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Abstract
In this paper, we present some new reverse arithmetic–geometric mean inequalities
for operators and matrices due to Lin (Stud. Math. 215:187–194, 2013). Among other
inequalities, we prove that if A,B ∈ B(H) are accretive and 0 <mI ≤ �(A),�(B)≤ MI,
then, for every positive unital linear map Φ ,

Φ2
(
�

(A + B

2

))
≤ (K (h))2Φ2(�(A�B)),

where K (h) = (h+1)2

4h and h = M
m . Moreover, some reverse harmonic–geometric mean

inequalities are also presented.
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1 Introduction
Throughout this paper, B(H) stands for all bounded linear operators on a complex Hilbert
space H. In the finite-dimensional setting, Mn denotes the set of all n × n complex matri-
ces. For A, B ∈ B(H), we use A ≥ B (B ≤ A) to mean that A – B is positive. The operator
norm is denoted by ‖ · ‖. An operator A ∈ B(H) is called accretive if in its Cartesian (or
Toeptliz) decomposition, A = �A + i�A, �A is positive, where �A = A+A∗

2 , �A = A–A∗
2i .

A linear map Φ : B(H) → B(H) is called positive if Φ(A) ≥ 0 whenever A ≥ 0. If Φ(I) = I ,
where I denotes the identity operator, then we say that Φ is unital. We reserve M, m for
scalars. In the finite-dimensional setting, we use In for the identity.

The numerical range of A ∈Mn is defined by

W (A) =
{

x∗Ax : x ∈ C
n, x∗x = 1

}
.

For α ∈ [0, π
2 ), Sα denote the sector regions in the complex plane as follows:

Sα =
{

z ∈C : �z ≥ 0, |�z| ≤ (�z) tanα
}

.

Clearly, A is positive semidefinite if and only if W (A) ⊂ S0, and if W (A), W (B) ⊂ Sα

for some α ∈ [0, π
2 ), then W (A + B) ⊂ Sα . As 0 /∈ Sα , if W (A) ⊂ Sα , then A is nonsingu-
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lar. Moreover, W (A) ⊂ Sα implies W (X∗AX) ⊂ Sα for any nonzero n × m matrix X, thus
W (A–1) ⊂ Sα .

Recent studies on matrices with numerical ranges in a sector can be found in [3–5, 8–10,
14] and the references therein.

In [13], Tominaga presented an operator inequality as follows: Let A, B be positive op-
erators on a Hilbert space with 0 < mI ≤ A, B ≤ MI , then

A + B
2

≤ S(h)A�B, (1)

where S(h) = h
1

h–1

e log h
1

h–1
is called Specht’s ratio and h = M

m .

Lin [6] found that, for a positive unital linear map Φ between C∗-algebra,

Φ

(
A + B

2

)
≤ K(h)Φ(A�B) (2)

due to (1) and the following observation [6]:

S(h) ≤ K(h) ≤ S2(h) (h ≥ 1),

where K(h) = (h+1)2

4h .
It is well known that, for two general positive operators (or positive definite matrices)

A, B,

A ≥ B � A2 ≥ B2.

However, Lin [6] showed that (2) can be squared as follows:

Φ2
(

A + B
2

)
≤ K2(h)Φ2(A�B). (3)

Zhang [15] generalized (3) when p ≥ 2 as follows:

Φ2p
(

A + B
2

)
≤ (K(h)(M2 + m2))2p

16M2pm2p Φ2p(A�B). (4)

For two accretive operators A, B ∈ B(H), Drury [3] defined the geometric mean of A and
B as follows:

A�B =
(

2
π

∫ ∞

0

(
tA + t–1B

)–1 dt
t

)–1

. (5)

This new geometric mean defined by (5) possesses some similar properties compared
to the geometric mean of two positive operators. For instance, A�B = B�A, (A�B)–1 =
A–1�B–1. For more information about the geometric mean of two accretive operators, see
[3]. Moreover, if A, B ∈Mn with W (A), W (B) ⊂ Sα , then W (A�B) ⊂ Sα .

Following an idea of Lin [6], we shall give some new reverse arithmetic–geometric mean
inequalities for operators and matrices which can be seen as a complementary of (3) and
(4). Moreover, some reverse harmonic–geometric mean inequalities are also presented.
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2 Main results
To reach our goal, we need the following lemmas.

