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1 Introduction
Denote | F(a; b; z) be the confluent hypergeometric function defined by

o (@) 2"

1F1(a;b;2) = Z

n=0

O !

with the rising factorial (x)® = x(x +1)---(x + n—1) (n > 1) and (x)© = 1. For N > 1,
define hypergeometric Bernoulli numbers By, [13-16, 18] by

1 XN /N1 i B X 1)
= = N’ I
lFl(l;N + 1;96) e — 22[;01 x"/n! n=0 ' "

When N =1, B, = B, are the classical Bernoulli numbers, defined by
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In addition, define hypergeometric Bernoulli polynomials By ,(z) [17] by the generating
function
e 0 X"
——————— =% Byu.l2)—.
F(LN + L) 2; @)

It is well known [25] that

3 (Z)Bl,mwz,n_m(y) =By +9) = SBii(x4) (1= 1) @

m=0

Many kinds of generalizations of the Bernoulli numbers have been considered by
many authors. For example, poly-Bernoulli numbers [20], multiple Bernoulli numbers
[5], Apostol-Bernoulli numbers [23], multi-poly-Bernoulli numbers [10, 11], degenerate
Bernoulli numbers [6], various types of g-Bernoulli numbers [4], Bernoulli—Carlitz num-
bers [3]. One of the advantages of hypergeometric numbers is the natural extension of
determinant expressions of the numbers.

In [22], some determinant expressions of hypergeometric Cauchy numbers are con-
sidered. In this paper, first we show a similar determinant expression of hypergeomet-
ric Bernoulli numbers and their generalizations. Then we study some relations between
the hypergeometric Bernoulli numbers and the classical Bernoulli numbers which include
Kummer’s congruences. Furthermore, by applying Trudi’s formula, we also have some dif-
ferent expressions and inversion relations. Finally, we determine explicit forms of the con-
vergents of the continued fraction expansion of the generating function of the hyperge-
ometric Bernoulli numbers, from which several identities for hypergeometric Bernoulli

numbers are given.

2 Some basic properties of hypergeometric Bernoulli numbers
In this section, we list some basic properties of hypergeometric Bernoulli numbers.

Proposition 1 Let N,n > 1. We have

> ("0, 8

m=0

- (=N
By =n! ) 4
Non =¥ Z Z (N+ i)l (N +p)! @)

k=1 iy+-+ig=n

i1 penig =1

L /n+1 (=NN¥
By, =n! . 5
Non =1 ;<k+1) lzk (N+ i)l (N +p)! 5)

0] e ikZO

Remark When N =1 in (3), we have a famous identity for Bernoulli numbers,

Z (”;1>Bm =0 (n>1).

m=0
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In some literature (e.g., [20]), the Bernoulli numbers B8, are also defined by

oo
Z u
—e "’

Then we have

- 1

Z<n+ )%m=n+1 n>1)
m=0 m

(see, e.g., [1]). Notice that B, = (-1)"B,, (n > 0).
By the identity (3), we get

n-1 +n
BN,n = E
k=0 n

with By = 1 (NN > 1). So, we have the exact forms of By, for small # one by one. For larger
or general n, we need the identity (4).

In a later section about Trudi’s formula, we shall see a different expression of By, in
Corollary 2. Further, an inversion expression can be obtained:

N+n\! " n
=Y (DF ) Bn.i - B
( N ) =1) <i1,...,ik) Noiy =7 PN

k=1 iy +etip=n
i1 i =1

where ( N " tk) are the multinomial coefficients.

t' t'

Proof of Proposition 1. From the definition in (1), we have

xN o xt+N
NI~ ( (l+N)')(Z Nmm')
x

BN,m N+n
—~ (n—m+N)'m!

Hence, for n > 1, we have (3).
The proof of (4) can be done by induction on n. Here, we shall prove directly by using
the generating function. From the definition in (1), we have

> x" ANV /N!
D Brwr = Wi
nex = SNy

n=0
1 [e's) in k
T 2w (T 5E)

The identity (4) immediately follows by comparing coefficients of both sides.
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The identity (5) is a different expression of By, with binomial coefficients. The proof is
similar to that of (4) and is omitted. a

3 Analog of Kummer’s congruence

In this section, we show an analog of Kummer’s congruences in the classical Bernoulli
numbers. Let p be a prime number, and v > 0 be an integer. For a non-zero integer m,
we define the p-adic order ord,(m) (€ Z) of m by m = up® %™ where u is an integer
satisfying p 1 u. If m and n are positive even integers with m = n (mod(p - 1)p”) and
m,n % 0 (modp — 1), then we have

B,, B,

(1 _pm—l)_ = (1 _pn—l)7 (modpv+l) (6)

and this is called Kummer’s congruence [30, Corollary 5.14]. We get the similar congru-

ence for hypergeometric Bernoulli numbers By, for a special case that N is p-adically

close enough to 1, that is, ord,(N — 1) is large enough compared to v and the order of
max{mn (1 " k)

\X/e need the following lemma in order to prove the main result.

