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Abstract
In this paper, two kinds of generalized strong vector quasi-equilibrium problems with
variable ordering structure are considered by using the concept of cosmically upper
continuity rather than upper semi-continuity for cone-valued mapping. Firstly, a key
local property of cosmically upper continuity for cone-valued mapping is discussed.
Next, under suitable conditions of cone-continuity and cone-convexity for
equilibrium mapping, several existence theorems of solutions and closedness of
solution sets are established for these two kinds of generalized strong vector
quasi-equilibrium problems with variable ordering structure. Moreover, an example is
given to illustrate the validity of our theorems. These results obtained in this paper
extend and develop some recent works in this field.
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1 Introduction
The so-called equilibrium problem, which is also called generalized Ky Fan minimax in-
equality, was firstly studied by Blum and Oettli [1] in 1994 in finite-dimensional Euclidean
spaces. It provides a brief and unified framework for modeling many problems originat-
ing from practice and theory, such as mathematical economics, Nash equilibrium prob-
lem, fixed pointed problem, saddle point problem, optimization problem, complemen-
tary problem and variational inequality problem, etc. In recent years, equilibrium prob-
lems with scalar and vector values objective mappings have been widely studied by re-
searchers, and fruitful results have been established (see, for example, [2–14] and the refer-
ences therein). Considering in-depth research work, generalized vector quasi-equilibrium
problems (GVQEP), in which the constraint set is subject to modification, have been put
forward and investigated by many people in different settings. From the existing litera-
ture, we can see that there are many meaningful works on the existence of solutions for
(GVQEP) (see, e.g., [15–22] and the references therein). As applications of these results,
they are applied to study the existence of mathematical programs with equilibrium con-
straints (MPEC), generalized Nash equilibrium, generalized semi-infinite programs, gen-
eralized quasi-variational inequality, and so on. We would like to emphasize here that the
importance of research studies on (GVQEP) is justified by the fact that it is a unified model
of other several problems. Furthermore, these studies of (GVQEP) can also be applied to
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some important real-life problems. For further relevant information, the reader is referred
to [23, 24] and the references therein.

On the other hand, considering the preference of a decision-maker (the partial order
in the object space) may vary with time, Yu [25] introduced in 1974 a new type of vector
optimization problem with variable ordering structure, where the ordering structure was
represented by a cone-valued mapping, i.e., by a set-valued mapping where the images
are cones. In 1992, Chen and Huang [26] generalized it to variational inequality. After-
wards, there have been many works devoted to the study of various equilibrium, opti-
mization, and variational inequality problems with variable ordering structure (see, for
example, [27–32] and the references therein). It is worth pointing out that, in these liter-
ature sources, the condition of upper semi-continuity for cone-valued mapping has been
widely used. However, Borde and Crouzeix [33] gave an example to explain that the con-
cept of the upper semi-continuity for set-valued mapping was actually not suitable for the
cone-valued mapping. Very recently, Eichfelder [34] deeply considered various proper-
ties for the cone-valued mapping. The author also gave an interesting conclusion, which
told us distinctly that the concept of upper semi-continuity for a set-valued mapping is too
strict for this special set-valued mapping (cone-valued mapping). In order to deal with this
problem, Luc and Penot [35] proposed a modified concept of upper semi-continuity called
cosmically upper continuity and analyzed its properties. After that, the cosmically upper
continuity conditions for cone-valued mapping have been also used by some authors to
discussed vector optimization problems with variable ordering structure. However, to the
best of our knowledge, there is no paper dealing with the existence of solutions for equilib-
rium problem with variable ordering structure by using the concept of cosmically upper
continuity.

Inspired and motivated by the works mentioned above, in this paper, we mainly discuss
the existence of solutions for generalized strong vector quasi-equilibrium problems with
variable ordering structure (for short, GSVQEP) by using the concept of cosmically up-
per continuity rather than upper semi-continuity for cone-valued mapping. Also, we shall
discuss the closedness of solution sets for (GSVQEP).

The rest of the paper is organized as follows. In Sect. 2, some notations are fixed, several
well-known concepts and mathematical tools are recalled. In Sect. 3, a local property for
cone-valued mapping is discussed under the assumption of cosmically upper continuity.
Next, under suitable conditions of cone-continuity and cone-convexity for equilibrium
mapping, existence results of solutions and closedness of solution sets are obtained for
two kinds of (GSVQEP). Moreover, an example is given to illustrate the validity of our
theorem. These results extend and develop some recent works in this field.

2 Preliminaries
Throughout this paper, unless otherwise specified, we always suppose that X and Y are
two Hausdorff topological vector spaces and Z is a real normed vector space. Let K be a
nonempty, closed, and convex subset of X, E be a nonempty subset of Y . Let C : K ⇒ Z
be a set-valued mapping such that, for all x ∈ K , C(x) ⊆ Z is a closed, convex, and pointed
cone. We denote by conv(A), cl(A), and cone(A) the convex, closure, and cone hull of the
set A, respectively. Since Z is a real normed space, we denote by Bl = {x ∈ Z : ‖x‖ < l}
and Sl = {x ∈ Z : ‖x‖ = l} the open ball around 0 ∈ Z with radius l > 0 and its boundary,
respectively.
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Let F : E × K × K ⇒ Z, T : K × K ⇒ E, Q : K ⇒ K , and ˜F : K × K ⇒ Z be four set-
valued mappings with nonempty values. We consider the following two kinds of general-
ized strong vector quasi-equilibrium problems with variable ordering structure (for short,
GSVQEP):

(GSVQEP 1) Find x̄ ∈ K such that x̄ ∈ Q(x̄), and for all y ∈ Q(x̄) and t ∈ T(x̄, x̄), one has

F(t, x̄, y) ⊆ C(x̄).