Lemma 2.1 ([10]) If A, B ∈ B(H) are accretive, then

�(A)��(B) ≤ �(A�B).

Lemma 2.2 ([10]) If A, B ∈ B(H) are accretive, then

�
((

A–1 + B–1

2

)–1)
≥

(�(A)–1 + �(B)–1

2

)–1

.

Lemma 2.3 ([9]) If A ∈ Mn has a positive definite real part, then

�(
A–1) ≤ �(A)–1.

Lemma 2.4 ([4]) If A ∈ Mn with W (A) ⊂ Sα , then

sec2(α)�(
A–1) ≥ �(A)–1.

It is easy to verify that �(( A–1+B–1

2 )–1) ≤ �(A�B) ≤ �( A+B
2 ) does not persist for two accre-

tive operators A and B. However, Lin presented the following extension of the arithmetic–
geometric mean inequality.

Lemma 2.5 ([9]) Let A, B ∈Mn be such that W (A), W (B) ⊂ Sα . Then

�(A�B) ≤ sec2(α)�
(

A + B
2

)
. (6)

Lemma 2.6 ([2]) Let A, B ∈ B(H) be positive. Then

‖AB‖ ≤ 1
4
‖A + B‖2.

Lemma 2.7 ([1]) Let A ∈ B(H) be positive. Then, for every positive unital linear map Φ ,

Φ–1(A) ≤ Φ
(
A–1).

Lemma 2.8 ([1]) Let A, B ∈ B(H) be positive. Then, for 1 ≤ r < +∞,

∥∥Ar + Br∥∥ ≤ ∥∥(A + B)r∥∥.

An operator Kantorovich inequality obtained by Marshall and Olkin [12] reads as fol-
lows.

Let 0 < mI ≤ A ≤ MI , then, for every positive unital linear map Φ ,

Φ
(
A–1) ≤ K(h)Φ(A)–1, (7)

where K(h) = (h+1)2

4h and h = M
m .
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Lin [7] showed that (7) can be squared as follows:

Φ2(A–1) ≤ (
K(h)

)2
Φ(A)–2, (8)

where K(h) = (h+1)2

4h and h = M
m .

Let A ∈ Mn have a positive definite real part, 0 < mIn ≤ �(A) ≤ MIn and Φ be a unital
positive linear map. By (7) and Lemma 2.3, we can obtain the following inequality:

Φ
(�(

A–1)) ≤ K(h)Φ
(�(A)

)–1, (9)

where K(h) = (h+1)2

4h and h = M
m .

As an analog of inequality (8), we show that inequality (9) can be squared nicely as fol-
lows.

Theorem 2.9 If A ∈Mn has a positive definite real part and 0 < mIn ≤ �(A) ≤ MIn, then,
for every positive unital linear map Φ ,

Φ2(�(
A–1)) ≤ (

K(h)
)2

Φ
(�(A)

)–2, (10)

where K(h) = (h+1)2

4h and h = M
m .

Proof Since

mIn ≤ �(A) ≤ MIn,

we have

(
MIn – �(A)

)(
mIn – �(A)

)�(A)–1 ≤ 0,

which is equivalent to

�(A) + Mm�(A)–1 ≤ (M + m)In. (11)

By Lemma 2.3 and (11), we get

�(A) + Mm�(
A–1)

≤ �(A) + Mm�(A)–1

≤ (M + m)In. (12)

Inequality (10) is equivalent to

∥∥Φ
(�(

A–1))Φ(�(A)
)∥∥ ≤ K(h).

By computation, we have

∥∥MmΦ
(�(

A–1))Φ(�(A)
)∥∥
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≤ 1
4
∥∥MmΦ

(�(
A–1)) + Φ

(�(A)
)∥∥2 (by Lemma 2.6)

≤ 1
4

(M + m)2 (
by (12)

)
.

That is,

∥∥Φ
(�(

A–1))Φ(�(A)
)∥∥ ≤ K(h).

This completes the proof. �

Let A, B ∈ B(H) be accretive, 0 < mI ≤ �(A),�(B) ≤ MI and Φ be a unital positive linear
map. By inequality (2) and Lemma 2.1, we can obtain the following inequality:

Φ

(
�

(
A + B

2

))
≤ K(h)Φ

(�(A�B)
)
, (13)

where K(h) = (h+1)2

4h and h = M
m .