Lemma 1 Let p be a prime number. For N > 1 and n > 0, we have

(N +k)! “
!_[( ]\;l )BN,,,EE_[(1+/<)!B” (modp'),
-0 -0

where t = ord,(N —1).

Proof In the case n = 0, the assertion is trivial. Assume that the result is true up to n — 1.
By Proposition 1, we have

-1

N + k)! (N +k)! n N+n
1_[( BNn— 1_[ { ( )BN,m}
m=0
(N +

k=0 k=0

n-1 n-1 m
N+n I (N + k)! 1—[ k)
- n!( m ) N!
=0 k=m+1 k=0

m=

n-1 n-1
N +n (N +k)!
S(3) I 5 o e

m=| k=m+1
n-1 n-1 n+l

=-||a+k) xn!Z( . )Bm (modp')
k=0 m=0

n
(1+k)B, (modp").
k=0

From this lemma, we have the following corollary.

Corollary 1 Let p be a prime number, and N,n > 1,v > 0 be integers with n % 0
(modp —1). If ord,(N —1) > v + 1 + ord, ([ T_o(1 + k)!) + ord,(n), then we have

BN,n _ Bn

—n v+l
p p (modp )
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Furthermore, by using (6), we have the following proposition.

Proposition 2 Let p be a prime number, and v > 0 be an integer. If m and n are positive
even integers with m > n, m = n (mod(p — 1)p”) and m,n # 0 (mod(p — 1)), and ord,(N -
1) > v+ 1+ ord,([ ]2 (1 + k)!) + max{ord, (m), ord,(n)}, then we have

_ BNm — BN n
1 _ m—1 e = 1 _ n—-1 e d v+l .
(1-p)===(1-p7)= = (modp™)
Note that ord,([Tj-,(1 + k)!) + max{ord,(m), ord,(m)} = 0 if p > m + 1 in Proposition 2.

Example 1 Consider the case p = 5,m = 6,n = 2. For any integer N satisfying
6
ords(N —1) > 1 + ords (l_[(l + k)!) =4,
k=0
we have

B B
N6 _IN2 _g (mod5).
6 2

Example 2 Consider the case p = 5,m = 22,n = 2. For any integer N satisfying
2
ords(N —1) > 2 + ords (]_[(1 + k)!) =48,
k=0
we have

B B
(1- 521)% =(1- 5)% =8 (mod?25).

4 Determinant expressions
We give a determinant expression of hypergeometric Bernoulli numbers.

Theorem 1 For N,n > 1, we have

NI
N+1)! 1
NI NI
N+2)! N+1)!

By =(=1)"n!| : 1
N! NI NI 1
W+n-1)!  W+n-2!  N+D!
NI NI NI NI
N+n)! N+n=D)! 7 (N+2)!  (N+1)!

Remark When N = 1, we have a determinant expression of Bernoulli numbers [7, p. 53]:

: 1
1 1
31 21
By=(-1)"n!| : : 1 )
1 1 1
! (n=-1)! 21 1
1 1 11
(n+1)! nl 31 2!

Proof of Theorem 1 This theorem is a special case of Theorem 2. O
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5 Arelation between By, and By_1,,
In this section, we show the following relation between By, and By_1 ;-

Proposition 3 For N > 2 and n > 1, we have

n-1
By = NA-i » {Z Z Bn_1,i,,

m=0 1<iy,<---<i1<ig=n

“ 3 i1 N
X | | N-1ig_q—ix+1| ) — -
TN G — i+ 1) N + ik

k=1

Example 3
(i) By, = 25 Bn-11,
(i) Bno = 55 {Bn-12 + g Bn-1,1Bn-12},
(iii)
B N B N ——B B 3N — B
=——1Bn_13+ +
N3 = g | BNty BB o B
3N?

