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1 Introduction
Assume that {X;,i > 1} is a sequence of random variables (r.v.s) with their respective dis-
tributions F;, i > 1, supported on D = [0, 00) or (—00, 00), and that {v;,i > 1} is a sequence
of real numbers, which represent the weights of {X;,i > 1}. Denote the weighted infinite
sum by Y, ¥:X;, the asymptotic tail behavior of which is the main objective of our paper.
In this paper, we consider the heavy-tailed distribution classes. Firstly, we introduce
some notions and notations. All limit relationships henceforth hold as x — oo un-
less stated otherwise. For two positive functions a(-) and b(-), we write a(x) < b(x) if
limsupa(x)/b(x) <1, a(x) 2 b(x) if liminfa(x)/b(x) > 1, a(x) ~ b(x) if lima(x)/b(x) = 1. For
a proper distribution V on (00, 00), we denote its tail by V(x) = 1 — V(x), and its upper

and lower Matuszewska indices, respectively, by

. log V.(y) B logX_/*(y)
]‘j:lnf{—mzjwl} and ]V:sup{—szwl ,

where V,(y) = liminf V(xy)/V(x) and V" (y) = limsup V (xy)/V (x) for y > 0.
An important class of heavy-tailed distributions is the subexponential class. Say that a

distribution V on [0, c0) belongs to the subexponential class, denoted by V € .7, if

V2(x) ~ V(x),
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where V*2 is the 2-fold convolution of V. Note that if V € . then V is long-tailed, denoted
by V € .%, in the sense that

V(x+y)~V(x), foranyy>D0.
Besides, if V € .Z then

(V) = {h :x € [0,00), h(x) 1 00, h(x) = o(1)x and V(x + y) ~ V(x) holds uniformly
for all |y| < h(x)}
0.

Moreover, the class . covers the class € of distributions with consistently varying tails,
characterized by

limV, (y) =1, orequivalently, lim v =1
1 11

and also the class € covers the class Z_,, 0 < o < 00, of distributions with regularly varying
tails, characterized by

Vixy) ~y*V(x).

Another important class of heavy-tailed distributions is the dominant variation class, de-
noted by 2. Say that a distribution V belongs to the class Z, if

1_/*(;/) <oo, foranyy>O0.

More generally, when V is supported on (—00, 00), we say that V' belongs to a distribution
class if V(x)1(x>0; belongs to the class. In conclusion,

HACceCcLNgcs L.

For more details of heavy-tailed distributions and their applications, the reader is referred
to Bingham et al. [2] and Embrechts et al. [5].

By inequality (2.1.9) in Theorem 2.18 and Proposition 2.2.1 of Bingham et al. [2], we
know that V € Z if and only if J§, < oo; and if V € , then, for all 0 < p; <J;; and p, > J;,
there exist C; >0 and D; > 0, i = 1,2 such that

Vi(xy) ~

— <Ciy P, xy>x>Dy; 1.1

Vi) 1Y 34 1 ( )
and

V

_(x) <Cy?, xy>x>D,. (1.2)

V(xy)

We now give a proposition, which will play a key role in the proofs of the main results.
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Proposition 1.1 If V € €, then J;, > 0.

Proof For any fixed x > 0, V(xy)/V (x) is a monotonically decreasing function of y, which
leads to V' (y) < V'(z) for y >z > 0, and then by V € €, V"(y) < lim,y; V' (2) = 1. Since
limsup,_, o lim,—,o V(xy)/V (x) = 0, there exists a sufficiently large number y, > 1 such that
V*(y) <1 for all y > y,, and further log V" (y)/logy < 0, y > yo > 1. Hence by the definition
of J;,, it follows that J;, > sup{-log V*(y)/ logy:y >0} >0. d

It is well known that an increasing number of researchers introduce many dependence
structures to extensively study the asymptotic tail behaviors of sums of r.v.s in the literature
of applied probability. See, for example, Ko and Tang [14], Geluk and Tang [12], Chen and
Yuan [4], Foss and Richards [6], Gao and Wang [10], Yi et al. [21], Liu et al. [17], Gao and
Liu [9], Chen et al. [3], Li [15], Wang et al. [20], Jiang et al. [13], Gao and Yang [11], Gao
and Jin [8], Liu et al. [16, 18], Bae and Ko [1], Gao et al. [7], among which Ko and Tang [14]
proposed a conditional dependence structure as follows.