Following an idea of Lin [6], we give a squaring version of inequality (13) below.

Theorem 2.10 If A, B ∈ Mn with W (A), W (B) ⊂ Sα and 0 < mIn ≤ �(A),�(B) ≤ MIn,
then, for every positive unital linear map Φ ,

Φ2
(

�
(

A + B
2

))
≤ (

sec4(α)K(h)
)2

Φ2(�(A�B)
)
, (14)

where K(h) = (h+1)2

4h and h = M
m .

Proof From Theorem 2.9 we have

1
2
�(A) +

1
2

Mm�(A)–1 ≤ 1
2

(M + m)In (15)

and

1
2
�(B) +

1
2

Mm�(B)–1 ≤ 1
2

(M + m)In. (16)

Summing up inequalities (15) and (16), we get

�
(

A + B
2

)
+ Mm

(�(A)–1 + �(B)–1

2

)
≤ (M + m)In. (17)

Inequality (14) is equivalent to

∥∥∥∥Φ

(
�

(
A + B

2

))
Φ–1(�(A�B)

)∥∥∥∥ ≤ sec4(α)K(h).

By computation, we have

∥∥∥∥sec4(α)MmΦ

(
�

(
A + B

2

))
Φ–1(�(A�B)

)∥∥∥∥
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≤ 1
4

∥∥∥∥sec4(α)Φ
(

�
(

A + B
2

))
+ MmΦ–1(�(A�B)

)∥∥∥∥
2

(by Lemma 2.6)

≤ 1
4

∥∥∥∥sec4(α)Φ
(

�
(

A + B
2

))
+ MmΦ

((�(A�B)
)–1)∥∥∥∥

2

(by Lemma 2.7)

≤ 1
4

∥∥∥∥sec4(α)Φ
(

�
(

A + B
2

))
+ sec2(α)MmΦ

(�(
A–1�B–1))

∥∥∥∥
2

(by Lemma 2.4)

≤ 1
4

∥∥∥∥sec4(α)Φ
(

�
(

A + B
2

))
+ sec4(α)MmΦ

(
�

(
A–1 + B–1

2

))∥∥∥∥
2 (

by (6)
)

=
1
4

∥∥∥∥sec4(α)Φ
(

�
(

A + B
2

)
+ Mm�

(
A–1 + B–1

2

))∥∥∥∥
2

≤ 1
4

∥∥∥∥sec4(α)Φ
(

�
(

A + B
2

)
+ Mm

(�(A)–1 + �(B)–1

2

))∥∥∥∥
2

(by Lemma 2.3)

≤ 1
4

sec8(α)(M + m)2 (
by (17)

)
.

That is,

∥∥∥∥Φ

(
�

(
A + B

2

))
Φ–1(�(A�B)

)∥∥∥∥ ≤ sec4(α)K(h).

This completes the proof. �

Next we give a pth (p ≥ 2) powering of inequality (14).

Theorem 2.11 If A, B ∈Mn with W (A), W (B) ⊂ Sα , 0 < mIn ≤ �(A),�(B) ≤ MIn, 1 < β ≤
2 and p ≥ 2β , then, for every positive unital linear map Φ ,

Φp
(

�
(

A + B
2

))
≤ (sec2β (α)K(h)

β
2 (Mβ + mβ ))

2p
β

16Mpmp Φp(�(A�B)
)
, (18)

where K(h) = (h+1)2

4h and h = M
m .

Proof Since

mIn ≤ Φ

(
�

(
A + B

2

))
≤ MIn,

we have

MβmβΦ–β

(
�

(
A + B

2

))
+ Φβ

(
�

(
A + B

2

))
≤ Mβ + mβ . (19)

By (14) and the L-H inequality [1], we obtain

Φ–β
(�(A�B)

) ≤ (
sec4(α)K(h)

)β
Φ–β

(
�

(
A + B

2

))
. (20)
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Inequality (18) is equivalent to

∥∥∥∥Φ
p
2

(
�

(
A + B

2

))
Φ– p

2
(�(A�B)

)∥∥∥∥ ≤ (sec2β (α)K(h)
β
2 (Mβ + mβ ))

p
β

4M
p
2 m

p
2

.

