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1 Introduction

Classical probability theorems were widely used in many fields, which only hold on some
occasions of model certainty. However, there are uncertainties, such as measures of risk,
non-linear stochastic calculus and statistics in the process of finance. At this time, sub-
linear expectation and capacity are not additive, the limit theorems of classical probability
space are no longer valid. Therefore, the study of the limit theorems of sub-linear expec-
tation becomes more complex. Peng Shige [1-3] of Shandong University constructed the
basic concept of sub-linear expectation and gave a complete set of axioms of sub-linear ex-
pectation theories. The sub-linear expectation axiom system makes up for the deficiency
of limit theorems of classical probability space. Since the general framework of sub-linear
expectation was introduced by Peng Shige, many scholars have paid close attention to it,
and lots of excellent results have been established. For example, Zhang [4-6] studied the
sub-linear expectation space in depth and proved some important inequalities under the
sub-linear expectations, Xu and Zhang [7] proved a three series theorem for indepen-
dent random variables under sub-linear expectations with applications. Wu and Jiang [8]
proved the strong law of large numbers and the law of iterated logarithm in the sub-linear
expectation space. Chen [9] obtained the strong law of large numbers for independent
isomorphic sequences in sub-linear expectation space, and he also obtained the central
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limit theorem of weighted sums in sub-linear expectation space. The complete conver-
gence and complete integral convergence have a relatively complete development in limit
theories of probability. The notion of complete convergence was raised by Hsu and Rob-
bins [10], and Chow [11] built complete moment convergence. However, to the best of our
knowledge, except for Liu [12], Chen [13], Wu and Guan [14], not many authors discussed
the properties for END random variables. We know Sung [15] founded the notion of uni-
form integrability, we obtained complete convergence and complete integral convergence
for the array of END random variables under uniform integrability, which were not con-
sidered in Sung [15]. We found the concept of uniform integrability on random variable
sequences and uniform integrability is a more extensive condition than that of Cesaro [16,
17].

The complete integral convergence is a more important version of the complete con-
vergence, and both of them are most important problems in classical probability theories.
Many of the related results have already been obtained in classical probability space. Now,
some corresponding results were obtained by Gut and Stadtmuller [18], Qiu and Chen
[19], Wu and Jiang [20] and Feng and Wang [21], we still need to perfect the complete
convergence and complete integral convergence under sub-linear expectation. We estab-
lish the complete convergence and complete integral convergence for END random vari-
ables under sub-linear expectation and generalize them [22] to the sub-linear expectation

space.

2 Preliminaries

We use the framework and notions of Peng [1]. Let (£2, F) be a given measurable space and
let H be a linear space of real functions defined on (£2, F) such that if X1,X5,...,X, € H
then ¢(Xy,...,X,) € H for each ¢ € C;1;,(R,), where C;i,(R,,) denotes the linear space of
(local Lipschitz) functions ¢ satisfying

lo(x¥) —p(y)| <c(1+xI"+yI")Ix-yl, VxyeR,,

for some ¢ > 0, m € N depending on ¢. H is considered as a space of random variables. In
this case we denote X € H.

Definition 2.1 ([1]) A sub-linear expectation [t on H is a function B : H — R satisfying
the following properties: for all X, Y € H, we have

(a) monotonicity: if X > Y then fox > IEY;

(b) the constant preserving property: Fe=c;

(c) sub-additivity: I@I(X +Y) < EX + EY; whenever EX + EY is not of the form +00 — 0o

or —00 + 00;

(d) positive homogeneity: I@(AX) =AEX, A >0.

Here R = [-00, 00]. The triple (£2, H,E) is called a sub-linear expectation space. Given a

sub-linear expectation I, let us denote the conjugate expectation & of 1 by

8X:= -E(-X), VXeH.

Ef <V(A)<Eg, & <V(A)<ég, iff <I(A)<gf.gecH.
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From the definition, it is easily shown that forall X, Y e H

EX<EX, EX+o=EX+c
. . (2.1)
Ex-y)>Ex-kyY.