Assumption A For n > 2 and D = [0, 00), there exist some large constants x¢ = x¢(1) > 0
and C = C(n) > 0 such that, for every 2 <j <n,

y P(X1+-~+Xj,1>x—t|X,:t)<C
imsup su
pxostsg—xo PXi+--+X_1>x—1t) -

In this paper, we extend the support of corresponding distribution in Assumption A
from [0, 00) to (—00, 00), and we denote by Assumption A* the modified dependence struc-
ture.

Besides, Geluk and Tang [12] introduced another conditional dependence structure.

Assumption B For n > 2 and D = (—00, 00), there exist some large constants x¢ = xo(#) > 0
and C = C(n) > 0 such that the inequality

P(1Xi| > x; | X; = x; with j € J) < CF;(x;)
holdsforall 1 <i<wm,J:={j:1<j<mn}\{i}, % >xo,and x; > xo,j € /.
Obviously, the relation in Assumption B is equivalent to the conjunction of the relations
P(X; > x; | X; = x; with j € J) < CF;(x;)
and
P(X; < —x; | X; = x; with j € J) < CFj(x;). (1.3)
In this paper, for Assumption B, relation (1.3) is replaced by the following relation:
P(X; < —x; | X; = x; with j € J) < CFy(—x;)

to cover all independent r.v.s In fact, when {Xj,1 <i < n} is a sequence of mutually inde-
pendent r.v.s such that limxﬁoofi(x,»)/l-}(—xi) =0 for some 1 < i < n, relation (1.3) is not
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satisfied, and then neither is Assumption B. Hence, the extended conditional dependence
structure from Assumption B is labeled as Assumption B*. Note that these extended con-
ditional dependence structures denoted by Assumptions A* and B* were firstly considered
by Jiang et al. [13].

This paper will mainly focus on the asymptotic behavior of the tail probability of a
weighted infinite sum of heavy-tailed r.v.s under the above two extended conditional de-
pendence structures. In the rest of this paper, we will state our main results in Sect. 2, and
prove them in Sect. 3.

2 Main results

In this section we firstly review the related results, and then present the main result of this
paper. For the case when r.v.s X;, 1 < i < n, satisfy Assumption A, Bae and Ko [1] obtained
the following theorem on a weighted infinite sum.

Theorem 1.A Let {X;,i > 1} be a sequence of nonnegative r.v.s with common distribution
F € %o, and for each n, X;, 1 < i < n, satisfy Assumption A. If Y i) |l < oo for some
0 < p < min{w, 1}, then

P(Z VX, > x) ~Y F(y'%) ~F@) Y vt
i=1 iel, i€l

where 1, denotes the set {i | ¥; > 0}.

For the case when r.v.s X;, 1 <i < n, satisfy Assumption B, Geluk and Tang [12] pre-
sented a theorem as below.

Theorem 1.B Assume that X;, 1 < i < n, are real-valued rv.s with distributions F;,
l<i<mnlIfFie S foralll1<i<nand F;xFe % forall 1 <i<j<n, and Assump-
tion B holds. Then, for all n > 1,

P(ZH:X,» > x) ~ Zn:f,»(x). (2.1)
i=1 i=1

For the case when r.v.s X;, 1 <i < n, satisfy Assumption A* or B*, Jiang et al. [13] gave
the following two results on sums of these r.v.s.

Theorem 1.C Assume that X;, 1 < i < n, satisfy Assumption A*, and F; € £ forall 1 <
i<nand F;x F; € & for all 1 <i<j < n. Furthermore, when these r.v.s do not satisfy
Assumption B or B*, there exists a function h € (., H(F;) such that, forall 1 <i <n,

Fi(~h(x)) = O(Z F,-(x)).
i=1
Then, for all n > 1, Eq. (2.1) holds.

Theorem 1.D Assume that X;, 1 < i < n, satisfy Assumption B*, and F; € £ for all 1 <
i<nandF;xF;e S foralll <i<j<n.Then,foralln>1,Eq. (2.1) holds.
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Inspired by the above results, in this paper we further consider the asymptotic tail be-
havior of weighted infinite sum of consistently varying tailed r.v.s under conditional de-
pendence structure satisfying Assumption A* or B*. The main results of this paper are

given below.