(GSVQEP 2) Find x̄ ∈ K such that x̄ ∈ Q(x̄), and for any y ∈ Q(x̄), there exists some
t ∈ T(x̄, x̄) satisfying

F(t, x̄, y) ⊆ C(x̄).

If X = Y , E = K , T(x, y) = {x}, Q(x) = K , and F(t, x, y) = ˜F(x, y) for all x, y ∈ K and t ∈
E, then the two kinds of (GSVQEP) collapse to the following strong vector equilibrium
problem (for short, SEVP):

(SVEP) Find x̄ ∈ K such that

˜F(x̄, y) ⊆ C(x̄) for all y ∈ K .

In this section, we will give some necessary background on the continuity for set-valued
mapping. Following [36], a set-valued mapping D : K ⇒ Y is said to be upper semi-
continuous (for short, u.s.c.) at x0 ∈ K if, for any open set V ⊆ Y with D(x0) ⊆ V , there
exists a neighborhood U of x0 such that D(x) ⊆ V for all x ∈ U ∩ K . D is said to be lower
semi-continuous (for short, l.s.c.) at x0 ∈ K if, for any open set V ⊆ Y with D(x0) ∩ V �= ∅,
there exists a neighborhood U of x0 such that D(x) ∩ V �= ∅ for all x ∈ U ∩ K . D is said to
be u.s.c. (resp. l.s.c.) on K if it is u.s.c. (resp. l.s.c.) at every point x ∈ K .

Lemma 2.1 ([36, 37]) Let D : K ⇒ Y be a set-valued mapping with nonempty values.
(i) For any given x0 ∈ K , if D(x0) is compact, then D is u.s.c. at x0 ∈ K if and only if, for

any net {xα} ⊆ K with xα → x0 and for any yα ∈ D(xα), there exist y0 ∈ D(x0) and a
subnet {yβ} of {yα} such that yβ → y0.

(ii) D is l.s.c. at x0 ∈ K if and only if, for any net {xα} with xα → x0 and for any
y0 ∈ D(x0), there exists a net {yα} with yα ∈ D(xα) such that yα → y0.

In order to deal with cone-valued mapping, we need the following modified concept of
semi-continuity for cone-valued mapping, which is called cosmically upper continuity and
was proposed by Luc and Penot in [35]:

A cone-valued mapping C is said to be cosmically upper continuous (for short, c.u.c.) at
x0 ∈ K if the mapping x → C(x) ∩ cl(B1) is u.s.c. at x0 ∈ K . By analogy to the definition of
u.s.c., we say that C is c.u.c. on K if it is c.u.c. at every point x ∈ K .

Remark 2.1 If C is c.u.c. at x0 ∈ K , then –C is also c.u.c. at x0 ∈ K , and vice versa.

Example 2.1 Considering the following cone-valued mapping C : R⇒R
2,

C(x) = cone conv
{

(1, 0), (1, x)
}

, ∀x ∈ R.
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Clearly, C(0) = [0, +∞[×{0} and C(x) ⊆R
2 is a closed, convex, and pointed cone for each

x ∈R. Moreover, for each δ > 0, we have

C(x) ∩ cl(B1) ⊆ C(0) ∩ cl(B1) + Bδ , ∀|x| < δ.

Noting that C(x) ∩ cl(B1) is compact, we can conclude easily from the above formula that
the mapping x → C(x) ∩ cl(B1) is u.s.c. at x = 0, i.e., C is c.u.c. at x = 0.

On the other hand, for any given δ > 0 and x �= 0, we can take some t > 0 such that t|x| > δ.
Then, by the definition of C, we know (t, tx) ∈ C(x) but (t, tx) /∈ C(0) + Bδ . It follows that
C(x) � C(0) + Bδ . Hence C is not u.s.c. at x = 0.

In the sequel, we also need the following notions related to cone-continuity and cone-
convexity of set-valued mappings. Following [38], a set-valued mapping D : K ⇒ Z is said
to be upper C(x0)-continuous (resp. lower C(x0)-continuous) at x0 ∈ K if, for any neigh-
borhood V of 0 ∈ Z, there exists a neighborhood U of x0 such that D(x) ⊆ D(x0)+V +C(x0)
(resp. D(x0) ⊆ D(x) + V – C(x0)) for all x ∈ U ∩ K . D is said to be upper C(x)-continuous
(resp. lower C(x)-continuous) on K if it is upper C(x)-continuous (resp. lower C(x)-
continuous) at every point x ∈ K .

Let P ⊆ Z be a closed, convex, and pointed cone. A set-valued mapping D : K ⇒ Z is
said to be upper properly P-quasiconvex on K if, for any u1, u2 ∈ K and t ∈ [0, 1], one has

either D(u1) ⊆ D
(

tu1 + (1 – t)u2
)

+ P,

or D(u2) ⊆ D
(

tu1 + (1 – t)u2
)

+ P.

It is said to be lower properly P-quasiconvex on K if, for any u1, u2 ∈ K and t ∈ [0, 1], one
has

either D
(

tu1 + (1 – t)u2
) ⊆ D(u1) – P,

or D
(

tu1 + (1 – t)u2
) ⊆ D(u2) – P.

Definition 2.1 ([39]) Let P ⊆ Z be a closed, convex, and pointed cone. A nonempty con-
vex subset B ⊆ P is said to be a base of P if 0 /∈ cl(B) and P = cone(B).

Lemma 2.2 ([39]) For any given closed, convex, and pointed cone P ⊆ Z, if P has a bounded
closed base, then P� := {f ∈ Z∗ : ∃a > 0, f (x) ≥ a‖x‖,∀x ∈ P} �= ∅.