— " By...B:..\.
(N+1)(N+2) ¥ N‘l'z}

By using Proposition 3 for N = 2 and B, = 0 for odd # > 3, the numbers B, ,(0 <n < 4)
are explicitly given by the classical Bernoulli numbers B,, (cf. [15, §9]),

By =Bi(=1),

B —2B _ 1
2,1_31_31

Byy= 2Byt 1BB 1
= — + — =—-|,
2T 3T T ok 32
B 332 2332 L
= — + — =——|,
2T ET2 T EPIP\ T 9 32 5
B 1B 233 633 4333 L
=—B,+ = + =B+ — =——.
247 gPAT g T g T P T Ty 38 x5

Lemma 2 For N > 2 and n> 1, we have

N L n
Bny=——1{Bn-1n+ By uBN-11- .
N,n N+I’l{ N-1,n ;(I’I—WI+1) N,mPN-1,n m+1}

Proof From the derivative of (1), we have

oo o0 o0
Bn_1k s By is1 & Bn_1x & Bk &
2 k! Z k! - K +k2: K
-0

k=0 k=0 k=0

By BN—I,O = 1, we have

k+0+1

Sy 2 - x Sy
N-1,k & N,k s
k! _ZZBN']‘“BN‘M“](!([ +1)! * K
k=0 k=0 €=0 k=0
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oo n-1 n 2 00 B
_ o Nk Kk
D B) DUV i 1) FRIE

n=1 €=0

n—- n

“/n x
BN u-eBn-1,641 { — + Bno-
5 +1 n!

00
=Z BN,n_

n=1 L=

Therefore, we have

n-1
n
BNoin=Bnn-) (E N 1>BN,n—/ZBN—1,Z+1;

£=0
forn>1.By Bn-11 = —%, the assertion follows. O

Proof of Proposition 3 We give the proof by induction for . In the case n = 1, the asser-
tion means By 1 = %BN_M, and this equality follows from By ; = —N%l and By_11 = —%.
Assume that the assertion holds up to n — 1. By Lemma 2, we have

B N 3 L n B N
= — _ + _ i _—
Nt = N | N Z n—iy+1) NN

i1=1

i1-1 m+1 i N
k-1
X Z Z Bn_1 HBN—L‘ i1 . . ;
i1 T G =i+ 1) N + i

m=0 1<i,,41<+<iz<i] k=2

n-1i1-1

= NA-i » Bn_in + Z Z Z BNt

i1=1 m=0 1<iy,,1<---<ip<i]

1 ,
s 2 i1 N
X | | N-Lig_q1—ig+1\ . . ;
iy -1 k1 —ir+1) N+

N n-1 i
= Nin Bn_1n + Z Z Z Bn-1,,

i1=1 £=1 1<ip<---<ip<iy

¢ .

% l—[B Li—1 N )
N-Lig_q—ig+1| ) -

i T\ G — ik + 1) N + i

N n-1
= Nin Bn_1n + Z Z Bn-1iy,

m=11<iy<--<i1<n-1

“ 3 i1 N
X | | N-Lig_1—ig+1\ . . ;
i o1 =i Ik1—ir+1) N+

N n-1
- N+n Z Z BN-1im

m=0 1<iy,<---<i1<igp=n

m .
% l—IB Li—1 N
N-Lig_j—ix+1| . ) — .
i R G — ik + 1) N + i O

6 Multiple hypergeometric Bernoulli numbers
In this section, we define a more general hypergeometric Bernoulli number and give the

properties.
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For positive integers N and r, define the higher order hypergeometric Bernoulli numbers

BE\?" [18, 26] by the generating function

ro o0 »
1 _ xNV/N! _ Z BY X ®)
1F1(L;N + Lyx)r e — 22[;01 X1 e

n=0

The higher order hypergeometric Bernoulli polynomials Bl(\rgn(x) are studied in [17], we
have Bg\?n = B%TW(O).
From the definition (8), we have

er_ o itN \T /@ o &
(ﬁ) B (Z (i+N)!> (%BM’”%>

i=0
o0 o0
Z Z I xl X"
AT iV o
e (N+i)--(N+i) ! — m!
i1 nir >0

_ NN " (n —m)! 0 *
=N D X <m)(N+i1)z.~(N+i,)!BN"”n!'

n=0 m=0 i1+-+ir=n-m
i1 ey >0

Hence, as a generalization of Proposition 1 (3), for n > 1, we have the following.
Proposition 4 We have

0
B

2 2 N (N~

m=0 iy+--+ir=n-m
i1 iy 0

By using Proposition 4 or

n-1 B(r)
(r) r N,m
By, =-n!(N! 9
Non = N % lzm m\(N + i)l (N +p)! ©
i iy =0

with Bz(\rz?o =1 (N > 1), some values of B;Qn (0 < n < 4) are explicitly given by the following:

31(\20:1’
B(V) - _ r ,
Nl N+1

2r r+1
BY - = [N+ D)+—N+2)),
N2 (N+1)2(N+2)<( )+ N ))
BY. = 3ir (N +172+(r+ DN + (N +3)
N3T (N +1)3(N +2)(N +3)

D +2

—%(N+2)(N+3)),

o) 4y

_ _ 3
B = N+ DN 22N + ) (N + 4) ( N+ 1 (N'+2)
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+F+DIN+1) N +2)(N +4) + %(N+ 1)%(N + 3)(N +4)

- W(N 1N+ 2)(N +3)(N +4)
. r+ 1) +2)(r+3)

4!

(N +2)*(N +3)(N + 4)).

As a generalization of Proposition 1 (4), we have an explicit expression of Bf{gn.

Proposition 5 For N,n > 1, we have

Bl(\r[?n =n! Z(_l)k Z M, (e1) - - - M, (ex),
k=1

el +teg=n
€] 5 ekzl

where
(N1
M,(e) = : 10
© 12 N+ (N +4,)! (10)
[ i 20

We shall introduce the Hasse—Teichmiiller derivative in order to prove Proposition 5
easily. Let IF be a field of any characteristic, F[[z]] the ring of formal power series in one
variable z, and F((z)) the field of Laurent series in z. Let # be a nonnegative integer. We
define the Hasse—Teichmiiller derivative H" of order # by

oo oo m
H(Vl) m\ _ m—n
(Se) - S (2):
m=R m=R

for Y > . cuz™ € F((2)), where R is an integer and ¢,, € F for any m > R. Note that (':t’) =0
if m<n.

The Hasse—Teichmiiller derivatives satisfy the product rule [27], the quotient rule [8]
and the chain rule [12]. One of the product rules can be described as follows.

Lemma 3 For f; € F[[z]] (i =1,...,k) with k > 2 and for n > 1, we have

H"(f - ) = Z H(il)(fl) . 'H(ik)(fk)-

iy +etip=n
(] =0

The quotient rules can be described as follows.

Lemma 4 For f € F[[z]]\{0} and n > 1, we have

o 1\k ) )
H(ﬂ)G) _ Z (fk1+)1 Z H(”)(f) .. .H(lk)(f) (11)

k=1 i +etip=n
i]5emif=1
n
n+ 1\ (-1 , ,
=Z<k+1) e 2 HY)-HP(). (12)
k=1 i +etip=n
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Proof of Proposition 5 Put h(x) = (f(x))", where

Y e N
@ ==x =Z(N+j)!x]'

N
NY j=0

Since

; SN ()
H()(f)|x0:Z(N—+j)!<i>x]
Jj=i
N
TN+

x=0

by the product rule of the Hasse—Teichmiiller derivative in Lemma 3, we get

HO (M)l = Z HY(f) oo - HY ()] c0

i1+--+ir=e
i1 i >0
N! N!
= = M,(e).
Z (N +i)! (N +i,)! /(@)

i]+-+ir=e
11500y =0

Hence, by the quotient rule of the Hasse—Teichmiiller derivative in Lemma 4 (11), we have

(r) n k
BN,n Z (_1)

O Z H(R) o - - - H ()] xo0

k+1
n! k=1 h T la= eq+tep=n
€7 yeuu ekzl
n
k
S Y Moo M.
k=1 eq+-teg=n O
epref=1

Now, we can also show a determinant expression of Bx)n.

Theorem 2 For N,n > 1, we have

M, (1) 1
M,(2) M, (1)
B, = (1y'mt| L :
Mr(n - 1) M,(}’l - 2) Mr(l) 1
M,(I’I) M,(}’l - 1) M,(Z) Mr(l)

where M,(e) are given in (10).

Remark When r =1 in Theorem 2, we have the result in Theorem 1.

Page 10 of 24
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Proof For simplicity, put A](\r,?n = (—1)"31(\2”/71!. Then we shall prove that for any # > 1,