IfREY = 2Y, then E(X + aY) = EX + aRY for any a € R. Next, we consider the capacities
corresponding to the sub-linear expectations. Let G C F. A function V : G — [0,1] is
called a capacity if

V@) =0, V(R2)=1 and V(4)<V(B) forVACB,ABeG.

It is called sub-additive if V(AUB) < V(A) + V(B) forall A,B € G with AUB € G. In the
sub-linear space (£2, H, IAE), we denote a pair (V, V) of capacities by

V(A) :=inf{R&;1(A) <&, € H),  V(A):=1-V(A°), VAeF,

where A€ is the complement set of A. By definition of V and V), it is obvious that V is
sub-additive, and

V[A] <VI[A], VAeF.
This implies the Markov inequality: VX € H,
V(X > x) <E(IXP) /2%, Vx>0,p>0,
from I(|X| > x) < |X|P/x? € H.

Definition 2.2 ([1]) A sequence of random variables {X,,;; # > 1} is said to be upper (resp.
lower) extended negatively dependent if there is some dominating constant K > 1 such
that

E(n (pi(Xi)) = I<1_[IAE(§0i(Xz’))¢ Vn=>2,
i=1 i=1

whenever the non-negative functions ¢;(x) € C;1ip(R), i = 1,2,... are all non-decreasing
(resp. all non-increasing). They are called extended negatively dependent (END) if they
are both upper extended negatively dependent and lower extended negatively dependent.

It is obvious that, if {X,;; n > 1} is a sequence of extended negatively dependent random
variables and fi(x),f2(%),... € C;Lip(R) are non-decreasing (resp. non-increasing) func-
tions, then {f,,(X,,); n = 1} is also a sequence of END random variables.

Definition 2.3 ([4]) The Choquet integrals/expectations (Cy, Cy) are defined by
oo 0
Cy :/ V(X > t)dt+f [VX=1)-1]ds,
0 —00

with V being replaced by V and V), respectively.
We define C to be various positive constants at different places in this paper.
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Lemma 2.1 ([4], Theorem 3.1) Assume that {X;u, <i<m,}isanarray ofrow wise END
random variables in (2,H, E) with IEXl <0, foru, <i<m,.Let B, = Zm" 1) [X?]. Then,
for any given n and for all x >0,y >0, K > 1. Then

Xy
(ZX >x> <V<unr£1la£§nn)( >y> +I(exp{; —;ln( Bn)}'

i=uy

Here K is the dominating constant in Definition 2.2.
For 0 < u <1, let g(x) € CyLip(R) be a non-increasing function such that 0 < g(x) < 1 for
all x and g(x) =1 ifx <, gx) =0ifx> 1. Then

I(jx] < ) < g(lxl) <I(jx| < 1). (2.2)

Lemma 2.2 Assume that {X,;u, <i < my,,n > 1} is an array of row-wise END random
variables. Let {h,;n > 1} and {k,;n > 1} be increasing sequences of positive constants with
h, — o0, k, — 00 as n — 0o and Z—Z — 0, for some r > 0, satisfying

supk, ZElel <00 (2.3)

n>1
i=up

and

el kS Xm' "
nli)rrolokuEMm-V(l—g(' p | )) =0. (2.4)

i=uy

Then the following statements hold:

_a I, Xl
lim k,” ZEIXHAO‘(I—g(l ! )) =0, foranyO<a<r, (2.5)
n—>00 = k;,
| nll
lim k,” Y E[X,|? =0, . 2.6
lim Z | X, ( T forany B>r (2.6)

i=up

Proof We have z—: — 0 as n — 09, so there exists N such that /1, <k, if n > N. We know

g(x) € Ciip(R) is a non-increasing function and 4, < k;, by (2.2) we obtain

Xl Xl
1- 1- , 2.7
g( kn)f g( hn> (27)

and 1-g(=¢=~ 'X‘“I ) < I(| X" > nky,). When 0 < @ < rand 0 < i < 1, then, for n > N, combining
(2.4), we can get

AT Xl LNy | Xoil”
k" D EIXl (1—g( T ))=kn1~kn T DBl (1—g( . ))

i=uy i=uy

m, r-o
A ey e Xl T | Xonil”
<k (50) T (14(50))
. n

i=up
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v Sno(5)

i=up

—0 (n— o0).