Lemma 2.3 ([40]) Let H : K ⇒ K be a set-valued mapping. Suppose that
(i) for any x ∈ K , x /∈ conv(H(x));

(ii) for each y ∈ K , H–1(y) = {x ∈ K : y ∈ H(x)} is open in K ;
(iii) there exist a nonempty and compact subset M of K and a nonempty, compact, and

convex subset N of K such that, for each x ∈ K \ M, N ∩ H(x) �= ∅.
Then there exists x0 ∈ K such that H(x0) = ∅.

3 Main results
In this section, we denote by Sol(F1), Sol(F2), and Sol(˜F) the sets of solutions for
(GSVQEP 1), (GSVQEP 2), and (SEVP), respectively.

Firstly, we consider a local property for cone-valued mapping which is c.u.c.
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Lemma 3.1 Let x0 ∈ K . Suppose that C(x0) has a bounded and closed base and C is c.u.c.
at x0. Then, for any 0 < ε < l, there exists a neighborhood U of x0 such that

[

C(x) + C(x0)
] ∩ Bl ⊆ C(x0) + Bε , ∀x ∈ U ∩ K .

Proof The proof is divided into four steps.
Step 1. For any 0 < ε < l and ξ ∈ C(x0)�, there exist r > ε and c > 0 such that

ξ (v) > c, ∀v ∈ [

C(x0) + Bε

] ∩ Sr . (1)

Since C(x0) has a bounded and closed base, it follows from Lemma 2.2 that C(x0)� �= ∅.
Thus, for any ξ ∈ C(x0)� ⊆ Z∗, there exists a > 0 such that

ξ (v) ≥ a‖v‖, ∀v ∈ C(x0). (2)

Let b = max{a,‖ξ‖∗} + 1, where ‖ξ‖∗ denotes the norm of the linear operator ξ . For any
v ∈ Z, it follows from b > ‖ξ‖∗ and ξ ∈ Z∗ that

∣

∣ξ (v)
∣

∣ ≤ ‖ξ‖∗ · ‖v‖ < b‖v‖. (3)

Set c = bl + 1 and r = (c + aε + bε)/a. We can see that a(r – ε) – bε = c > 0 and r > ε. For any
v0 ∈ [C(x0) + Bε] ∩ Sr , there exist v1 ∈ C(x0) and v2 ∈ Bε such that v0 = v1 + v2. It follows
from ‖v0‖ = r and v2 ∈ Bε (i.e., ‖v2‖ < ε) that

‖v1‖ = ‖v0 – v2‖ ≥ ‖v0‖ – ‖v2‖ > r – ε > 0. (4)

Since v1 ∈ C(x0), applying (2) and (4), we have

ξ (v1) ≥ a‖v1‖ > a(r – ε) > 0. (5)

We conclude from (3) and v2 ∈ Bε that |ξ (v2)| < b‖v2‖ < bε. This together with (5) implies
that

ξ (v0) = ξ (v1 + v2) > a(r – ε) – bε = c.

By the arbitrariness of v0, we obtain that (1) is true.
Step 2. cone{[C(x0) + Bε] ∩ Sr} ⊆ cone{x ∈ C(x0) + Bε : ξ (x) = c} ⊆ cone{[C(x0) + Bε] ∩ Sl}.
Let C1 = cone{[C(x0) + Bε] ∩ Sr} and C2 = cone{x ∈ C(x0) + Bε : ξ (x) = c}. It is easy to see

that C1 and C2 are both cones. We claim that {[C(x0) + Bε] ∩ Sr} ⊆ C2. This together with
the definition of C1 implies that C1 ⊆ C2. In fact, for any u1 ∈ [C(x0) + Bε] ∩ Sr , it follows
from (1) and u1 ∈ Sr that ξ (u1) > c > 0. Then there exists 0 < λ1 = c/ξ (u1) < 1 such that

ξ (λ1u1) = λ1ξ (u1) = c. (6)

On the other hand, we can see that u1 ∈ C(x0) + Bε and 0 ∈ C(x0) + Bε . This together with
the convexity of C(x0) + Bε and 0 < λ1 < 1 implies that

λ1u1 ∈ C(x0) + Bε . (7)
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Applying (6), (7) and the definition of C2, we can see that λ1u1 ∈ C2. It is obvious that
u1 ∈ C2. By the arbitrariness of u1, we can get that {[C(x0)+Bε]∩Sr} ⊆ C2. Hence, C1 ⊆ C2.

Let C3 = cone{[C(x0) + Bε] ∩ Sl}. Obviously, C2 and C3 are both cones. If we can prove
that {x ∈ C(x0) + Bε : ξ (x) = c} ⊆ C3, then we can easily get C2 ⊆ C3 by the definition of
C2. In fact, for each u2 ∈ C(x0) + Bε satisfying ξ (u2) = c, we claim that ‖u2‖ ≥ l. If it is not
true, then we have ξ (u2) < b‖u2‖ < bl < c from (3), which contradicts ξ (u2) = c. Therefore,
‖u2‖ ≥ l which implies that there exists 0 < λ2 ≤ 1 such that

‖λ2u2‖ = l. (8)

On the other hand, u2 ∈ C(x0) + Bε and 0 ∈ C(x0) + Bε . This together with the convexity of
C(x0) + Bε and 0 < λ2 < 1 implies that

λ2u2 ∈ C(x0) + Bε . (9)

Applying (8), (9), and the definition of C3, it is easy to obtain that λ2u2 ∈ C3. Obviously,
u2 ∈ C3. By the arbitrariness of u2, we have {x ∈ C(x0) + Bε : ξ (x) = c} ⊆ C3, which implies
that C2 ⊆ C3.

Step 3. There exists a neighborhood U of x0 such that C(x) ∩ Sr ⊆ [C(x0) + Bε] ∩ Sr for
all x ∈ U ∩ K .