(2019) 2019:113
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M,(1) 1
M,(2) M,(1)
ANu=| : 1 (13)
Mr(n - 1) Mr(n - 2) Mr(l) 1
Mr(n) Mr(n - 1) Mr(z) Mr(l)
When # = 1, (13) is valid because
r(NY" r )
M,(1) = = =AY .
) (N)-I(N+1)! N+1 NI
Assume that (13) is valid up to # — 1. Notice that by (9), we have
Ag\r/?n = Z(_l)lilAin—lM'"(l)‘
I=1
Thus, by expanding the first row of the right-hand side of (13), it is equal to
M,(2) 1
M,(3) M,(1)
MV(I)AI(\?n—l - . . 1
M,«(}’l - 1) Mr(n - 3) Mr(l) 1
Mr(n) Mr(n - 2) Mr(z) Mr(l)
= M, (DAY, = M)A,
M,(3) 1
M,(4) M,(1)
1l : R
Mr(n - 1) Mr(n - 4) Mr(l) 1
Mr(n) Mr(n - 3) Mr(z) Mr(l)
o [ M(n—1) 1
=MDAY - M2AY L+ (=12
DAy = MDA+ CUTH 4 ) )
=Y C)IMWDAY, =AY,
I=1
Note that AJ(QI =M,(1) and A](QO =1. O

7 Arelation between B%fn and By,

In this section, we show the following relation between Bg\r,)yn and By,

Lemma5 Forr,N > 1 and n> 0, we have

B _ ni!g ...B

N = !l N,y Nny
nyesttyr =0 1 re
ny+etnp=n
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Proof From the definition (1) and (8), we get the assertion. O
We give some examples for Lemma 5. Note that By, = B](\I[?n by the definition.

Example 4
(i) By =By, (r=1),

(i) BY), =rByiBigh (r= 1),

(iii)
" _ 2
By, = Z n l...nlBN’”"”BN’”’
77 5estty 20 1: re
ny+-tnp=2
2 2
- Z I/l!...n!BN'nl.”BN'm-l— Z nl...n!BN'nl.”BN'”’
nlenre(02) L r nlenre(01) L re
Ny +etnp=2 ny+etnp=2

= rBN,zB%I)l +r(r- l)BJZV‘lBIr\Z% (r=>2).

8 Applications by the Trudi’s formula and inversion expressions

We can obtain different explicit expressions for the numbers B}\?n’ By, and B, by using the
Trudi’s formula. We also show some inversion formulas. The following relation is known
as Trudi’s formula [24, Vol. 3, p. 214], [28] and the case ag = 1 of this formula is known as
Brioschi’s formula [2], [24, Vol. 3, pp. 208—-209].

Lemma 6 For a positive integer m, we have

apg di
a a
a a1

_ Z (tl + 0+ tm)(—ﬂo)mtlmtmatllﬂ? . at’”,
m

t1,..5L
t1+2tp+--+mby=m L yom

t1+~~~+tm) _ (14 +tm)!

- nT are the multinomial coefficients.
,,,,, m ol

where (

In addition, there exists the following inversion formula (see, e.g., [21]), which is based

upon the relation

Y ) FuRm-k) =0 (n>1).

k=0
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Lemma 7 If{a,},>0 is a sequence defined by oy = 1 and

R1) 1 a1

= R() , thenR(n)= @
: 1 VR |

R(n) --- R(2) R(1) o, - Qy o

Ay

Moreover, if

1 1
o1 1 R(l) 1
A=| . ) , thenA™' =]

o, - op 1 R(n) --- RA) 1

From Trudi’s formula, it is possible to give the combinatorial expression

bttty e
W= ) (” : )(—1)" A R(AR()? - R(n).
Hy.oostn

t1+2tp+-+nty=n

By applying these lemmas to Theorem 2, we obtain an explicit expression for the general-

ized hypergeometric Bernoulli numbers B](\r,?n.

Theorem 3 Forn=>1,

b+ +t
B,=nt ) (ltl ¢ ">(-1>“*"~+f"Mr(1)“Mr(2)f2---M,(n)fn,
yeeerlp

t1+2tp++nty=n

where M, (e) are given in (10). Moreover,

(r)
_Bl\r/,l 1
1!
(r)
Bxia
Mr(n) = 2
1B, By B
! 2! 1
and
1 -1
(r)
_B]\;,l 1
1!
(r) (r)
B B
N,2 N,1
2! BT 1
crraf, LN
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1
M,(1) 1
Mo M@ 1

When r = 1 in Theorem 3, we have an explicit expression for the numbers By ,.

Corollary 2 Forn>1,

L+ +¢
Buasn 3 (e
1reeeslp

t1+2tp+---+nty=n

NI\ N \? N O\"
X((N+1)!> ((N+2)!) "'((N+n)z>

and
Bn,1
BT 1
Bn,2
N! R
(N +n)! .
: 1
CV"BNyn . Bna2  _Bna
n! 2! 1!

When r = N =1 in Theorem 3, we have a different expression of the classical Bernoulli

numbers.