By computation, we have

∥∥∥∥M
p
2 m

p
2 Φ

p
2

(
�

(
A + B

2

))
Φ– p

2
(�(A�B)

)∥∥∥∥

≤ 1
4

∥∥∥∥
(
sec4(α)K(h)

) p
4 Φ

p
2

(
�

(
A + B

2

))
+

(
M2m2

sec4(α)K(h)

) p
4
Φ– p

2
(�(A�B)

)∥∥∥∥
2

≤ 1
4

∥∥∥∥
(
sec4(α)K(h)

) β
2 Φβ

(
�

(
A + B

2

))
+

(
M2m2

sec4(α)K(h)

) β
2
Φ–β

(�(A�B)
)∥∥∥∥

p
β

≤ 1
4

∥∥∥∥
(
sec4(α)K(h)

) β
2 Φβ

(
�

(
A + B

2

))

+
(
sec4(α)K(h)

) β
2 MβmβΦ–β

(
�

(
A + B

2

))∥∥∥∥
p
β

=
1
4

∥∥∥∥
(
sec4(α)K(h)

) β
2

(
Φβ

(
�

(
A + B

2

))
+ MβmβΦ–β

(
�

(
A + B

2

)))∥∥∥∥
p
β

≤ 1
4
(
sec2β (α)K(h)

β
2
(
Mβ + mβ

)) p
β ,

where the first inequality is by Lemma 2.6, the second one is by Lemma 2.8, the third one
is by (20) and the last one is by (19).

That is,

∥∥∥∥Φ
p
2

(
�

(
A + B

2

))
Φ– p

2
(�(A�B)

)∥∥∥∥ ≤ (sec2β (α)K(h)
β
2 (Mβ + mβ ))

p
β

4M
p
2 m

p
2

.

This completes the proof. �

We are not satisfied with the factor (sec4(α)K(h))2 in Theorem 2.10, the ideal factor
should be (K(h))2. We shall prove it in the following theorem.

Theorem 2.12 If A, B ∈ B(H) are accretive and 0 < mI ≤ �(A),�(B) ≤ MI , then, for every
positive unital linear map Φ ,

Φ2
(

�
(

A + B
2

))
≤ (

K(h)
)2

Φ2(�(A�B)
)
, (21)

where K(h) = (h+1)2

4h and h = M
m .

Proof From Theorem 2.10 one can get

�
(

A + B
2

)
+ Mm

(�(A)–1 + �(B)–1

2

)
≤ (M + m)I. (22)
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Inequality (21) is equivalent to

∥∥∥∥Φ

(
�

(
A + B

2

))
Φ–1(�(A�B)

)∥∥∥∥ ≤ K(h).

By computation, we have

∥∥∥∥MmΦ

(
�

(
A + B

2

))
Φ–1(�(A�B)

)∥∥∥∥

≤ 1
4

∥∥∥∥Φ

(
�

(
A + B

2

))
+ MmΦ–1(�(A�B)

)∥∥∥∥
2

(by Lemma 2.6)

≤ 1
4

∥∥∥∥Φ

(
�

(
A + B

2

))
+ MmΦ

((�(A�B)
)–1)∥∥∥∥

2

(by Lemma 2.7)

≤ 1
4

∥∥∥∥Φ

(
�

(
A + B

2

))
+ MmΦ

((�(A)��(B)
)–1)∥∥∥∥

2

(by Lemma 2.1)

=
1
4

∥∥∥∥Φ

(
�

(
A + B

2

))
+ MmΦ

(�(A)–1��(B)–1)
∥∥∥∥

2

≤ 1
4

∥∥∥∥Φ

(
�

(
A + B

2

))
+ MmΦ

(�(A)–1 + �(B)–1

2

)∥∥∥∥
2

(by AM-GM inequality)

≤ 1
4

(M + m)2 (
by (22)

)
.

That is,

∥∥∥∥Φ

(
�

(
A + B

2

))
Φ–1(�(A�B)

)∥∥∥∥ ≤ K(h).

This completes the proof. �

Remark 2.13 Letting A, B ≥ 0 in Theorem 2.12, inequality (21) coincides with inequality
(3).

Next we give a pth (p ≥ 2) powering of inequality (21) along the same line as in Theo-
rem 2.11.