Since C is c.u.c. at x0, for the preceding positive numbers ε, l, c, and r, there exists a
neighborhood U of x0 such that, for any x ∈ U ∩ K ,

C(x) ∩ cl(Br) ⊆ C(x0) ∩ cl(Br) + Bε ⊆ C(x0) + Bε .

By taking intersection with the sphere surface Sr in both sides of the above formula, we
can get

C(x) ∩ Sr ⊆ [

C(x0) + Bε

] ∩ Sr , ∀x ∈ U ∩ K . (10)

Step 4. For any x ∈ U ∩ K , we have [C(x) + C(x0)] ∩ Bl ⊆ C(x0) + Bε .
Applying (10), we can see that

C(x) = cone
{

C(x) ∩ Sr
} ⊆ cone

{[

C(x0) + Bε

] ∩ Sr
}

= C1.

This together with C1 ⊆ C2 implies that C(x) ⊆ C2. Furthermore, if we can prove that C2

is convex, then we have

C(x) + C(x0) ⊆ C2 + C2 = C2, ∀x ∈ U ∩ X.

This together with C2 ⊆ C3 implies that

C(x) + C(x0) ⊆ C3, ∀x ∈ U ∩ X. (11)

On the other hand, for any u ∈ C3 ∩ Bl with u �= 0, we have 0 < ‖u‖ < l. By the definition
of C3, there exists λ > 0 such that λu ∈ [C(x0) + Bε] ∩ Sl . Thus we can see that λ > 1. This
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together with λu ∈ C(x0) + Bε implies that u ∈ C(x0) + Bε . Then, by the arbitrariness of u,
we get

C3 ∩ Bl ⊆ C(x0) + Bε . (12)

We conclude from (11) and (12) that, for any x ∈ U ∩ K ,

[

C(x) + C(x0)
] ∩ Bl ⊆ C3 ∩ Bl ⊆ C(x0) + Bε .

Finally, we show that C2 is convex. Since C2 is a cone, we only need to prove that, for
any w1, w2 ∈ C2 \ {0}, one has w1 + w2 ∈ C2. According to the definition of C2, there exist
λ1,λ2 > 0 such that λ1w1,λ2w2 ∈ C(x0) + Bε and ξ (λ1w1) = ξ (λ2w2) = c. Let λ = λ1/(λ1 +λ2),
which implies that 0 < λ < 1. By the linearity of ξ , we have

ξ
(

(1 – λ)λ1w1 + λλ2w2
)

= (1 – λ)ξ (λ1w1) + λξ (λ2w2) = (1 – λ)c + λc = c. (13)

Noting that C(x0) + Bε is convex, we can see that (1 – λ)λ1w1 + λλ2w2 ∈ C(x0) + Bε . This
together with (13) implies that (1 – λ)λ1w1 + λλ2w2 ∈ C2. Hence,

(1 – λ)λ1w1 + λλ2w2 =
λ1λ2

λ1 + λ2
w1 +

λ1λ2

λ1 + λ2
w2 ∈ C2,

which implies that w1 + w2 ∈ C2. �

For the simplification of the proof for our main results in this paper, we also need the
following lemma.

Lemma 3.2 Let (t0, x0, y0) ∈ E × K × K . Assume that F is lower {–C(x0)}-continuous at x0,
C is c.u.c. at x0, and C(x0) has a bounded and closed base. Then, for any net {(tα , xα , yα)} →
(t0, x0, y0) with F(tα , xα , yα) ⊆ C(xα), we have F(t0, x0, y0) ⊆ C(x0).

Proof Suppose to the contrary that there exists w0 ∈ F(t0, x0, y0) such that w0 /∈ C(x0).
Since C(x0) is closed, there exists ε > 0 such that

[w0 + Bε] ∩ [

C(x0) + Bε

]

= ∅. (14)

Applying the lower {–C(x0)}-continuity of F , there exists α1 such that, for all α > α1,

w0 ∈ F(t0, x0, y0) ⊆ F(tα , xα , yα) + Bε + C(x0)

⊆ C(xα) + Bε + C(x0).

This implies that

[w0 + Bε] ∩ [

C(xα) + C(x0)
] �= ∅, ∀α > α1. (15)

Take any real number l > ε such that w0 + Bε ⊆ Bl . Since C is c.u.c. at x0 ∈ K and C(x0) has
a bounded closed base, it follows from Lemma 3.1 that there exists α2 such that, for any
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α > α2,

[

C(xα) + C(x0)
] ∩ Bl ⊆ C(x0) + Bε . (16)

Let α0 > α1 and α0 > α2. Then, for any α > α0, we conclude from (15) and w0 + Bε ⊆ Bl that

[w0 + Bε] ∩ [

C(xα) + C(x0)
] ∩ Bl = [w0 + Bε] ∩ [

C(xα) + C(x0)
] �= ∅. (17)

Combining (16) with (17), we can see that [w0 + Bε] ∩ [C(x0) + Bε] �= ∅, which contradicts
(14). Hence, F(t0, x0, y0) ⊆ C(x0). �

Remark 3.1 In Lemma 3.2, we use the assumptions that C is c.u.c. and F is lower {–C(x)}-
continuous, which is very different from the ones that C is closed and F is l.s.c. frequently
used in the previous literature.

Now, we are ready to present our main results.

Theorem 3.1 Let F(t, x, x) ⊆ C(x) for any (t, x) ∈ E × K . Assume that Ω = {x ∈ K : x ∈
Q(x)} is closed, Q–1(y) is open in K for any y ∈ K , and the following conditions are satisfied:

(i) C is c.u.c. on K , and for any x ∈ K , C(x) has a bounded and closed base;
(ii) T is l.s.c. on K × K with nonempty and convex values;

(iii) for any y ∈ K , the mapping (t, x) → F(t, x, y) is lower {–C(x)}-continuous on E × K ;
(iv) for any x ∈ K , the mapping (t, y) → F(t, x, y) is upper properly C(x)-quasiconvex on

E × K ;
(v) there exist a nonempty and compact subset M of K and a nonempty, compact, and

convex subset N of K such that, for each x ∈ K \ M, there exists some y ∈ N ∩ Q(x)
such that F(t, x, y) � C(x) for some t ∈ T(x, x).