Corollary 3 We have forn > 1,

i+ +t, P
— 2l _ 1+ +iy
By =m Z ( Hyerty >( 2

t1+2tp++nty=n

1\2/1\2 1 K
X(5> (3‘) "'<<n+1>!>

and

B
-4 1
By

1 | =

n+1)!

( ) : . . 1
(=1)"By By By
n! B T T

9 Continued fractions of hypergeometric Bernoulli numbers
In the final section, we show several identities for hypergeometric Bernoulli numbers
which the convergents of the continued fraction expansion of the generating function of
hypergeometric Bernoulli numbers entail.

In [1, 19] by studying the convergents of the continued fraction of

x/2 > x21
=3By, ~——,
tanhx/2 Z 2 (2n)!
n=0

Page 14 of 24
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some identities of Bernoulli numbers are obtained. In this section, the nth convergent
of the generating function of hypergeometric Bernoulli numbers is explicitly given. As
an application, we give some identities of hypergeometric Bernoulli numbers in terms of
binomial coefficients.

The generating function on the left-hand side of (1) can be expanded as a continued

fraction
1 X
=1- (14)
1F1(1;N+ l,x) X
N+1+
(N +1)x
N+2-
2x
N+3+

(N +2)x
N+4—- ——
N+5+ .

(cf [29, (91.2)]). Its nth convergent P,(x)/Q,(x) (n > 0) is given by the recurrence relation

Pn(x) = ﬂn(x)Pn—l(x) + bn(x)Pn—Z(x) (” = 2): (15)

Q%) = @, (%) Qu-1(x) + by (%) Qua(x)  (n>2), (16)
with initial values

Po(x) =1, Pi(x) = (N +1) —x;

Qolx) =1, Qi(x) =N +1,

where, for n > 1, a,(x) = N + n, by, (x) = nx and by,,1(x) = —(N + n)x.
We have explicit expressions of both the numerator and the denominator of the nth

convergent of (14).

Theorem 4 For n > 1, we have

on—j-1

Pyya(x) = Z(—ly‘c) [N+,
j=0 I=1
n 2n—j
Poy(x) = Z(—l)’(?) [+,
j=0 =1
and
n-1 j n—k—1 2n—j-1 '
Qua®) =Y Y (-1y*@2n—j- 1)( s )H<N+Z>-xf,
j=0 k=0 /= I=k+1
"G ; n—k-1\ %/
Qan() = (1Y @n - ) ( , > [[w+p-#.
j=0 k=0 )= I=k+1
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Remark Here we use the convenient values

(Z):O (0<m<k), <_01>:1,

and recognize the empty product as 1. Otherwise, we should write Q,,(x) as

n-1 j 2n—j
Quiw) =3 > 1/ - i ("}ffk”)]‘[(mz).xunw.

I=k+1

If we use the unsigned Stirling numbers of the first kind, [ ], of which the generating

function is given by

= ai | m |7 (log(l +2))k
S it

[9, (7.50)], we can express the products as

2n—j-1 2n—j wm —j
_ i-1
I (N+1)_Z[ ; :|N

=1 i=1

or
2n—j-1 2n—j—k ,
2n—j-k i-1
[[w+p= Z [ i :|(N+k)
I=k+1 i=1

Proof of Theorem 4 The proof is done by induction on #. It is easy to see that for n = 0,
we have Py(x) = Qo(x) = 1, and for n = 1, we have P;(x) = (N + 1) —x and Q1(x) = N + 1.
Assume that the results hold up to # — 1(> 2). Then by using the recurrence relation in
(16)

(N +2n)Poy_1(%) + nPyy_5(x) - x

n 2n—j-1
:(N+2n)Z(_1)i(’,’> [[N+D-«
j=0 =1

n-1 2n—j-2
+n2 < ) 1_[ (N +1) -2
j=0 I=1
2n-1
=WN=+2m) [N +D)
=1
n 2n—j-1
F(N+2n) (-1 (’;) ]‘[ (N+1)-o
j=1
2n—j-1

—ni(—l)’(? ) H (N+1)-
j=1
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Since

(N+2n)<’,’> —n<’7"1> :(N+2n—j)<’7>,
j j-1 j
we get

(N +2n1)Pyy_1(%) + nPyy_5(x) - %

n 2n—j
- Z(_w(’?) [T+«
j=0 1)1

=P,,.
Next,

(N + 21+ 1)Py,(x) = (N + n)Poyy_1(x) - x
2n—j

~(N+2n+1) Z(—l)’(’;) [[ov+n-«
j=0 1=1

1

(N +1)-o*

n 2n—j—
N+ Z(—W‘(’?)
j=0 17

2n
=(N+2n+1)]_[(N+l)
I=1

2n—j

+(N+2n+1) Z(—l)’(?) H(N +1)-

j=1 I=1

]

