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1 Introduction
Use of linear positive operators has played a crucial role in approximation theory for the
last seven decades. In 1950, Szész [22] defined

o0

Ss(f;x) = e‘s"z Mf(f), 5>0

r!
r=0 S

for x € [0, 00). In 1957, Baskakov [6] proposed

1 N\ [s+r-1 x" r .
Ls(f;x)=(1+x)sz< . )(1+x)'f(;)’ seN*,x € [0,00).

r=0

In 1962, Schurer [20] introduced

s+p
Boy(fix) =Y (s *r”) ¥ (1 —x)“f’*f(?),

r=0

where x € [0,1] and p is a non-negative integer. In 1983, Stancu [21] studied

S (frx) = (j) #(1 —x)“f(::—g>,

r=0
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satisfying the condition 0 < o < B. Various studies related to these operators, such as
Baskakov—Szész type operators [12], Baskakov—Schurer—Szész operators [18], Baskakov—
Szasz—Stancu operators [17], and q-Baskakov—Schurer—Szdsz—Stancu operators [19],
have been conducted.

In 2010, Aldaz and Render [4] introduced linear and positive operators preserving 1
and €*. In 2017, Acar et al. [2] examined a modified form of the Szdsz—Mirakyan op-
erators which reproduces constant and 2% g4 > 0. After that, in some studies Szdsz—
Mirakyan operators [5], Baskakov—Szasz—Mirakyan-type operators [10], Phillips opera-
tors [13], Szdsz—Mirakyan—Kantorovich operators [11], and Baskakov operators [24] pre-
serving constant and exponential function were examined. In addition, Kajla [16] studied
Srivastava—Gupta operators preserving linear functions. On the other hand, Gupta and
Tachev [14] found the general estimation in terms of Péltdneas modulus of continuity.

In 2018, Bodur et al. [7] analyzed Baskakov—Szasz—Stancu operators preserving ex-
ponential functions. Motivated by this paper, we construct a new generalization of the

Baskakov—Schurer—Szasz—Stancu operators

B f o it s+p+r-1 x"
Ms,,f<f,x)-(s+p>2< . >(

= 1 +x)s+p+r
9 f Y o PN (Geplra
0 r! s+p+ B

where s is a positive integer, p is a non-negative integer, and 0 < « < . By taking « = 0 and
B =0, we obtain Baskakov—Schurer—Szdsz operators [18]. In addition, by taking s + p = u,
we get Baskakov—Szdsz—Stancu operators [17]. Moreover, by taking s + p = u, @ = 0 and

B =0, we have Baskakov—Szasz operators [12]. We deal with the following modified form:

1 + Vs,p (x))s+p+r

A@ﬁVMD=@+p)§:<S+p+r_l>( (vs,p(*)”

r=0 r
* s+p)t S+p)t+
X / e—(s+17)t ( p) f ( P) o dt. (1)
0 r! s+p+ B
Assume that the operators (1) preserve 2%, a > 0. In that case, we find the function vy, (x)
satisfying M2 (€724%; x) = e724% as follows:

00
-1 V. X r o0 S+ rtr —2a((s+p)t+a)
e2ax _ (s +[9) Z (S tp ‘: r ) : ( s,p( ) / e'(s”’)t( p) e_s+pfﬁ dt
0

= 1+ v, (x))5tP47 r!
oo
__s+p+P e;*?’ﬁaﬂz s+p+r=1\ ((s+p+BIvspx)\" 1 .
s+p+pP+2a = r s+p+B+2a ) (1+v,x)srr

By a simple computation, we have

2)

Vs,p (x) =

s+p+ﬂ+2a{<s+p+,8+2a 20 2M>”S*p 1}
e 1.

s+p+f
2a s+p+p
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2 Some auxiliary results
Here, we present some important equalities and auxiliary lemmas, necessary for the proof

of the main theorems.

o0 1
f el dt = A:;l' A>0. (3)
0

Negative binomial series is given as follows:

<x+a>S=Z(“r[1) = @

r=0

Lemma 1 Let v ,(x) be given by (2), then we have

Mo (e ) - STPEB gt (1, Av@) Y ®
s s+p+pB+A s+p+pB+A '

Proof Take f(t) = e, then by using (3) and (4) we obtain
MP (e )

[e¢]
s+p+r—1 (vsp() (s+p) » _(sap)i—(AlHDItrA
- = Z ( r ) ; ))stp+r 0 t € e )dt

1
= 1+, r!