Theorem 2.1 Let {X;,i > 1} be a sequence of real-valued r.v.s. with distributions F; € 2,
i > 1, and all weights {;,i > 1} be real numbers. Assume that there exists a distribution

F € € such that
Fi(—
lim sup l_( %) =0 (2.2)
i1 F(x)
and
E; E;
0< S:=liminfinf _(x) < limsupsup _(x) =M < o0, (2.3)
=1 F(x) iz1 F(x)

and that Zf:l [P < 0o for some 0 < p < min{Jz,Jz/]}}, then the relation
SY F(y'x) < P(Z ViX; > x) <MY F(y;'x) (2.4)
iel, i=1 iel,

holds, if {X;,i > 1} is a sequence of r.v.s satisfy Assumption A* or B*, where 1, is the set given
in Theorem 1.A.

Corollary 2.1 Under the conditions of Theorem 2.1, if F; € €, i > 1, then
SY F(yi'x) < p(z YiX; > x) ~ 3 Fi(wite) SMYF(yi'x),
iely i=1 iely iely
and furthermore if F; ~ F, i > 1, then
P(Z ViX; > x) ~ Y F(y'x).
i=1 iel,
IfFi~F€e% o, i>1,then
© p— p—
P(Z VX, > x) ~Y F(y'%) ~F@) Y vt
i=1 i€l i€l

3 Lemmas
In order to prove Theorem 2.1 and Corollary 2.1, we now give two lemmas which are

concerned with the case that weights {1;,i > 1} be positive.

Lemma 3.1 Let {X;,i > 1} be a sequence of real-valued rv.s with their respective distri-
butions F; € £, i > 1, and their weights {\;,i > 1} be positive. Assume that there ex-
ists a distribution F € € such that (2.2) and (2.3) hold, and that ;" V! < oo for some
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0 < p <min{Jz,Jz/J}}, then the relation

o0

S Z F(y;'x) < P(Z VX > x) SM Z F(y7'x) (3.1)
i=1 i=1

i=1
holds, if {X;,i > 1} is a sequence of rv.s satisfy Assumption A* or B*.

Proof Without loss of generality, we assume that 0 < y; < 1, i > 1. It is because there can
be only a finite number of terms with v; > 1 by the assumption and, if that is the case, we
can divide each weight with the maximum of such ;s.

Take 0 < p < min{/,/z/J}} such that fol Wf < 00. Then, for any 0 < € < 1, there exists a
large positive integer ng such that

i Yyl <e. (3.2)

i=ng+1

For the above integer ng, by F € € C &, (1.1) and (3.2), there exist positive constants Cs
and D3 such that, for all large x > D3 and the above p,

> F(y;'x) < GsF(x) Z W’ < C3eF(x). (3.3)

i=ngp+1 i=ng+1

Firstly, to prove the upper bound of Eq. (3.1), we follow the approach used in the proof of
Lemma 4.24 in Resnick [19] or Theorem 2 in Bae and Ko [1]. For any 0 < § < 1 and integer
1o in (3.2), we have

(Zw,x >x) <P<Z¢,X+ (1- 8x)+P<Z viX; >8x>

i=np+1

= L(x) + L(x), (3.4)

where X/ = max{X;,0}, { > 1. For convenience’s sake, we remark that F; € £ N %, i>1,
can imply F; € &, 1 <i <m,and F; x F; € & for all 1 <i<j < n; see Jiang et al. [13].
Therefore, the distributions F;, i > 1, in Theorem 2.1 and Lemma 3.1, can also satisfy the
conditions in Theorem 1.C. For I;(x), by Theorem 1.C or 1.D, and (2.3), it follows that

L)~ P(yiX{ > (1-8)x)

i=1

< MZTD(Wl(l - 8)x)
i=1
F(y7(1 - 8)%)

! TRem &) 3.5
: 0opiet F(y; ) ; (¥ %) 63

By F € €, we get

F(y;*(1-6 F((1-6
limlimsup sup %(71)96)—11 lim supu 1. (3.6)
30 xso00 0<yy<1 F(l/f; x) 30 xso0 F(x)
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Hence, we substitute (3.6) into (3.5) to obtain