2n—j

+ (N+n)Z(—1)j<’,fl> H(N+l) o
j=1 1=1

n-1
N+ ()" [N+ 1) -2

=1

Since

(N+2n+1)(?> +(N+n)<’,ill) =(N+2n—j+1)(n;1>,

we get

(N + 21+ 1)Py,(x) = (N + n)Poy_1(x) - x

n+l 2n—j+1

=Z(—1y‘(”‘+,1) [+
j=0 J =1

= P2n+1~
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Concerning Q,(x),

(N +2n)Qy-1(%) + nQ2p2(%) -

n-1 j 2n—j-1
_ k , n-—k-1 ;
-(N+2n)ZZ(—1)’ (2n—}—1)k( ik ) [ w+p-&
j=0 k=0 I=k+1
n-1 j e k—2 2n—j-2
+n Z(—l)jk(Zn—j—2)k< ‘k ) []w+p-
j=0 k=0 /= I=k+1
2n n-1 " k 2 n-1
_ _ _ 11k -hT L
=[[™w+n-n) (-1) (n)k(n—k—l) [[N+D-x
=1 k=0 I=k+1
n-1 j 4
Y Y 1y FEn—j- 1)
j=1 k=0
2n—j-1
—k-1 .
x (” X )(N+2n) [T+ o
j—k
I=k+1
n-1 j-1 N—k—2 2n—j-1
f— — ',k — ‘_ - - . j
nZZ( 1Y *n@n-j 1)k<j_k_1> [ w+p-#.
j=1 k=0 I=k+1
Since N +2n=(N +2n-j) +J,
2n—j-1 2n—j 2n—j-1
[[w+p=]]WN+D-@n-j-k-1) [T W+,
I=k+1 I=k+2 I=k+2

n-k-1 n-k-2 n-—k-2
- - ——(k+1
i=0(" ) () e ()
and (21 —j — 1)g + k(21 — j — 1)_1 = (21 — j)i, we obtain

(N +2n)Qay-1(%) + nQ2y2(x) -

2n
= H(N+ ) + nlx"
1=1
n-1 j h—k—1 2n—j
k ' ,
Y -1y (2n—]—1)k( ik ) [[ov+) o
j=1 k=0 I=k+1
n-1 j '
£y > Hen—j- 1)
j=1 k=0
2n-j-1
k-1 .
x (” ‘kk )(N+2n) [T w+p-
/- I=k+1
n-1 j-1

- (1Y n@n—j- 1)
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2n—j-1
-k-2 )
XC yNwmf]w+nv
j-k-1 I=k+1
2n
= H(N +1)+ nlx”
=1
1 n-k el
-1y7*@2n -j) N+[D)-¥
P evten-pn("T ) TToven:
j=1 k=0 I=k+1
= QZn'
Similarly,

(N + 21+ 1)Qa,(%) — (N + m)xQop—1 (%)

" n-k-1\ =/ .
=(N+2n+1) : Z k@2n - ) < ik )H(N+l)-x’
j=0 k=0 I=k+1
n-1 j -1 2n—-j-1

-k j+1
N +m)y Y (1) @n - - m( _k ) [Toven-»
j=0 k=0 I=k+1
2n
=W+2n+1) [[WN+D)
I=k+1

2n—j+1
+ZZ (-1 (@2n - ])k( ._ 1) []w+p-#

j=1 k=0 I=k+1

" ; n—k-1\ 2/ ,
XEZE]AYWM—M( o )rUN+nw

j=1 k=0 /- I=k+1

n j-1 k-1 2n—j+1

k - s

+Y Y -1y *en- J)k( i 1) [Tw+n-»

j=1 k=0 I=k+1

= —k-1\ o
=Y (1 @n -l - /+1)( >]_[(N+l)-x/.