Then Sol(F1) is nonempty.

Proof Define two set-valued mappings A, H : K ⇒ K as follows: for each x ∈ K ,

A(x) =
{

y ∈ K : ∃t ∈ T(x, x), F(t, x, y) � C(x)
}

and

H(x) =

⎧

⎨

⎩

Q(x) ∩ A(x), x ∈ Ω ,

Q(x), x ∈ K \ Ω .

We assert that there exists x̄ ∈ K such that H(x̄) = ∅. If x̄ ∈ K \Ω , then, by the definition of
H , we have H(x̄) = Q(x̄) = ∅, which contradicts the fact that Q(x) �= ∅ for all x ∈ K . Hence
x̄ ∈ Ω and Q(x̄) ∩ A(x̄) = ∅. This implies that x̄ ∈ Q(x̄), and for any y ∈ Q(x̄) and any t ∈
T(x̄, x̄), we have F(t, x̄, y) ⊆ C(x̄), and so x̄ is a solution of (GSVQEP 1). Therefore, it only
suffices to prove that there exists x̄ ∈ K such that H(x̄) = ∅.

The proof is divided into three steps.
Step 1. For any x ∈ K , x /∈ conv(H(x)).
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In fact, we can firstly show that A(x) is convex. Indeed, for any y1, y2 ∈ A(x), there exist
t1, t2 ∈ T(x, x) such that

F(ti, x, yi) � C(x), i = 1, 2. (18)

Set yλ = λy1 + (1 –λ)y2 and tλ = λt1 + (1 –λ)t2 for any 0 < λ < 1. Since K and T(x, x) are both
convex, we have yλ ∈ K and tλ ∈ T(x, x). If F(tλ, x, yλ) ⊆ C(x), then, by the upper properly
C(x)-quasiconvexity of F(·, x, ·), we know that there exists i0 ∈ {1, 2} such that

F(ti0 , x, yi0 ) ⊆ F(tλ, x, yλ) + C(x) ⊆ C(x) + C(x) = C(x).

This contradicts (18). Hence F(tλ, x, yλ) � C(x). It follows that yλ ∈ A(x). Then A(x) is con-
vex.

Next, we show that x /∈ conv(H(x)). In fact, for any given x ∈ K , since Q(x) and A(x) are
convex, we can easily see that H(x) is also convex. Thus, we consider the next two cases.
(1) If x ∈ Ω , then the assumption F(t, x, x) ⊆ C(x) implies x /∈ A(x). Hence x /∈ conv(A(x)).
This together with H(x) ⊆ A(x) implies that x /∈ conv(H(x)). (2) If x ∈ K \Ω , then x /∈ Q(x).
This together with conv(Q(x)) = conv(H(x)) implies that x /∈ conv(H(x)).

Step 2. For all y ∈ X, H–1(y) is open in K .
Indeed, for each y ∈ K , by the definitions of A and H , we have

A–1(y) =
{

x ∈ K : ∃t ∈ T(x, x), F(t, x, y) � C(x)
}

and

H–1(y) =
[

Ω ∩ Q–1(y) ∩ A–1(y)
] ∪ [

(K \ Ω) ∩ Q–1(y)
]

= Q–1(y) ∩ [

(K \ Ω) ∪ A–1(y)
]

.

Noting that Ω is closed and Q–1(y) is open in K , it suffices to show that A–1(y) is also open
in K . Thus, we only need to show that K \ A–1(y) is closed. In fact, for any net {xα} ⊆
K \ A–1(y) with xα → x0 ∈ K , if x0 ∈ A–1(y), then there exists t0 ∈ T(x0, x0) such that

F(t0, x0, y) � C(x0). (19)

We conclude from condition (ii) and Lemma 2.1(ii) that there exists a net {tα} such that
tα → t0 with tα ∈ T(xα , xα). Since xα /∈ A–1(y), we can see that

F(t, xα , y) ⊆ C(xα), ∀t ∈ T(xα , xα).

This together with tα ∈ T(xα , xα) implies that F(tα , xα , y) ⊆ C(xα). Then, by conditions (i),
(iii) and Lemma 3.2, we have F(t0, x0, y) ⊆ C(x0), which contradicts (19). Hence x0 /∈ K \
A–1(y).

Step 3. There exist a nonempty and compact subset M of K and a nonempty, compact,
and convex subset N of K such that, for each x ∈ K \ M, N ∩ H(x) �= ∅.

Indeed, by condition (v), there exist a nonempty and compact subset M of K and a
nonempty, compact, and convex subset N of K such that, for each x ∈ K \ M, there exists



Mao et al. Journal of Inequalities and Applications        (2019) 2019:116 Page 10 of 17

y ∈ N ∩ Q(x) such that F(t, x, y) � C(x) for some t ∈ T(x, x). Hence y ∈ Q(x) ∩ A(x) ∩ N . It
follows that y ∈ N ∩ H(x).

Thus all the conditions of Lemma 2.3 are satisfied. We conclude from Lemma 2.3 that
there exists x̄ ∈ X such that H(x̄) = ∅. �

In the following, the closedness of the solution set Sol(F1) is discussed.

Lemma 3.3 Suppose that the conditions in Theorem 3.1 are all satisfied. Assume that Q is
l.s.c. on K and F is lower {–C(x)}-continuous on E × K × K . Then Sol(F1) is closed.