Therefore, (2.5) has been proven.

B .
Now we prove (2.6). Assume that A, = k, " > 7" ]E|Xm|ﬂg(%), on considering (2.1),

i=uy

we conclude that

R X"
Ap=k," Y ElXulfgl ==
> K| |g< k )

n

LN WXl Xl Xl
<k’ ZEIXmIﬁg(T) k' ZEIXmI < ( ) g<f)>
:IAnl +An2.

For A, note that ’3 >1,0< ;< 1, g(=nt 'X”“ ) <I(t|X,:|" < 1) and (2.3), while k, — o0 as
n— 00, SO we can obtaln

R 1 Xl
Anl :kn " ZELXm'ﬂg( 1”” >

i=uy

By < _ /L|X ‘|r
=k kY Bl Xl 'g(T”’

i=uy

B-r
r

"k, ZEIXmI’< )

i=uy

< (k)% - supk, IZEIXmI’

i=uy

-0 (n— o0).

For A,;», because of (2.2), we obtain I(|X,;|" >j) <1 — g(=%- ‘X”" ). So we have
| Xonil” 11 X"
X.:|P -
| X (g( X, g 1
< Xl 1(1 < 1Xil" < k)
= 1 Xl 1 X1 P T (1 < | Xl < ki)
kp—1 b
<IXal” Y G+ D) TG < Xl <j+1)
j=1
k-1 P k-1 P
= Y Xl G+ DT I(1Xal" > ) = Y Xl G+ DT I(1 Xl >+ 1)
j=1 j=1

kn—1

< S Xl G+ DT (Xl > ) - Z|Xm|;r (1Xul” > )

j=1

Page 5of 17
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<Z|an| G+ )T =TV (Xul>)) + ClXal T(1 Xl > 1)
j=1
kn—1
. B per 1 Xnil”
<) Xl (G+ 1) —;r)(l—g( } + Cl Xl
j=1

Because of z—Z — 0asn— o0, é > 1, g(x) € Cy1ip(R) is a non-increasing function, and
we have (2.3) and (2.4), then

a, <ich mzhz (G415 -5 )E|Xm|( ('X;"'r))

i=uy j=1
my  kp—1 |X '|r 8 my R
k" Z Y (G+)F —1r)E|an|( ( 2 >)+Ck;*ZE|Xm~|’
i=up j=hp+1 J i=uy
J RN 1 ,,
Ek;r ZEp(m'lr(l_g(@))((hn + :l)ﬁT _1)
B . Xl Br pr B
+k," ZEIXm-I’<1—g<}|I +|1>>(k/ —(hn+1)ﬂr )+ Chy " ZE|Xm|

s iy A . My R T
<k," ZE|Xm'|r((hn + 1)/37 — 1) + k;l ZE|Xm‘|r(1 _g<|)l(/lm| ))

i=uy i=up

_B, N
+Ch Y R IXl

_é I A —r Jn ~ X i i
<ka” S BIXul (4 1) +/<nIZE'X"f'r(l_g(| i ))
i=up =ity ’

_B, N
+Ch Y R IXl

By +1 1 X,
k, E|X.:|" + k E|X,
(" ) Z'“Zu"( ()
—ﬁJrl _lmn’\
+Choy " kY T EIXl”
ﬂ
h+1 E |Xm'|r
<(5) e S ot (1o )

_B
+Ck,"" -supk;* ZEleV

n>1
i=uy

-0 (n— 00).