—k-1
j=1 k=0 I=k+1

Since

(n—k—1>+(n—k—l _(n—k)
j—-k j—k-1) \j-k

(n-k-1 ( D n-k-1

’</—k) e <1k 1)
n—k n— 1
(1) -0 ((50)

(N + 271+ 1)Qan(x) = (N + 1)xQ20-1 (%)

and

we get
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2n
=(N+2n+1) [N +D
I=k+1
—_k 2n—j+1
+ZZ (-1y~*@2n - ,)k( )H(N+l) o
j=1 k=0 I=k+1
X n-k-1
+ZZ( 1y~ @n - m(( ) (k + 1)( . ))
j=1 k=0 —k-1
2n—j
< [Tw+0-«.
I=k+1

Since

2n—j+1
(-1 2n = e C ) []w+0

I=k+2
+ (~1) K @n- ) (k("’k) (k+ 1)( k’l» 2]n"[_j(z\z+1)
]k j-k —k-1 I=k+1
K 2n—j
L 1R 2 (’7 i ) [T+
j-k I=k+1
2n—j+1
= (-1 2en-j+ 1)k+1< ) [] &+
—k=1/)
2n—j
+ (1) e+ 1)(2m - /)m( i 1) [T+,
I=k+2
we have
(N + 271+ 1)Qau(x) = (N + m)xQay-1(x)
K 2n—j+1
+ZZ( 1y *2n - ;+1)k( ) [[w+p-#
j=1 k=0 I=k+1
= Q2n+1(x)' O

9.1 Some more identities of hypergeometric Bernoulli numbers
Since Py,,_1(x), Py, (x) and Qy,(x) are polynomials with degree n and Q,,_1(x) is a polyno-
mial with degree n — 1, by the approximation property of the continued fraction, we have

the following.

Lemma 8 Let P,(x)/Q,(x) denote the nth convergent of the continued fraction expansion
of (14). Then for n > 0,

Qn(x) ZBN,K % =P,(x) (modx”*l)

k=0
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By this approximation property, the coefficients ¥ (0 <j < n) of

5] v
x) ZBN,KE - P,(x)
k=0

are nullified. By Theorem 4,

> A (n-k-1 By
:Z ’ Z(_ly k(2n—])k< ik )ZH(N-FZ).(I’IN—j)I!xh

=k+1

and

2n—h

Py, (%) = Z( 1)h( ) H(N+l) -«
Therefore,
min{/,n} j 2n—j

_k n-— k’ 1 fﬁvﬁgj
Y Yevenn(" ) Teo- g

j=0 k= I=k+1

V(I "W +D (0<h<n);
0 (h>n).

Similarly, since

n—k—l)
j—k

I
Nk
]
tj\
L
~.
=
Ny
N
=
>~
—

and

n 2n-h-1
Poat) =31 () T] vty

h=0

we have

min{h,n} j 2n—j-1

(1) *@n—j— 1) ”.k N TT e N‘“"
- )
j=0 k=0

I=k+1
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O WD 0<h<n)
o (> n).

Theorem 5 We have
min{/,n} j 2n—j
k-1 B i
X S enten-i (" )1‘[(1v+z>- o
j=0 k= J=k T Cin (h =y

={ YN+ (©<h<n);

(17)
0 (h>n),

and
2n-j-1

/ " , n—k-1 By
> Sevten—j-ni("T ) T aven- 4

I=k+1

) {(—1)h(2) PN D (0 <h<n)

(18)
0 (h > n).

In particular, when N = 1, we have the relations for the classical Bernoulli numbers.

Corollary 4 We have

mmini - n—k—1 (2n—j+1)! By
~ j—k Jk+1D)@n-h+1)! (h-))

j=0 k=0
DR ©O<h<ny 19)
o (> n),
and
min{h,n} j .
K , n-k-1 (2n—j)! By
= g(_ly (2"_’_1)k< j—k )(k+1)!(2n—h)!'(h—j)!
\k(n .
={< V() ©O<h<ny 00
0 (h > n).

Remark Since

@u—ji (mn—k-
Z(-y (k+1)'(; k )

1,%1 () if j is even;
i—-2 \~1 /- ipas
= 4%((;{1?/2) (n(jg)l/)z/z) ((;_y;)/z) ifjis odd = 3;
3 ifj=1,
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we can write (19) as

%(Zn—zju)!(n) Bioy () By
(

< Y+l -2 2 (h-1)
5] R
£ _(2”—21)-<21—1) (ﬂ-l-l)(n)ﬂ
el CAR VAN j j) (h=2j-1)!
-DF)@n-h+1)! if1<h<n
0 ifn<h<2n+1.
Since
i )1 k(2n j- Vi (n-k-1
o (k+1)! j-k

(((1;/2‘))'2 (j72) (n_;:g_l) if j is even;

0 if j is odd,

we can write (20) as

(N2 (21 — 2))! (n) (n —j- 1) By
i+ \j j (h = 2))!
D"()@2n-h) fl<h<mn
0 ifn<h<2n.

L4

Here the empty summation is recognized as 0, as usual.
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