_Ax — r+1 0 +p)(s+p+B+.
— es+;74+5 Z N +p +r (VS,P(x)) (S +P) / tre— (otpstprprA)t p)ii;:-)f At dt
(1 + vgp(x))stprr 7! 0

_ s+p+p esiﬁfﬂi s+p+r—1\ ((s+p+BIvsp(x)\" 1
_s+p+,3+A r s+p+f+A (1 + vgp(x))stprr

r=0

__stpeB e (1 . A_@C)>”

Cs+p+B+A s+p+B+A O
Lemma 2 Let e, (t) = t*, k = 0,1,2,3,4. Then we get the following equalities:
M (eoin) =1,
8 (s+p)vspx) +a +1
M (er;x) = ,
s+p+p
MO (o) = (s+p)s+p+ l)vszyp(x) +(4+20)(s + p)vsp(x) + @ + 20 + 2’
(s+p+p)?
MO (035) = (s+p)s+p+D)(s+p+ 2)vip(x) +(9+30)(s+p)s+p+ l)vgp(x)
(s+p+p?
(3a? + 12a + 18)(s +p)sp(x) + o’ +30% +6a+6
' G+p+pP ’
M (esi )
(s+p)s+p+ 1)(s+p+2)(s+p+3)vs (x)+ (16 +4a)(s+p)s+p+ 1)(s+p+2)v (%)
) (s+p+p)*

(72 + 36a + 60%)(s + p)(s + p + l)vsz,p(x) +(96 + 720 + 2402 + 4a®)(s + p)Vs p(x)
(s+p+p)*

+
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24 + 24 + 1202 + 403 + o
(s+p+p)*

Proof Take f(£) = e;, then by using (3) and (4) we have

M®P (e1;x)

) S (A [y T L (2
() e
) et [
s+p+ﬁr§0:<s+p+r_l) %(Hl)

ind S+p+r— 1 (Vs,p(x))r
s +p+B VX: ( ) (1 + v p(x))st24r

_ (s +p)vsp@) i <s tpar- 1) (Vep(®)"

s+p+p = r (1 + v p(x))s1247

a+1 = fs+p+r-1 (Vsp(x)"
s +p+p rX:o: ( r ) (1 + v p(x))st24r
s+ p)vep®)
T +p+p

~ (s + p)vsp(x) . a+1
 s+p+f s+p+p’

(s+p+1) + a+1 )—(s+p)

(1+ vsp(x) — vsp(x)) SipiB (1 + vep(x) — v p(x)

By the same manner, other results can be obtained. O

Lemma3 Let us briefly denote ¢*(t) = (t —x)* for k = 0,1,2,4. Then we obtain the following
equalities for the central moments:

M (¢%x) =1,

M (plsx) = (s+pvsp(®) + o +1 .
S+p+ﬁ

MP (p%x)
_ (s+p)s+p+ l)vsz,p(x) +(4+20)(s + p)vsp(x) + o + 2 +2
) (s+p+p)?