Now (2.6) has been proven. The proof is completed. g
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3 Main results
Theorem 3.1 Assume that {X,; u, <i < my,,n > 1} is an array of row-wise END random
variables; {h,;n > 1} and {k,; n > 1} are two increasing sequences of positive constants with

hy, — 00, k, — 00 as n — oco. For some 1 < r < 2, satisfying (2.3),

[e¢]

hy,
E (my, — un)/— < 00, (3.1)
n=1 n

2-r

o0 hn =
Z(;) <00, (3.2)

n=1
S | Xl

KPS EIX (1 - o . 3.3
XI:ZII( g<hn)><°° (3.3)

Then, for all ¢ > 0, we have
oo My R 1
ZV(Z(X,,,- -EX,) > 8k,f> <00 (3.4)
n=1 i=uy

and

iv(i(xm- —EX,) < —eky ) < 00. (3.5)
n=1

i=uy

In particular, if I@X,,i = f:'X,,i, then

:E::()(ni _'ﬁi)(ni)

i=uy

ol

1
> skn’) < 00. (3.6)

Theorem 3.2 Assume that {X,; u, <i < my,,n > 1} is an array of row-wise END random
variables; {h,;n > 1} and {k,; n > 1} are two increasing sequences of positive constants with
hy, — 00, k, — 00 as n — oo. For some 1 < r < 2, satisfying (2.3), (3.1), (3.2),

N X . r X . r
E|Xm|'(1—g(' h’“' )) fcmxmv(l—g(' h’“' )) (3.7)

> il )(nir
;/<;1§CV{|Xni|’<1_g<|h—n|>>} < 00. (3.8)

Then, for all ¢ >0 and IAEX,,,» = (‘:’Xm, we have

}E:CXﬁi_'ﬁLXﬁo

i=uy

00
:E::ﬂg;l(jw'(
n=1

ekl ) < oo, (3.9)

+

Proof of Theorem 3.1 For an array of row-wise END random variables {X,;u, < i <
m,, n > 1}, to ensure the truncated random variables are also END, we demand that trun-
cated functions belong to Cjpjp. For all u, <i <m,, n>1, A >0, for all £ >0, we de-
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Y, = ks I{ X < ks }+ X {1 Xi| < 3k }+ Akj]{xm > aky }

1 1
Zni = Xoi = Yui = (Xowi + Mo ) I{ X < =2kiy } + (X

ik M { Xoi > Ak }.

1
Through this, it is easy to see that Y,; < |Y,;| < Ak , | Y| < [X| and

1
|£ZnA fE|)(nAI{|X;i|> Akﬁ'}:f hxhi|<1'_éz(

| Xl
1
r

Ak

)

Now we prove (3.4), for all ¢ > 0, it suffices to verify that

By the Markov inequality, (3.1) and (3.3), we may draw the conclusion that

I = ZV(sz > ek, )

i=up

I = ZV(Z(Ym R’Y,,) > ek )

1=Up

Iy = lim k,” Z REY,; — £X,;) = 0.

n—00
i=uy

L= iv(izm» > skn%>
n=1 Uy

o0
1
= ZV(EIL’; u, <i<m,, such that | X,;| > Ak,{)
n=1

n=1 i=uy
[09) my R
<CY kY EX

0o my

B X"
:E:: :E:: )erh

n=1 i=uy,

SCZk};lZEth[lr 1—g<|Xm| )) CZk ZEanllr (lel )

i)

Page 8 of 17
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1 1
Next we Con51der L. LetB, =) " B(Y,i —BY,)% x = eky , y = 24k, . Assume A = 5,80

y= 2)\kn’ = skn’ in Lemma 2.1. Forall u, <i <m,, n > 1, ¢ >0, we have
E(Y, - BY,)* < 2E(Y2 + (BY,,)?) <4EY?
and
A SN 1
- EYm' < )\'knr + ]E|Ym| < 8/(,{ .

A 1. 1 N 1
Because of Y, — EY,; < Ak;; + E|Y,,;| < ek, , we have V(max,,, <j<m, (Y —EY,;) > €k, ) = 0.