Proof In fact, for any net {xα} ⊆ Sol(F1) with xα → x0 ∈ K , we can see that xα ∈ Q(xα),
which implies that xα ∈ Ω . Since Ω is closed in K , we have x0 ∈ Ω , i.e., x0 ∈ Q(x0). If
x0 /∈ Sol(F1), then there exist some y0 ∈ Q(x0) and t0 ∈ T(x0, x0) such that

F(t0, x0, y0) � C(x0). (20)

Since Q and T are l.s.c. on K and K × K , respectively, we conclude from Lemma 2.1(ii)
that there exist yα ∈ Q(xα) and tα ∈ T(xα , xα) such that yα → y0 and tα → t0. Applying
the assumption that xα ∈ Sol(F1), we can get F(t, xα , y) ⊆ C(xα) for all y ∈ Q(xα) and t ∈
T(xα , xα). Therefore,

F(tα , xα , yα) ⊆ C(xα). (21)

By conditions (i) and (iii), we conclude from Lemma 3.2 and (21) that

F(t0, x0, y0) ⊆ C(x0),

which contradicts (20). Hence x0 ∈ Sol(F1), which implies that Sol(F1) is a closed subset
of K . �

Remark 3.2 Theorem 3.1 is very different from Theorem 4.2 of Lin and Huang [18]. More
specifically, (a) in order to establish the existence result of solutions for (GSVQEP 1), Lin
and Huang used the upper semi-continuity condition for the cone-valued mapping, while
we used here the cosmically upper continuity condition for it; (b) in Theorem 4.2 of Lin
and Huang[18], the set-valued mapping F(·, ·, y) is assumed to be l.s.c. on E × K , while in
Theorem 3.1 of this paper, it is assumed to be lower {–C(x)}-continuous on E × K .

Remark 3.3 Chen, Yang, and Yu [26] discussed another form of equilibrium problem with
variable ordering structure. By applying the scalarization method and the conditions that
the cone-valued mappings C(·) and W (·) := Z \ – int C(·) are both u.s.c., they proved an
existence theorem of solutions for a single-valued weak vector quasi-equilibrium problem
with variable ordering structure. Different from Theorem 3.2 of Chen, Yang, and Yu [26],
in Theorem 3.1 of this paper, by using the condition that C is c.u.c., we also obtain the
existence result of solutions for a set-valued strong vector quasi-equilibrium problem with
variable ordering structure.
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Example 3.1 Let Z = R
2, X = Y = R, K = [0,π/2], and E = [0, 1]. For each x, y ∈ K and

t ∈ E, let

C(x) = cone conv
{

(1, 0), (cos x, sin x)
}

,

T(x) = [0, 1], Q(x) = [0, 1],

h(x, y) =
(

(x – y) cos x, (x – y) sin x
)

and

F(t, x, y) =

⎧

⎨

⎩

cone{(cos tx, sin tx)} + h(x, y), x ≤ y,

cone{(cos tx, sin tx)} ∩ cl(B5), x > y.

For any given y0 ∈ (0,π/2) and t0 ∈ E, if x0 = y0, then h(x0, y0) = 0, and so

F(t0, x0, y0) = cone
{

(cos t0x0, sin t0x0)
}

.

We can verify that F(·, ·, y0) is not l.s.c. at the point (t0, x0). In fact, for any neighborhood
V × U of (t0, x0), there exists (t0, x̃) ∈ V × U such that x̃ > x0 = y0. It follows from the
definition of F that

F(t0, x̃, y0) = cone
{

(cos t0x̃, sin t0x̃)
} ∩ cl(B5) ⊆ cl(B5). (22)

Clearly, there exist a point v0 ∈ F(t0, x0, y0) with ‖v0‖ > 5 and a neighborhood W of v0 such
that W ∩ cl(B5) = ∅. This together with (22) implies that W ∩ F(t0, x̃, y0) = ∅. It is easy to
know that F(·, ·, y0) is not l.s.c. at the point (t0, x0). Therefore, the condition that F is l.s.c.
on E × K × K is not satisfied in Theorem 4.2 of [18]. So, we are unable to use Theorem 4.2
of [18] to decide the existence of the solutions for (GSVQEP 1).

However, for this example, we can verify that all the conditions in Theorem 3.1 of this
paper are satisfied.

Indeed, for each x ∈ K , it is easy to see that C(x) ⊆ R
2 is a closed, convex, and pointed

cone and Ω is closed as Ω = [0, 1]. For each y ∈ K , Q–1(y) is open in K because Q–1(y) = K
or Q–1(y) = ∅. In addition, for any (t, x) ∈ E × K = [0, 1] × [0,π/2], by the definitions of C
and F , we have

F(t, x, x) ⊆ C(x). (23)

In the following, we verify that conditions (i)–(v) of Theorem 3.1 are all satisfied. By
the assumptions of C and T , it is easy to get that conditions (i) and (ii) hold. Thus we
consider whether the mapping (t, y) → F(t, x, y) is upper properly C(x)-quasiconvex on
E × K for any x ∈ K . In fact, let x ∈ K , λ ∈ (0, 1), (t1, y1), (t2, y2) ∈ E × K , and y2 ≥ y1. Set
yλ = λy1 + (1 – λ)y2 and tλ = λt1 + (1 – λ)t2. It suffices to show that there exists i0 ∈ {1, 2}
such that F(ti0 , x, yi0 ) ⊆ F(tλ, x, yλ) + C(x). By the definition of C, we have

(0, 0) ∈ cone
{

(cos tx, sin tx)
} ⊆ cone conv

{

(1, 0), (cos x, sin x)
}

= C(x). (24)
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By the definition of F , we can see that h(x, y) ∈ –C(x). This together with (24) implies that

C(x) ⊆ F(t, x, y) + C(x). (25)

If x > y1, from (24) and (25), we can see that

F(t1, x, y1) ⊆ C(x) ⊆ F(tλ, x, yλ) + C(x).