26((s +p)vsp(x) +a +1) 4
+ X
s+p+p

’

M (o)
(s+p)(s+p+ 1)(s+p+2)(s+p+3)vs (x) + (16 +4a)(s+p)(s+p+ 1)(s+p+2)v (%)
i (s+p+p)
(72 + 36a + 60%)(s + p)(s + p + l)vsz,p(x) +(96 + 720 + 2402 + 4a®)(s + p)Vs p(x)
(s+p+p)*

+
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24 + 24q + 1202 + 4a® + a* ((5 +p)s+p+1)s+p+ 2)V33,p(x)
+ _
(s+p+p)* (s+p+p)>
9 +3x)(s+p)(s+p+ l)vs%p(x) + (32 + 120 + 18)(s +p)sp(x) + o’ +30% +6a+6
' G+p+ P )
6x2<(s +p)s+p+ l)vsz,p(x) + (4 +20)(s + p)vsp(x) + o + 20 + 2)
(s+p+p)?

a3 (s+p)vspx) +a +1 vy
s+p+p

Proof We use the linearity of the M” operators and Lemma 2 M%* (9%x) = M (eg; %),
M{P(@hx) = MIP(ensn) — a7 (eosn), M (@Zx) = M (ensn) — 2xM7 (ers) +
XM (eg;0), M () = M (e450) — AxMS P (e3.) + 62°M " (e250) — AP M7 (e13) +
KM@ (e0; x). O

Remark 1 Considering the definition of v;,(x), we obtain the following limits for every
x€[0,00)and 0 <« < B:

: B (sl — 2
Sl_l)rglo sM; (q&x,x) =2ax +ax (6)
and
. o,B 2, _ 2
lim s (¢2:x) = 2x + 27 7)

3 Main results

Let C*[0, 00) denote the subspace of all real-valued continuous functions on [0, c0) with
the condition that lim,,_, o f(x) exists and is finite, equipped with the uniform norm. The
uniform convergence of a sequence of linear positive operators is demonstrated by Boy-
anov and Veselinov [8]. We present the following theorem according to [8] for the newly
constructed operators (1).

Theorem 1 Ifthe linear positive operators (1) satisfy

lim M;’”ﬂ (e’””;x) =e ™ m=0,1,2, (8)

§—>00

uniformly in [0, 00), then for each f € C*[0,00)
lim M (f;x) = £ (x) O
uniformly in [0, 00).

Proof We have already known that lim,_, o My P(1x) = 1. Considering equality (5) with
Vs p(%) given in (2), we have

B ~s5+)
Mo (tsa) = —TPEB (1, V)
§ s+p+B+1 s+p+B+1

- (1-2a)2 +x)xe™ 5
e ¥+ 261p) +O((s+p)7?) (10)
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and

~(s+p)
M*P (e x) = StprB (), Pl
s+p+B+2 s+p+pB+2
1-a)(4 + 2x)xe™>
=e ¥+ (1 - a)(4 + 2x)xe + (’)((s +p)_2). (11)
(s +p)

Hence, we prove that

lim M®P(e7;x) =e™, m=0,1,2,

5§—>00

uniformly in [0, 00). This means that, for any f € C*[0,00), lim,_, o M i (f;x) = f(x) uni-
formly in [0, 00). O

After about four decades later than Boyanov and Veselinov [8], Holhos [15] studied the
uniform convergence of a sequence of linear positive operators. He obtained the following
theorem for an effective estimation of the linear positive operators.

Theorem 2 ([15]) For a sequence of linear positive operators A; : C*[0,00) — C*[0, 00),
we have

”Asf _f”[o,oo) =< Hf”[o,oo)as + (2 + as)a)*(f’ vV 8 + 205 + ps)

for every function f € C*[0, 00), where

||As(60) -1 ” [0,00) = 551

= US}

[4s(e™) =™l o0

[4s(™) =€ 1000 = s

and &*(f, 1) = SUP|e-x_e-t|<y 150 If (t) = f (x)| denotes the modulus of continuity. Here, 5, s,
and ps tend to zero as s — 0.

In the same manner with the above theorem, we present a quantitative estimation of the

—2ax

Baskakov—Schurer—Szasz—Stancu operators which preserve e™***,a > 0, as follows.

Theorem 3 For f € C*[0, 00), we have the following inequality:
[ MEEF = £ 10,00y < 20*(F /2055 + D)y (12)
where

[ () = €100y = 9o

| M5 (e7) — | [0,00) — P+

Here, o, and p;, tend to zero as s — co. So, My ’ 'f converges to f uniformly.
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Proof The Baskakov—Schurer—Szasz—Stancu operators M>P preserve constant. Thus,
8sp = ||M§"'S (e0) — 1ll{o,00) = 0. In order to calculate o, we take into consideration equality
(10). So, we obtain

1-2a)(2 +x)xe™
M>P (%) —e™ = ( i )

+O((s +p)7?).