So we can get

Iz_ZV(Z(Ym EYm)>8k>

i=uy

2
o . 1 2k7
- vl (- )
n=1

Up<I=mpy n

= i[(exp(l —ln<1 )) < CZexpln(
n=1
<CZ/<,,’B,,_CZI< Z]E(Ym EYm)2<CZk ZE

B, +82k’>

<CZI< ZE (“' ’”') CZk ZEAk (1_ ('Xl'»
=t Ak
<CZ/<,, ZIE (”“' ”") cziv (Xl > 12k
i=uy n=1 i=uy

= ]21 + 122.

From the proof of I3, it is easy to prove that

0o My

Iy =CY Y V(1 Xul > urks )

n=1 i=uy

/\

21: Z ’u)")rk

< 0.
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Noting that g(”'x’”l) <1and g(“ 5l ) — g(Bul) < I{puh, < | X,ul” < 252}, combining (2.1),
(2.3), (3.2) and (3 3) we get

Igl_CZk ZE ('Xm|) Czk ZE <M|Xm|>

i=uy i=uy )xkr

-yl Soa 5)

o z (' m') S Z (o) o(5))
e §E|an' i ’( (‘l'k’f") (%))

=cy i Seminn e

(AT ey i B (XKl | Xouil”
w3 (i) e (o) o(5F))
® i=un Ak

n=

gci(Z—) 1Zlfz|)(m| +C2k Z]E|Xm|’( (

i=uy i=uy

)

fci@—:)% SUPk12E|Xm|’+CZk Z]E|Xm|< (' '))

i=uy i=uy

So we have I, < oo.
Finally, we prove I3 — 0. We only need to prove lim,_, » k;, " Zm” |]EY,,, IEX,,A =0

There exists n such i, < A"k, thus 1 — g( ‘X”’I) <1-g( 'f,”,é' ) <1-g(5% ‘X'”I ). By combining

kY
(2.4) and [BY,,; — EX| < B| Y, — Xl

lim kn Z “EYm ]EXm|

Hn— 00
i=up

ISR 1
< Jim &7 Y BV~ Xl = lim k™ Y EIZ

i=uy i=uy

IR X,
< lim k," ZIE|X,,,»|(1—g<| ”j'))
S Ak
ni Xni
< lim k" Z]E|Xm|< X ) (1—g(| 1'))
/L)Lk’ by

=Upy
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. _ mn" |Xm'|r
<C-lim Y EXu(1-g| ——
<C- Jlim k') El '( g(m»

IR g | X ]
<C-lim &) EXu7(1-
< H‘J‘Son;' |< g<hn)>
=0. (3.10)

So we obtain I3 — 0. So (3.4) to be established.

Now we should prove (3.5), because {—X,,;; u, < i < m,,n > 1} is also an array of row-
wise END random variables. We use {—X,;; 4, < i < m,,n > 1} instead of {X,;;u, <i <
my,n > 1} in (3.4), and by I@Xni = —é[—Xni], then we get (3.5). Finally, we need to prove
(3.6). We have IAEXm» = f:’X,,,», so we obtain

iV( > 8kj>
n=1
< iV<i(Xm ~EX,) > ekn%) + iV<— Xn:(Xm -EX,) > 5kn%>
n=1

i=uy n=1 i=uy

My
Z(Xni - EXni)

i=uy

- iv(%(xm _X,) > ek ) + iv(fz(xm —EX,) <~k )
n=1

i=uy n=1 i=up

< Q.

The proof is completed. d
Proof of Theorem 3.2 We know E|X,:|"(1 —g(%)) < CylX.:"(1 —g(%)), hence (3.8)

implies (3.3). We have
\ r
—ek,;
N

i(Xm - I’E)(m')

i=uy

ZkHICv<
n=1

00 00 my . Il .
=Y k! / VI K — EXo)| - ek > ¢ | de
n=1 0 i=uy,
[e’e} kn my . 1
<> k! / VY (X —EX)| > ek ) de
n=1 0 i=uy

My

Z(Xm' - I/E::-Xm’)

> ti> de
>t%>dt

+Zk;1/kooV<

n=1 i=up
00 my . 1
< ZV( D (K = EX)| > ki )
n=1 i=up

i(Xm' - I/E::)(m')

i=uy

+§:k;1/koov<
n=1 n

=1, +I5.

