should
be noticed here that if α = 1, then Bα( 1

q , 1
p ) = B( 1

q , 1
p ) = π

sin π
p

.

5 Conclusion
In the present study, we have established a unified treatment of fractal Hilbert-type in-
equalities. First, we have derived a pair of equivalent Hilbert-type inequalities with a gen-
eral kernel and weight functions. A particular emphasis has been devoted to a class of
homogeneous kernels. In addition, we have established conditions under which the con-
stants appearing in the corresponding inequalities are the best possible. As an application,
our results have been compared with some previously known ones from the literature.
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