2(s+p)
Since
sup xe = 1, sup x’e™ = iz,
x€[0,00) e x€[0,00) €
we achieve

B (1-2a) 2(1-2a)

Oop = | M (€7) =g = e(s+p) e s+p)

+ O((s +p)_2).

In the same way, with the help of equality (11), we have

(1-a)(4 + 2x)xe**

M2F(ex) — e = +O(s+p)7).

(s +p)
By using
—2x 1 2,-2x
sup xe 7= —, sup x'e = —,
x€[0,00) 2e x€[0,00) €
we get

2(1-a) 2(1-a)
e(s+p) * (s +p)

Pop = M7 () = | .0 = +O((s+p)7).

Consequently, o, and p;,, tend to zero as s — o0. O

In Sect. 4, we investigate the rate of convergence by using the usual modulus of conti-
nuity.

4 The usual modulus of continuity

The class of all bounded and uniform continuous functions f on [0,00) is denoted by
C[0,00) endowed with the norm ||f]lc, = sup,-, |[f(x)|. For f € Cp[0,00), the modulus
of continuity is given by

o(f,8):= sup  sup [f(x+h)—f(x)|.

0<h<8 xx+he[0,00)

The second order modulus of continuity of the function f € Cz[0, 00) is defined by

’

wy(f,8) := sup sup [f(x+2h)—2f(x+h) +f(x)
0<h</8 %%+h€[0,00)

where § > 0. Peetre’s K-functionals are described as

K(f,8):= inf  {lIf —glicsioe0 + 5||g||c2[o,oo)}~
geC210,00) B
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Here, C3[0, 00) denotes the space of the functions f, for which /" and f” belong to C5[0, 50).
The relation between the second order modulus of continuity and Peetre’s K-functional is
given by [9]

K(f,8) < Man(f,V/9),
where M > 0.
Lemma 4 For f € Cz[0,00), we have |M§"ﬂ(f;x)| <|Ifll.

Theorem 4 Let f € Cg[0,00). Then, for all x € [0,00), there exists a positive constant M

such that
(s+pvspx) +a +1 >, (13)

MEP(fi0) = ()| < Maooa(f, /Hrsp) + w(f’

s+p+p
where
(s+p)2s+2p+1) 2 )+ (4a +6)(s+p) 4dx(s+p) )
= v (x - Vs (o
For = T sepepr 0 G+p+p?  stp+p) "
+2a2+4a+3_4x(oc+1)+ ) (14)
(s+p+B)? s+p+pP
Here, v, p(x) is the same as in (2).
Proof We define the auxiliary operators M # Cg[0,00) — Cg[0, 00)
- " (s+pvspx) +a+1
M (g;x) = M2 (g3x) + g(x) —g( PPl , (15)
s+p+ B

where vy, (x) is as given by (2). Note that the operators (15) are positive and linear. By using
the Taylor expansion for g € C3[0, 00), we have

t

g(t) =g(x) + - x)g (%) + / (t—u)g"(u)du, =x,te€]0,00). (16)

X

Applying MEP operators to the both sides of equation (16) and using Lemma 3, we obtain

| M2 (g5 %) — g(x)|

= ‘Mgﬂ (/t(t— u)g" () du;x)

t
< M‘S”ﬂ </ (t—u)g" (u) du;x)
(s+p)vs,p(x)+a+l
—pF X 1
+ ! ((s+p)v,p(x)+a+ —u)g”(u)du . (17)
p stp+p
Further,