Lix) SMY F(y; ). (3.7)

i=1

For I;(x), when 0 < J} < 1, we have

[e¢] o0
Dx) < P( U {wixi > 596}) +P( > UiX Ly <o > 5x)
i=np+1 i=np+1
=: I (%) + Inp(x). (3.8)

By (1.2), (2.3), (3.3) and F € € C %, for any p, > J{, there exist some large positive con-
stants C, and D, such that, for all x > max{Ds, Dy},

oo

L) < ) P(¥iX; > bx)

i=np+1

SM Y F(y;'sx)

i=ngp+1

< C3CaM8™P2¢F(x). (3.9)

By Markov’s inequality and the monotone convergence theorem, we see that

[o¢]
In(x) < (8x)7'E ( > uiX; 1{%)@*5%})

i=np+1

= @07 Y wE(X1 (X <y ox))- (3.10)

i=np+1

ByF € ¢ C Z,(1.2) and (2.3), for any J < p; < 1, there exist some large positive constants
Cs and Ds such that, for all x > Ds,

yilex
E(Xfl(xlfsw;lsx)) = _/o udFi(u)

_ vilex _
—;  xF;(W; ' 8x) +f Fi(u)du
0
1 —
<y tox / Ei(ty;'ox) dt
0

- VE(eyts
< My SxE (7 ) /0 %

CsM
1-p>

=

Y SxF (] 8x). (3.11)

Substituting (3.11) into (3.10) and using the last step of (3.9) can lead to

C3CiCsM . —
L(x) < %S*PZSF(@. (3.12)
—p2

Page 7 of 15
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Therefore by (3.4), (3.7)—(3.9), (3.12) and the arbitrariness of ¢, we derive that

P(Z ViX; > x) SMY F(y'x) <MY F(y;'x). (3.13)
i=1 i=1 i

For the case when J; > 1, we choose some constant 8 € (J},Jzp~") such that p < B71J7 <
BYf <1.Sety = Z?:VlO*l ¥, which is assumed to be less than 1 without loss of generality.
Then by Jensen’s inequality, it follows that

<y \
Lx) = P<I/fﬁ< > jxg) > 5%"’)

i=np+1

o0
< P( > i’ > wlﬁaﬂxﬁ>

i=np+1

< P( U {vix;” > wl-ﬁaﬂxﬁ}>

i=np+1

]
+B 1—
+P< Z wiXi l{wixfﬁswl-ﬂéﬂxﬁ} > 1// ﬂ&ﬁxﬂ)

i=np+1
=: Iy (x) + Iy (%). (3.14)
For I}, (x), by using F € ¥ C 2 and (1.1), and arguing as (3.9), for any p; € (8p,JF)

and p, > J, there exist some large positive constants Cs and Dg such that, for all x >
maX{DB)D4)D6})

Ly < Y P>y, "y F ox)

r1(B-1) —
< CG3C.,CsMyr B §7P2eF(x). (3.15)

For I, (x), by going along the same lines of the derivation of I5;(x), we conclude that, for
any J# < ps < B, there exist some large positive constants C; and D; such that, for all x >
max{Dg,D4,D6,D7},

CMB X —, g 1p
Ly(x) < /37—15 > F(y Py 7 5%)

i=ng+1

C3CCe Gy M, (8-1) _
< %7'31/,1’—% 572 ¢F(x), (3.16)
—P2

where the last step is obtained similarly to (3.15). Then by (3.4), (3.7), (3.14)—(3.16) and
the arbitrariness of ¢, we prove that Eq. (3.13) holds.

Page 8 of 15
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Secondly, we deal with the lower bound of Eq. (3.1). Let 19 and p be fixed as those in
(3.2). For any 0 < § < 1, we have

P(Z ViX; > x) = P(Z Vi) =Y Ui > x)
i=1 i=1 i=1
> P(i viX > (1+ S)x,iwiXi_ < Sx)
i=1

i=1
> P(Z Y X7 > (1+ S)x) - P(Z VX > ax)
i=1 i=1
= I3(x) — L4(x), (3.17)

where X} = —min{X;, 0}, i > 1. For I5(x), by (2.3), Theorem 1.C or 1.D, we have

I3(x) > P(Z viX > (1+ 8)x>

i=1

~ Y P(yiX; > (1+6)x)

i=1
>SZF Y1+ 8)x)