Page 11 of 17
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If we want to prove (3.9), it suffices to prove I < 0o and I5 < co. Because of Theorem 3.1,
we obtain Iy < 0co. Forall u, <i<m,, n>1,t>k,, § >0, we define

1 1 1 1 1
Yoi = =87 I{ Xy < =867 } + Xy {1 Xoui] < 8t7 } + 8t7I{ X, > 887},

Zoi = X = Yo = (X + 86 VX < =887 } + (X = 867 ) [{ X, > 527 ).

Through this, we can get

1 |Xm'|
| Zil < 1 Xl {1 Xoi] > 887} < |Xm'|<1 —g( 5! >>

r

Next we need to prove Is < 00. Let Ig = Y oo k! fk VO (X _EX,) > t7)dt, noting

that
0 00 mp ~ .
16 = Zk};l'/ V(Z(Xm —]EXm‘) > t7> dt
n=1 kn i=uy
[ee] 00 my tl
<Nkt v de+ Yk VY By > = ) de
= fk (Z ) +Z / (;( )>3>

i >
PR <A - 1
r Z(]EY,” — EXm') > g) dt

i=uy

u
1 u,
e [’}
>kt V(t
n=1 kn
= 161 + 162 + ]63'

Because of (2.7) and (3.8), we get

00 00 my t%
161 = Zk—l /k V(sz > €> dt
n=1 n i=uy

o o0
< Zk*/k V(3 i1, < i < my,such that [X,| > at%) dt

n=1

<k / > V(1Xul > 5¢7)

n=1 kn i=up

o0
<Xk ch X T(1 Xonsl” > Kn))

n=1 i=uy
=Yk lgcv(u( r(1-¢(")))
B n=1 i=up : k”

S M Xm' ’
s;k—l cv<|Xni|’<1—g<' hﬂ' )))
< OQ.

So we have Ig; < oco.
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~l=

Y= % in Lemma 2.1. For all

1

there are Y, - BY,; < 26¢7 < % and

W|~:\>—A

Next we consider gy, Let B, = ) /" E(Y, —EY,)% % =
Uy, <i<my,n>1t>k,s>0,suppose that § =

E(Y,; - EY,;)? <4EY?2. By Lemma 2.1, we get

ﬁ,

0 00 mp t%
KUlov Y,i—KY,) > — |de
>k fk (Z( )> 3>
n=1 n i=upy

o) 00 t%
< k’l/‘ V( max (Y,; —EY,, >—) dt
le s ax ( )>

Up <I<mp

2

28t
+Zk / I(exp{Z 21n<1+33 )}dt
n

[oe] 0o 0 2
ECZk;l/ (t-%Bn)Zdt:cZk;lf ( ZE Y- EY2) ) dt
n=1 Kon n=1 kn

§Cn§;k (tZE ) dt

i=uy
0 X 2

e [0Sl oo
n=1 i=upy tr "

0 2
<CY k' {t‘ZE|Xm| ( 1"')} dt
n=1 tr

o) oo [ Mn ) 2
ey {Zz@<1_g(')‘";'))} a
n=1 Kn i=up Str
gciknl/ {t‘ZE|Xm| (' Xl )
n=1 kn

i=uy
o X, X\ |
_2 ~ r —_r M| Api ni
+tr ZE|Xm| |Xni|2 <g< 1 ) _g( >) de
i=up Str kn
o0 oo [/ Mn . 2
+ CZk;I/ D V(1 Xl > udtr) ) de
n=1 kn i=uy