If x ≤ y1, then y2 ≥ yλ ≥ y1, and so h(x, yλ)–h(x, y1) = ((y1 –yλ) cos x, (y1 –yλ) sin x) ∈ –C(x).
It follows that h(x, y1) + C(x) ⊆ h(x, yλ) + C(x). This together with (24) implies that

F(t1, x, y1) ⊆ h(x, y1) + C(x) ⊆ h(x, yλ) + C(x)

⊆ F(tλ, x, yλ) + C(x).

Therefore, the mapping (t, y) → F(t, x, y) is upper properly C(x)-quasiconvex on E × K for
any x ∈ K .

Next, we show that (t, x) → F(t, x, y) is lower {–C(x)}-continuous on E × K for any given
y ∈ K . Let (t0, x0) ∈ E × K and ε > 0. We consider the following two cases. a) Assume that
x0 > y. Since F(t, x, y) = cone{(cos tx, sin tx)} ∩ cl(B5) for any x > y, it is obvious that F(·, ·, y)
is lower {–C(x0)}-continuous at (t0, x0) ∈ E × K . b) Assume that x0 > y. We firstly define a
vector-valued mapping g : K → Z as follows:

g(x) =

⎧

⎨

⎩

h(x, y), x ≤ y,

(0, 0), x > y.

Since x0 ≤ y, we conclude from the continuity of h(·, y) and h(y, y) = (0, 0) that g is con-
tinuous on K . Thus there exists a neighborhood W of x0 such that, for all x ∈ U(x0),
g(x0) ∈ g(x) + Bε . Hence,

F(t0, x0, y) = h(x0, y) + cone
{

(cos tx0, sin tx0)
}

= g(x0) + cone
{

(cos tx0, sin tx0)
}

⊆ g(x) + Bε + C(x0) ⊆ F(t, x, y) + Bε + C(x0).

This implies that (t, x) → F(t, x, y) is lower {–C(x)}-continuous on E × K .
Since K is a nonempty, compact, and convex subset of X, it is easy to see that condition

(v) in Theorem 3.1 is satisfied with M = N = K .
Therefore, conditions (i)–(v) in Theorem 3.1 of this paper are all satisfied. Thus, by The-

orem 3.1, (GSVQEP 1) has at least one solution in K .
In fact, we can also verify that x̄ = 1 is the solution of this example. For all t ∈ T(x̄) = [0, 1]

and for all y ∈ Q(x̄) = [0, 1], we conclude from y ≤ 1 = x̄ and t ∈ [0, 1] that

F(t, x̄, y) ⊆ cone
{

(cos t, sin t)
} ⊆ cone conv

{

(1, 0), (cos 1, sin 1)
}

= C(x̄).

This indicates that x̄ = 1 solves (GSVQEP 1).

Next, the existence of solutions and the closedness of the solution set for (GSVQEP 2)
are discussed.
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Theorem 3.2 Let X, Y , Z, E, K , C, T , Q, and F be the same as in Theorem 3.1. Suppose
that E is compact and Ω is closed. If the following conditions are satisfied:

(i) C is c.u.c. on K , and for all x ∈ K , C(x) has a bounded and closed base;
(ii) T is u.s.c. on K × K with nonempty and closed values;

(iii) for each y ∈ K , the mapping (t, x) → F(t, x, y) is lower {–C(x)}-continuous on E × K ;
(iv) for any (t, x) ∈ E × K , the mapping y → F(t, x, y) is upper properly C(x)-quasiconvex

on K ;
(v) there exist a nonempty and compact subset M of K and a nonempty, compact, and

convex subset N of K such that, for each x ∈ K \ M, there exists some y ∈ N ∩ Q(x)
such that F(t, x, y) � C(x) for all t ∈ T(x, x).

Then Sol(F2) is nonempty.

Proof For each x ∈ K , let

A(x) =
{

y ∈ K : ∀t ∈ T(x, x), F(t, x, y) � C(x)
}

,

and

H(x) =

⎧

⎨

⎩

Q(x) ∩ A(x), x ∈ Ω ,

Q(x), x ∈ K \ Ω .

Similar to the analysis as Theorem 3.1, it suffices to be proved that there exists x̄ ∈ K such
that H(x̄) = ∅.

The proof is divided into three steps.
Step 1. For all x ∈ K , x /∈ conv(H(x)).
In fact, for every t ∈ T(x, x), by the similar arguments for the convexity of A in the proof

of Theorem 3.1, we can show that A(x) is convex for each x ∈ K . In the same way as in
Theorem 3.1, we can show that x /∈ conv(H(x)).

Step 2. For all y ∈ X, H–1(y) is open in K .
By the definition of A and H , we can see that A–1(y) = {x ∈ K : ∀t ∈ T(x, x), F(t, x, y) �

C(x)} and H–1(y) = Q–1(y) ∩ [(K \ Ω) ∪ A–1(y)]. Similar to the proof of openness of H–1(y)
in Theorem 3.1, it suffices to show that K \ A–1(y) is closed.

In fact, for any net {xα} ⊆ K \ A–1(y) with xα → x0 ∈ K , we have xα /∈ A–1(y). Thus, for
each α, there exists some tα ∈ T(xα , xα) ⊆ E such that

F(tα , xα , y) ⊆ C(xα). (26)

Since E is compact, we can see that T is u.s.c. with compact values. By Lemma 2.1(i), there
exists a subnet of {tα} which converges to t0 ∈ T(x0, x0). Without loss of generality, we
assume that tα → t0. It follows from (26) and Lemma 3.2 that F(t0, x0, y) ⊆ C(x0). Hence,
x0 ∈ K \ A–1(y), which implies that K \ A–1(y) is closed.

Step 3. There exist a nonempty and compact subset M of K and a nonempty, convex,
and compact subset N of K such that, for each x ∈ K \ M, N ∩ H(x) �= ∅.