F(yi'(1+8)x) Z

> S inf (3.18)
0<y;<1 F('([f x) “1
By F € €, it follows that
F(yit(1+8 F((1+8)x
limliminf inf TGO i E A0 (3.19)
510 x—o00 O<yy<l F(I/,lflx) 510 x—00 F(x)

By (3.3), (3.18) and (3.19), we obtain

Lx) 2 Sy F(y!

i=1

= Sif(%lx) -S i EF(y;*

i=np+1

> S F(y;'x) - C3SeF(x),

Lx)2SY F(y;'%). (3.20)

Page9of 15
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By (2.2), for any 0 < ¢ < 1, there exists a large positive constant D’ such that, for all x > D,

“u Fi(—x)
iz? F(x)

<e. (3.21)

For I4(x), we only consider the case 0 < J} < 1. In fact, the case of J; > 1 follows from
similar derivations to (3.14)—(3.16) with slight modifications. Clearly,

Li(x) < ZP(W,X{ > 8x) + P<Z Vi Liyx; <ox) > 8x>

i=1 i=1

o0 o0
= > P(YiX; < —8x) + P(Z VX Lyx-<on) > 8x>

i=1 i=1
=: [4,1 (x) + [42(96). (322)

For I4(x), by (3.21) and the last step of (3.9), for all x > max{D’, D,},

Iy(x) <& Zf(l/fi_léx) < Cy67P2¢ Zf(wi’lx). (3.23)
i=1 i=1

For I5(x), similarly to (3.10), we have

o]

In(x) < (60)7" Y iE(X7 1, X <ylon)- (3.24)

i=1

Similarly to (3.11), by F € € C 2, (1.2), (2.2) and (2.3), for any J} < p; < 1, there exist some
large positive constants Cg and Dg such that, for all x > max{D’, Dg},

E(Xi_ I{X; sx//lflax})

1
=~y ' 8xP(X; > ¥ 8x) + ¥ o / P(X; >ty 8x) dt
0

g ' Fi(=tyrox) F(ty; ' 8x)
1 1 i i
<y; SxF(wi 596) /0 I_-"(twi‘léx) I_:(Iﬂl_lax)
e m VF(ty;16x)
1 1 i
<ey; 8xF(¢i 8x) /0 7?(%‘1590
CgS

=
1—[}2

Y SaF (v 8x). (3.25)

Then, by substituting (3.25) into (3.24) and arguing similarly to (3.9), we prove that, for all
x > max{D’, Dy, Dg},

Cge > CyCs
F(L -p2 Flr1x):
Lo() < 7 ~— ZI: F(y;i'ox) < N _pzs € EH F(y;'x); (3.26)

and further we substitute (3.23) and (3.26) into (3.22) to obtain, for all x > max{D’, D4, Dg},

Iy(x) < (1 ?;2 + 1)C48_”28 ;l_-"(wi_lx), (3.27)

Page 10 of 15
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which, along with (3.17), (3.20) and the arbitrariness of O < ¢ < 1, can show the lower bound
of Eq. (3.1). a

Lemma 3.2 Under the conditions of Lemma 3.1, if F; € €, i > 1, then

o]

Szf(wﬂx) SP(Z viXi >x> ~ Z?t(l/fi_lx) SMZf(W,‘_Ix);
i=1

i=1 i=1 i=1

and further if F; ~F,i> 1, then

P(Z YiX; > x) ~ 3 F(yi ).
i=1 i=1

IfF,~Fe% 4, i>1,then

P(Z ViX; > x) ~Y F(y'%) ~F@) Y vt
i=1 i=1 i=1

Proof By Lemma 3.1, it suffices to prove that

P(Z ViX; > x) ~ Y Fi(yi'x) (3.28)
i=1 i=1
and, when F € Z_,,

D F(yitx) ~Fx) Yy (3.29)

Firstly, we prove (3.28). By the proof of Lemma 3.1, we only need to prove

L) S Y E(vi'x) (3.30)
i=1
and
L) 2 Y Fi(w'x). (3.31)
i=1

Since F; € €, i > 1, we know that

F(y1l1-8 Fi((1-35
lim lim sup M = lim lim sup u =1 (3.32)
30 x—>o00 Fl('(/fl_lx) 310 x—o00 F,(x)
and
F(y'(1+6 F((1+6
fimfimint Y QXD iming L) (3.33)