’Mﬁ"ﬂ </t(t —u)g" (u) du;x)
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t
< M®F </ It —ullg” (w)] du;x) <|g"| M (47 %) (18)

and

(s+p)vsyp (x)+a+1

5+p+B (s+pvspx) +a +1 ~ u)g”(u) du
x s+p+p
2
” //”((5"'P)Vsp( x)+a+1 —x) ) (19)
s+p+p
Rewrite (18) and (19) in (17), then we have
|MEP (gx) - g(%)|
p a (s+p)vspx) +a+1 2
o (2
i s+p)s+p+1)2 ()+(4+2a)(s+p)vs,p(x)+a2+2a+2
el .,
2x((s + p)vsp(x) + 2 +1) ((s +P)sp(X) +a+1 )2>
- +x° + -Xx
s+p+p s+p+p
_” ,,”<(s+p (2s+2p+1) 2 ( " ((4a+6)(s+p) 4x(s+p)> )
(s+p+ AP Grp+pP  siprp) T
202 + 4o +3  dx(o +1) 2)
+ - 2x
(s+p+PB)? s+p+pP
= lg"[sp (20)
where
_(s+p)2s+2p+1) 2 () (4a +6)(s+p) 4dx(s+p) )
P = epepr ( (s+p+B)? _s+p+/3> Ea
2
. 20° + 4o + 3 B 4o + 1) oy (1)
(s+p+B)? s+p+pP
By using the auxiliary operators (15) and Lemma 4, we get
| P (i) < [P (i) + 2111 < 3IIf - (22)

From (15), (20), and (22), for every g € C2[0,00), we obtain

|MEP(f20) - f (%)

R e R

+ M@ (g;x) — M*P (g; x) + g(x) — g(x)

< B - gin)— (@) + WS o) vars 1) —f(x)‘

s+p+p

Page9of 16
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+ | M (g5 x) — g ()|

s 1
<4|f gl + ”g// ”M&p + P((S + P p(®) +a + > —f(x)‘

s+p+p
(s+pvspx) +a+1
(s+pvspx) +a +1
waz(f,,/us,p)+a)(f, R —x’) (23)
P O

Remark2 We see that u;, = i:f +O((s +p)2) — 0, when s — co. This result guarantees

the convergence of Theorem 4.

In Sect. 5, we obtain the rate of convergence by using the exponential modulus of conti-

nuity.

5 The exponential modulus of continuity
For f € C[0, 00), the exponential growth of order B > 0 is given by

Ifllz:= sup [f(x)e‘B’c| < 00. (24)

x€[0,00)

The first order modulus of continuity of functions with exponential growth is defined as

o1(f,8,B) = sup [f(x) —f(x+h) |e‘B". (25)
h<§

xe[a,oo)

Let f € Lip(c, B) for some 0 < ¢ < 1. Then, for each § < 1,
w1(f,8,B) < M6°. (26)

Let K be a subspace of C[0, c0) which contains functions f with exponential growth, ||f|| 5 <
00,

Theorem 5 Let MZ" : K — C[0, 00) be the sequence of linear positive operators preserving
e 4> 0. We assume that M’ satisfy

MUP((t - x)*€™;x) < Ca(B,x)MPF (23 %) 7

for fixed x € [0,00) and for B > 0. Additionally, if f € C*[0,00) NK,0<c <1, and " €
Lip(c, B), then for fixed x € [0, 00), we have

290130 ~L e 350)

M"‘ﬁ( s x) B)
Olﬂ 2. ’ ‘
M (%)

=M’

(65 )< <252 Cﬂ(f'x) + eZBx>w1 (f”,
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Proof We begin with the Taylor expansion of the function f € C2[0, 00) at x € [0, 00).