Indeed, by condition (v), there exist a nonempty compact subset M of K and a nonempty
compact convex subset N of K such that, for each x ∈ K \M, there exists some y ∈ N ∩Q(x)
such that F(t, x, y) � C(x) for all t ∈ T(x, x). It follows that y ∈ Q(x) ∩ A(x), and so y ∈
N ∩ H(x).
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Applying Lemma 2.3, there exists x̄ ∈ K such that H(x̄) = ∅. �

Lemma 3.4 Let Sol(F2) �= ∅. Suppose that Q is l.s.c. on K , T is u.s.c. on K ×K with compact
values, and F is lower {–C(x)}-continuous on E × K × K . Then Sol(F2) is closed.

Proof In fact, for any net {xα} ⊆ Sol(F2) with xα → x0 ∈ K , we need to prove that x0 ∈
Sol(F2). If it is not true, then there exists y0 ∈ Q(x0) such that, for all t ∈ T(x0, x0),

F(t, x0, y0) � C(x0). (27)

Since y0 ∈ Q(x0) and Q is l.s.c. on K , applying Lemma 2.1(ii), there exists yα ∈ Q(xα) such
that yα → y0. We conclude from xα ∈ Sol(F2) and yα ∈ Q(xα) that there exists tα ∈ T(xα , xα)
such that

F(tα , xα , yα) ⊆ C(xα). (28)

Noting that T is u.s.c. with compact values, by Lemma 2.1(i), there exists a subnet of {tα}
which converges to t0 ∈ T(x0, x0). Without loss of generality, let tα → t0. It follows from
(28) and Lemma 3.2 that F(t0, x0, y0) ⊆ C(x0), which contradicts (27). Thus x0 ∈ Sol(F2).
This implies that Sol(F2) is closed. �

Remark 3.4 If K is a nonempty, compact, and convex subset of X, we can take M = N = K .
Then, condition (v) in Theorems 3.1 and 3.2 is satisfied trivially. Furthermore, if Q is u.s.c.
with nonempty, closed, and convex values, then the set Ω = {x ∈ K : x ∈ Q(x)} is closed.

Remark 3.5 In the situation that Q(x) ≡ K for all x ∈ K , Fu and Wang [29] obtained an ex-
istence theorem of solutions for (GSVQEP 2)—Theorem 3.1, which is very different from
Theorem 3.2 of this paper. Above all the differences, the continuity condition on the cone-
valued mapping C is the biggest one. Indeed, the cone-valued mapping C is assumed to be
u.s.c. in Theorem 3.1 of Fu and Wang [29], while it is assumed to be c.u.c. in Theorem 3.2
of this paper.

By applying Theorem 3.1, we can get the following corollary.

Corollary 3.1 Let X, Z, K , and C be same as in Theorem 3.1. Let ˜F : K × K ⇒ Z be a
set-valued mapping. Suppose that the following conditions are satisfied:

(i) C is c.u.c. on K , and for all x ∈ K , C(x) has a bounded and closed base;
(ii) for all x ∈ K , ˜F(x, x) ⊆ C(x);

(iii) for each x ∈ K , the mapping y →˜F(x, y) is upper properly C(x)-quasiconvex on K ;
(iv) for each y ∈ K , the mapping x →˜F(x, y) is lower {–C(x)}-continuous on K ;
(v) there exist a nonempty and compact subset M of K and a nonempty, compact, and

convex subset N of K such that, for each x ∈ K \ M, there exists y ∈ N ∩ Q(x)
satisfying ˜F(x, y) � C(x).

Then the solution set Sol(˜F) is nonempty and closed.

Proof Let Y = X and E = K . For each x, y ∈ K , let

Q(x) = K , T(x, y) = {x} and F(t, x, y) = ˜F(x, y).
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It is easy to verify that conditions (i)–(v) of Theorem 3.1 are all satisfied. Then, by Theo-
rem 3.1, there exists x̄ ∈ K such that

˜F(x̄, y) ⊆ C(x̄), ∀y ∈ Q(x̄) = K .

Hence, x̄ is a solution of (SVEP).
Next, we show that Sol(˜F) is closed. In fact, for any net {xα} ⊆ Sol(˜F) with xα → x0 ∈ K ,

we can see that

˜F(xα , y) ⊆ C(xα), ∀y ∈ K .

Then, for each y ∈ X, we conclude from (i), (iv), and Lemma 3.2 that ˜F(x0, y) ⊆ C(x0). This
implies that x0 ∈ Sol(˜F). Hence, Sol(˜F) is closed. �

4 Conclusions
The aim of this paper is to investigate generalized strong vector quasi-equilibrium prob-
lems with variable ordering structure, which has already been studied in the previous lit-
erature. However, we would like to point out that the concept of upper semi-continuity,
which is widely used for cone-valued mapping in many results, just as Borde and Crouzeix
[33] pointed out, is actually not suitable for the cone-valued mapping because of its strange
characterization. And so, the value of those previous results will be heavily discounted. In
order to deal with cone-valued mapping, some papers consider the existence of solutions
for equilibrium problems under the conditions that cone-valued mapping is closed and
the equilibrium mapping is continuous vector-valued mapping or lower semi-continuous
set-valued mapping. Different from these existing literature sources, we establish the ex-
istence of solutions for (GSVQEP) by using the assumption that the equilibrium map-
ping is cone-continuous. Another difficulty of this article is the continuity condition of
cone-valued mapping. Without using the upper semi-continuity, we consider the inclu-
sion relationship of bases for these cones and further obtain a local property by using the
modified concept called cosmically upper continuity. Also, this conclusion plays a key role
in the existence theorems of solution for these (GSVQEP). Moreover, an example is given
to illustrate the validity of our theorems. These results obtained in this paper extend and
develop some recent works in this field.
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