<cZk / {t“ZE|Xm| (' ')

eSS o) ()

00 0o [ Mn 2
+CZ/<;1/ (ZV(|XM|>M&%)> dt
n=1 kn

i=uy

<CZ/( /[ ZE|Xm|2 (' ml)}zdt
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+C2k / {‘IZElX,,,|’< (' y:|r>>}2dt

[e'e} oo [ Mn 2
+ cZk,;lf (Zv(pcm > Mati)) de
n=1 kn i=uy

.7 1" 1"
=ilgy + Iy + Iy,

By a similar argument to the proof of I5;, we have (2.3), (3.2) and (3.3), then

2
)
o0 2 o0
=CY k! (ZEIXm| (' Aol )) /k £ de
n=1 n

- 2 o mpy ’ 2
fczk;%<ZE|an| (' Xl )) :C2<k;%ZE|Xnilzg(l)zil ))
n=1 oy P ;

62—CZ/< f( mew(

| (1) " S on Bonc(uo(5)]
<o) wmer o)

n=1OO n n i=uy r 2

el e (1450 |

Because of (2.7) and (3.3), it is obvious that

o0 nmy 2
ke er ° —
Igz:CZkZI{ZElelr(l—gCk | ))} /k 2 dt
n=1 n n

i=uy

e o)

i=up

el S (-(30)]

i=up

< 0.
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Similar to the proof of I5;, then

Igg<c2k / (Z E'i;”:l) de

i=uy

00 my 2 00
<CY k! (Z E|Xm|'> /] £2dt
n=1 n

(Zk Zwmv)

< Q.

That is to say Is; < 00.
By a similar argument to the proof of (3.10) and for I3, ¢ is greater than k,, it follows

! , .
that £ < k, ", there exists n such that &, < §"k, < 8"t, thus 1 —g(L"l") <1 —g(@) <
ser sk

1 —g(%) <1 —g(%). Then we can get

mMn

sup | Y (B, - BX,.)
tzkn i=uy
1 2in
<suptr |IEY, EX,| < supt ; ElYl Xl
_1 |Xni|
=supt rZ]E|Zm|<supt ZE|X,1,| 1-g( ==
tzkn i=uy tzkn i=up dtr
RGN ||
skn’ZElel(l—g< ; ))
i=uy 8/(,{
1 X,
<t S (4()
i=uy v Skr
<C-k; 1ZEp{mr( ( ))
_ el ) |Xm|r
<C-E'S ElXu"(1-
<coi Yo (1-g( 2
i=uy
— 0.

We are conscious of Ig3 = Zn Lk fk V(t" DI EY,; — EX,;) > é)dt, on the other
hand, we obtain sup,., 7 |Zl " (BY,; - EX,;)] — 0 as n — oo, then SUP;=g, £7 x
ZZ"M (EY,; —EX,;) — 0as n — 00, 0 7 is sufficiently large, we know V(t’% Z:ﬁ’;n (RY,; -
]EX,,,') > %) <0, and we get I3 < 00. Combining g1 < 00, I; < 00 and Ig3 < 00, then we have

I < 00. We use {—X;;u, <i < my,,n> 1} instead of {X,;;u, < i < m,,n> 1} in Is, and by
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BX,,; = £X,.i, then we get

Zk;,l/ \Y Z(—X,,,»—IAE(—XM))>£% dt
n=1 Kin i=tiy

00 00 mp
=Zk,;1/ V(3 ~BX,0) > £ ) de
n=1 kn

i=uy

< Q.

By Is < 00, it is obvious that

o0
I,
> X+ BX0) > 67 | de

/-oo
K i=uy

[ed] o0 my . .
+Zk,;1f VI -(Xu —EX) > £7 ) de
n=1

Kin i=uy

V(>0 - EX)| > ¢ | de
A\

[o¢]

=Y k'
n=1
[o¢]

<> k!
n=1

< 0oQ.

So we obtain I5 < 00, in other words, (3.9) is proved and the proof is completed. d
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