2
2 1)+ Hafs ), (28)

SO =1@ + 2w+

/ / 2
where Hy(f;t,x) = w is the remainder term. Here, 1 is between ¢ and x. Ap-

plying the operators MY’ to equality (28), we obtain

o ! o ”(x) o,
MEP(F33) - )~ M (L)~ g (g2)
= |MZP (Hy(f; t, x); %) |
<M*P(|H, )|). (29)
Here,
1/ _ )2 42 X " _
Hof %) = (" () —f" (x))(t — x) < (t-x)? | "o (f",hB), |t—x|<h,
2 2 | ePw(f",kh,B), h<|t—x|<kh.
Tachev et al. [23] proved that, for each #>0and k € N,
wy(f, kh, B) < ke?* Dl (f, 1, B). (30)
By using inequality (30), we get
X(+ _ A)2
M%wl (f”,kh, B)
eBr(t—x
< % B(k 1)k 1(f”,h,B)
t—x)%(|t-
< i) (' A, 1>eB"eB|t‘xw1 (f",h,B)
2 h
(t_x)2 |t—x| ZBx 17
< ()@ s el np)
Therefore,
_x)2 _
|H(f; )| < 4 zx) <|thx| N 1)( Voo, (', 1, B). (31)

Applying the operators My P to inequality (31), we write
;%)
1 t—x?
< iMso‘ﬁ((—l hx| + |t—x|2> (e +&); )a)l(f” h, B)

1 1
(2hM°"3(|t xePx )+§M§"ﬁ(|t—x|263t;x)

e

eZBx ZBx
Y MZP (|t - x%5x) + M (It—xlz;x)>w1(f’/,h,B).

Page 11 0of 16
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By some computations we obtain

MPP (|t - x*eP; x)

= M*P (tzeBt;x) - 2xM*P (teBt; ) +x*MeP (e ! x)

e 5P p Dt p+ By @ (Bl T
- (s+p+p—B) ( _S+p+ﬂ—B>

Ba (4(S+1ﬂ)(s +p+B)Vsp(x)  2a(s+p)(s+p+ B)vspx)
+ st +

(s+p+p-B)* (s+p+pB-B)>

255 +P)s +p+ BVvep)\ (| Brapln) \ T
~ (s+p+p-BP )( _S+p+/3—B>

Ba( 2s+p+p) 20 a?
+ estr+p + +

(s+p+B-B)? (s+p+B-B)?* (s+p+P)s+p+p—B)

2x(s +p + B) 2xo X2(s+p+P) )( By ,(x) )_(Hp)
— - + 1 — P77

(s+p+B-B)? (s+p+B-B) (s+p+B-B) s+p+B-B

_o (1, B(12 + 12(1 + 2a + B)x + 4(1 + 6a + 3B)x? + 3(2a + B)x®)
- 22+ x)(s+p)

+ O((s +p)_2)>M§"’3 (¢>§;x).
Sinces+p > 1,
M2 (|t - x> %) < Co(B,x)M>P (¢2;%). (32)
We have the following inequalities with the help of Cauchy-Schwarz inequality:

Mf'ﬁ(lt —x|3eBt;x)

< M (1t = x5 ) M2 (1 - a1 )

< /2B MEP (2) MEF (05:2), (33)

M;"'ﬁ(lt —x|3;x)

< M2 (12 = a0 M2 (1€ - 212 5)

< M5 () M7 (g2:). (34)

Thus, by using inequalities (32), (33), and (34) in (29), we write

‘M;"ﬁ(f;x) ) - M (815) - (x)

( \/C 2B, )M ( \/M“‘S

C,(B, x)M“ B

L0z 5)

JM”
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ZB

5 —MP (p2; ))wl(f h,B). (35)

M (k)
M (¢2)

Finally, when we choose /1 = and substitute it in (35), we obtain

1)

P9 i (935

M2P(f;x) - f(x) - f ()M (¢ x) —

M (%) B)
MEP(p2x)

< M;X’ﬁ (‘lﬁ;x) ( Ca(223, *) + Cﬂ(f’ %) + ezB">w1 (f//,

W&x; = 5"5(3;") +O((s + p)2) — 0 as s — oo. This result

guarantees the convergence of Theorem 5. O

Note that, for fixed x € [0, 00),

In Sect. 6, we give the Voronovskaya-type theorem to examine the asymptotic behavior
of the constructed operators (1). For the quantitative Voronovskaya-type theorems, we
refer to the pioneering works [1] and [3].