50 x50 Ey(yrlx) 510 x>0 Fy(x)
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By (3.32) and Theorem 1.C or 1.D, it follows that

i=1

L)~ F(y'a-8)x) ~ Y F(v'x) <> F(y; %),
i=1 i=1

which leads to (3.30). By Theorem 1.C or 1.D, (2.3), (3.3) and (3.33), we have

L) 2 Y F(v (1 +8)x) ~ > F(y;'x)
i=1 i=1
2 Y E(Wi'x)-M Y F(y;')
i=1 i=ng+1

> Z_'(l[fi_lx) — C3MeF(x),

which, along with the arbitrariness of 0 < ¢ < 1, implies that Eq. (3.31) holds.
Secondly, we prove (3.29). By F € #_, and the control convergence theorem, we

have

© = 00 F(l/fi_lx) e 00 ,
> F(y; x)_F(x);:if(x) P(x);wi. .

i=1

4 Proof of main result

In this section, we will prove the main result of this paper.

Proof of Theorem 2.1 Without loss of generality, we may assume that —1 < v; < 1. Firstly,
we consider the upper bound of E (2.4). For any 0 < § < 1, we have

P(i VX, > x) = P(Z ViXi+ Y YiXi> x)
i=1

i=Ly i=I_
< P(Z ViX; > (1- 5)x) + P(Z ViX; > 8x>

iely, el
=: I5(x) + Is(x), (4.1)

where [_ denotes the set {i | y; < 0}. For I5(x), by Lemma 3.1 and (3.6), we have

I(x) < MZTD(wgl(l ~8)x)

iely

R e DA

~ M F(y;'%). 4.2)

iel,
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For I(x), it follows from (3.27) that, for all x > max{D’, D4, Dg},

Is(x) §P<Z [y | X} >8x> < (1 Cs

iel_

0 +1)c45 ”%ZF || 1x). (4.3)

Thus, substituting (4.2) and (4.3) into (4.1) and considering the arbitrariness of 0 < ¢ < 1,

we show that

YXi>x | SM F (4.4)
r(See) s

ielly

Secondly, we consider the lower bound of Eq. (2.4). By Lemma 3.1 and (3.19), we derive
that

P(i‘ ViX; > x) = P(Z YiXi+ Y YiXi> x)
i=1

iely el
> P<Z YiXi > (1+8)x, Y iX; > —8x>
iely iel_
~ P(Z UiX; > (1 + 8)x>
el
~ Y P(YiX; > (1+8)x)
iely
> SZF Y+ 8)x
el

o Py (1+8)) _
ZSL Ry 2T

el

~ S F(y;'x), (4.5)

el

where in the third step we used the fact that the event {w: )
to a certain event as x tends to infinity. Therefore, we combine (4.4) and (4.5) to conclude
that Eq. (2.4) holds. O

i1 ViX; > —6x} increases

Proof of Corollary 2.1 By (3.29) and the proof of Theorem 2.1, we only need to prove

L@ S Y F(vi'x) (4.6)

el

and

(Z ViX; > x) >3 FE(y; (4.7)

iel,
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Firstly, we consider (4.6). By Lemma 3.2, (3.3) and (3.32), we conclude that, for any p, >
J£, there exist some large positive constants Cy and Dy such that, for all x > max{Ds, Do},

Isx) ~ Y Fi(y' 1 -8)x)

el

< Y Bla-on) M Y Fy1-ow)
i€l ,i<ng iely,i=ng+1

< Y E(¥i'%) + CCoM(1 - 8) 72eF(x),

i€l ,i<ng

which, along with the arbitrariness of 0 < ¢ < 1, proves (4.6).
Secondly, we consider (4.7). Similarly to (4.5), by Theorem 3.1, (3.3) and (3.33), we con-

clude that
o0
D oviXisx) 2D F(vN(1+68)x)
i=1 i€l
> > E(y'(1+5)x)
iely,i<ng
~ Z fi(%’lx)
i€l i<ng
2D Fits)-M >0 F
i€l i€l ,i=np+1
> Y F(y;'x) - CsMeF(x),
iely
which, along with the arbitrariness of 0 < ¢ < 1, proves (4.7). O
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