Theorem 2.14 If A, B ∈ B(H) are accretive and 0 < mI ≤ �(A),�(B) ≤ MI 1 < β ≤ 2 and
p ≥ 2β , then, for every positive unital linear map Φ ,

Φp
(

�
(

A + B
2

))
≤ (K(h)

β
2 (Mβ + mβ ))

2p
β

16Mpmp Φp(�(A�B)
)
, (23)

where K(h) = (h+1)2

4h and h = M
m .

Remark 2.15 Letting A, B ≥ 0 and β = 2 in Theorem 2.14, inequality (23) coincides with
inequality (4).

The following theorem corrects Theorem 1.2 of Liu et al. [11].
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Theorem 2.16 Let A, B ∈ Mn be such that W (A), W (B) ⊂ Sα , then

�
((

A–1 + B–1

2

)–1)
≤ sec4(α)�(A�B). (24)

Proof We can get

(
�

(
A–1 + B–1

2

))–1

≤ sec2(α)
(�(

A–1)��(
B–1))–1 (25)

along the same line as Liu et al. did in [11] by Lemma 2.1 and Lemma 2.5.
Thus we have

�
((

A–1 + B–1

2

)–1)
≤

(
�

(
A–1 + B–1

2

))–1

(by Lemma 2.3)

≤ sec2(α)
(�(

A–1)��(
B–1))–1 (

by (25)
)

= sec2(α)
(�(

A–1))–1
�
(�(

B–1))–1

≤ sec4(α)
(�(A)��(B)

)
(by Lemma 2.4)

≤ sec4(α)�(A�B) (by Lemma 2.1).

This completes the proof. �

Remark 2.17 Maybe it is just a clerical error in Theorem 1.2 of their work [11]. However,
the authors present the following inequalities in their proof:

�
((

A–1 + B–1

2

)–1)
≤ sec2(α)

(�(
A–1))–1

�
(�(

B–1))–1

≤ sec2(α)
(�(A)��(B)

)
.

Obviously, such a deduction in their proof collapses given the property of geometric
mean for positive definite matrices. Thus we give Theorem 2.16 and the proof.

Let A, B ∈Mn with W (A), W (B) ⊂ Sα , 0 < mIn ≤ �(A–1),�(B–1) ≤ MIn and Φ be a unital
positive linear map. As a complement of inequalities (13) and (24), we have the following
reverse harmonic–geometric mean inequality:

Φ
(�(A�B)

) ≤ sec2(α)K(h)Φ
(

�
((

A–1 + B–1

2

)–1))
, (26)

where K(h) = (h+1)2

4h and h = M
m .

Proof Compute

�(A�B) = �((
A–1�B–1)–1)

≤ �(
A–1�B–1)–1

≤ K(h)�
(

A–1 + B–1

2

)–1
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≤ sec2(α)K(h)�
((

A–1 + B–1

2

)–1)
,

in which the first inequality is by Lemma 2.3, the second one is by inequality (13) and the
last one is by Lemma 2.4.

Imposing Φ on both sides of the inequalities above, we thus obtain inequality (26). �

As an analog of Theorem 2.12, we shall present a squaring version of inequality (26).

Theorem 2.18 If A, B ∈Mn with W (A), W (B) ⊂ Sα and 0 < mIn ≤ �(A–1),�(B–1) ≤ MIn,
then, for every positive unital linear map Φ ,

Φ2(�(A�B)
) ≤ (

sec4(α)K(h)
)2

Φ2
(

�
((

A–1 + B–1

2

)–1))
, (27)

where K(h) = (h+1)2

4h and h = M
m .

Proof From Theorem 2.10 we have

1
2
�(

A–1) +
1
2

Mm�(
A–1)–1 ≤ 1

2
(M + m)In (28)

and

1
2
�(

B–1) +
1
2

Mm�(
B–1)–1 ≤ 1

2
(M + m)In. (29)

Summing up inequalities (28) and (29), we get

�
(

A–1 + B–1

2

)
+ Mm�

(
A + B

2

)

≤ �
(

A–1 + B–1

2

)
+ Mm

(�(A–1)–1 + �(B–1)–1

2

)

≤ (M + m)In.

Inequality (27) is equivalent to

∥∥∥∥Φ
(�(A�B)

)
Φ–1

(
�

((
A–1 + B–1

2

)–1))∥∥∥∥ ≤ sec4(α)K(h).