6 Voronovskaya-type theorem
Theorem 6 Forf,f” € C*[0,00) and x € [0,00), we have the inequality

2
S(Mgl’ﬂ(f;x) _f(x)) - (2(196 + ax2)f/(x) _ (x + %)j//(x)
< |rop@)||[f )]
+ |ty @)|[f" ()| + 2(25,p(x) + 22 + &7 + 25, (%)) 0" (£, 57),

where

rop(x) = SMPP (¢1;%) — (2ax + ax?),

X

2
bop(x) = %Mg,ﬁ (¢§;x) - <x + 3>,

Zsp(x) = 52\/M§"ﬂ ((e*x - e*‘)4;x)\/M§"ﬂ( 4

Proof By the Taylor expansion for a function f, we write

Ry
f(t)=f(x)+(t—x)f(x)+( )f”(x)+k(t x)(t %), (36)

where

f// s) f// (x)

k(t,x) = 3

Here, k(¢,x) is the remainder term and & is a number between x and ¢. Applying the M?"ﬂ
operators to (36), we obtain

MEPf30) [0 = OMEP (9153) + T A0 (9250) + M2 (K 0933).

Page 13 0of 16
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Then

s[MEP(f;x) - f(0)] = (2ax + ax®)f (x) - <x+ %Z)f,,(x)

< |sM;"'ﬁ (qb;;x) - (Zax + axz) ‘ V’(x)| + %’sMg"ﬁ (q&i;x) - (2x + xz) ‘ [f”(x)|

+ [sMEP (k(t, x)¢2; %) |

We briefly denote that ry,(x) := sMEP (¢1;x) — (2ax + ax®) and bop(x) = SMY P (g2

¥ =3 ;%) — (% +
%) Thus,

x?

s[MEP (f3x) — f(%)] = (2ax + ax®)f (x) — <x + %Z)f//(x)

= ’rs,p(x)’ lf/(x)’ + |ts,p|lf”(x)‘
+ |SM§"‘3 (k(t,x)@f;x) |

Note that by using equalities (6) and (7), r,,(x) and £ ,(x) go to zero as s = 0o. Now, we
deal with the term |sM{" (k(z, x)¢2; x)|.

—X —t 2
F(6) - )] < (1+%> ().

Using this inequality, we have

’k(t,x)’ < (1 + (e_x;—ze_t)z)a)*(f”, n).

X

x_1y2
For n > 0, if |e™* —e7!| > n, then |k(t,x)| < mrl;ft)w*(f”, n) and if |e™* — e7f| <, then

X

|k(t,x)| < 20*(f”,n). Thus, we write |k(¢,x)| < 2(1 + %)w*(f”, n). Therefore,
|sM§“ﬂ (k(z, x)¢§;x)|
< sMZP(|k(t, x)|¢2; %)
<20 (7 )M (9555) ¢ S ()M (e =) )
< st* (f//’ )Ma,ﬁ( Z;x)

+ _w (f// \/Motﬂ e — —t \/Mvtﬁ

If we choose n = 1/4/s and z,, := \/s2M°( B(e™ — et)d; x) S2M§"ﬁ(¢j§;x), we get

s(M2P (%) = f(x)) — (2ax + ax®)f'(x) - (x + —)/”(x)

= |rs,p(x)| lf,(x)|
+ |ty @) || @] + (4t (%) + 4 + 207 + 22, , (%)) ™ (F7,5772). 0

Page 14 of 16
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Remark 3 We obtain the following result by some calculations:

lim "M (g5 %) = 3x°(2 + ). (37)

§—>00

Additionally, we get the following result:

lim s*M** ((e™ - e"‘)4;x) =3x%(2 + x)%e¥. (38)

5§—>00

We give the following corollary as a result of Theorem 6 and Remark 3.

Corollary 1 Suppose that f,f” € C*[0,00) and x € [0,00). Then the equality

2
s]~l>rgo S(M;""3 (f5%) —f(x)) = (Zax + axz)f’(x) + (x + %)/”(x) (39)
holds.
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