By computation, we have

∥∥∥∥MmΦ
(�(A�B)

)
Φ–1

(
�

((
A–1 + B–1

2

)–1))∥∥∥∥

≤ 1
4

∥∥∥∥MmΦ
(�(A�B)

)
+ Φ–1

(
�

((
A–1 + B–1

2

)–1))∥∥∥∥
2

(by Lemma 2.6)

≤ 1
4

∥∥∥∥MmΦ
(�(A�B)

)
+ Φ

(
�

((
A–1 + B–1

2

)–1)–1)∥∥∥∥
2

(by Lemma 2.7)

≤ 1
4

∥∥∥∥MmΦ
(�(A�B)

)
+ sec2(α)Φ

(
�

(
A–1 + B–1

2

))∥∥∥∥
2

(by Lemma 2.4)
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≤ 1
4

∥∥∥∥sec2(α)MmΦ

(
�

(
A + B

2

))
+ sec2(α)Φ

(
�

(
A–1 + B–1

2

))∥∥∥∥
2 (

by (6)
)

=
1
4

∥∥∥∥sec2(α)Φ
(

Mm�
(

A + B
2

)
+ �

(
A–1 + B–1

2

))∥∥∥∥
2

≤ 1
4

sec4(α)(M + m)2.

That is,

∥∥∥∥Φ
(�(A�B)

)
Φ–1

(
�

((
A–1 + B–1

2

)–1))∥∥∥∥ ≤ sec4(α)K(h).

This completes the proof. �

Obviously, the optimal factor in Theorem 2.18 should be (sec2(α)K(h))2. We note that
it is affirmative under the condition mIn ≤ �(A–1) ≤ �(A)–1 ≤ MIn and mIn ≤ �(B–1) ≤
�(B)–1 ≤ MIn by presenting the following theorem.

Theorem 2.19 If A, B ∈Mn with W (A), W (B) ⊂ Sα and 0 < mIn ≤ �(A)–1,�(B)–1 ≤ MIn,
then, for every positive unital linear map Φ ,

Φ2(�(A�B)
) ≤ (

sec2(α)K(h)
)2

Φ2
(

�
((

A–1 + B–1

2

)–1))
, (30)

where K(h) = (h+1)2

4h and h = M
m .

Proof From Theorem 2.10 we obtain

�(A)–1 + �(B)–1

2
+ Mm�

(
A + B

2

)
≤ (M + m)In. (31)

Inequality (30) is equivalent to

∥∥∥∥Φ
(�(A�B)

)
Φ–1

(
�

((
A–1 + B–1

2

)–1))∥∥∥∥ ≤ sec2(α)K(h).

By computation, we have

∥∥∥∥sec2(α)MmΦ
(�(A�B)

)
Φ–1

(
�

((
A–1 + B–1

2

)–1))∥∥∥∥

≤ 1
4

∥∥∥∥MmΦ
(�(A�B)

)
+ sec2(α)Φ–1

(
�

((
A–1 + B–1

2

)–1))∥∥∥∥
2

(by Lemma 2.6)

≤ 1
4

∥∥∥∥MmΦ
(�(A�B)

)
+ sec2(α)Φ

(
�

((
A–1 + B–1

2

)–1)–1)∥∥∥∥
2

(by Lemma 2.7)

≤ 1
4

∥∥∥∥MmΦ
(�(A�B)

)
+ sec2(α)Φ

(�(A)–1 + �(B)–1

2

)∥∥∥∥
2

(by Lemma 2.2)

≤ 1
4

∥∥∥∥sec2(α)MmΦ

(
�

(
A + B

2

))
+ sec2(α)Φ

(�(A)–1 + �(B)–1

2

)∥∥∥∥
2 (

by (6)
)
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=
1
4

∥∥∥∥sec2(α)Φ
(

Mm�
(

A + B
2

)
+

�(A)–1 + �(B)–1

2

)∥∥∥∥
2

≤ 1
4

sec4(α)(M + m)2 (
by (31)

)
.

That is,

∥∥∥∥Φ
(�(A�B)

)
Φ–1

(
�

((
A–1 + B–1

2

)–1))∥∥∥∥ ≤ sec2(α)K(h).

This completes the proof. �
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