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Abstract
The main goal of this research is to introduce a new form of generalized
Hermite–Hadamard and Simpson type inequalities utilizing Riemann–Liouville
fractional integral by a new class of preinvex functions which is known as strongly
generalized (φ ,h, s)-preinvex functions in the second sense. It is observed that the
derived inequalities are generalizations of the inequalities obtained by W. Liu, W. Wen
(Filomat 30(2):333–342, 2016).
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1 Introduction
Convexity plays a focal and major part in mathematical finance, economics, engineer-
ing, management sciences, and optimization theory. As of late, a few extensions and gen-
eralizations have been considered for classical convexity. A huge speculation of convex
functions is that of invex functions presented in [2]. The fundamental properties of the
preinvex functions and their use in optimization and mathematical programming issues
have been considered in [3–5]. It is realized that the preinvex functions and invex sets
may not be convex functions and convex sets, respectively. Another generalization of the
convex function, which is known as the ϕ-convex function presented and examined in
[6], is similarly vital. Specifically, these generalizations of the convex functions are very
extraordinary and do not contain each other. Another class of nonconvex functions is
presented and studied in [7], which incorporates these generalizations as special cases.
This class of nonconvex functions is called the ϕ-preinvex and ϕ-invex functions. Some
well-known integral inequalities like those of Simpson and Hermite–Hadamard type in
literature are under discussion. In our opinion, these inequalities have great impact in
pure and applied mathematics. Many new extensions and interesting generalizations of
these integral inequalities have been studied in recent years. For further details involv-
ing Hermite–Hadamard and Simpson type inequalities on different concepts of convex
function, the reader is referred to [1, 8–16].

In [1, 17] Wenjun Liu et al. presented the following form of inequalities for MT-convex
functions:
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Let f : I ⊂ R → R be a differentiable mapping on I◦ (the interior of I) such that
f ′ ∈ L1([u, v]), where u, v ∈ I with u < v. Then, for all x ∈ [u, v], δ ∈ [0, 1], and α > 0, we
have

Sf (x, δ,α, u, v)

=
(x – u)α+1

v – u

∫ 1

0

(
zα – δ

)
f ′(zx + (1 – z)u

)
dz

+
(v – x)α+1

v – u

∫ 1

0

(
δ – zα

)
f ′(zx + (1 – z)v

)
dz.

Theorem 1 Let f : I ⊂ R → R be a differentiable mapping on I◦ (the interior of I) such
that f ′ ∈ L1([u, v]), where u, v ∈ I with u < v. If |f ′| is an MT-convex function on [u, v] and
|f ′(x)| ≤ M for all x ∈ [u, v], then we have the following inequality for fractional integrals
with α > 0:

∣∣Sf (x, 1,α, u, v)
∣∣

=
∣∣∣∣ (x – u)αf (u) + (v – x)αf (v)

v – u
–

Γ (α + 1)
v – u

[
Jα
x– f (u) + Jα

x+ f (v)
]∣∣∣∣

≤ M[(x – u)α+1 + (v – x)α+1]
2(v – u)

[
π –

Γ (α + 1
2 )Γ ( 1

2 )
Γ (α + 1)

]
. (1)

Proposition 1 Under the assumption of Theorem 1, putting x = u+v
2 , we obtain

∣∣∣∣Sf

(
u + v

2
, 1,α, u, v

)∣∣∣∣

=
∣∣∣∣ (v – u)α–1

2α–1
f (u) + f (v)

2
–

Γ (α + 1)
v – u

[
Jα
x– f (u) + Jα

x+ f (v)
]∣∣∣∣

≤ M(v – u)α

2α+1

[
π –

Γ (α + 1
2 )Γ ( 1

2 )
Γ (α + 1)

]
. (2)

Theorem 2 Let f : I ⊂ R → R be a differentiable mapping on I◦ (the interior of I) such
that f ′ ∈ L1([u, v]), where u, v ∈ I with u < v. If |f ′|q is an MT-convex function on [u, v] for
q ≥ 1 and |f ′(x)| ≤ M, for all x ∈ [u, v], then we have the following inequality for fractional
integrals with α > 0:

∣∣Sf (x, 1,α, u, v)
∣∣

=
∣∣∣∣ (x – u)αf (u) + (v – x)αf (v)

v – u
–

Γ (α + 1)
v – u

[
Jα
x– f (u) + Jα

x+ f (v)
]∣∣∣∣

≤ M[(x – u)α+1 + (v – x)α+1]
(v – u)

(
α

α + 1

)1– 1
q
[

π

2
–

Γ (α + 1
2 )Γ ( 1

2 )
2Γ (α + 1)

]1– 1
q

. (3)

Theorem 3 Let f : I ⊂ R → R be a differentiable mapping on I◦ (the interior of I) such
that f ′ ∈ L1([u, v]), where u, v ∈ I with u < v. If |f ′|q is an MT-convex function on [u, v] for
q ≥ 1 and |f ′(x)| ≤ M, for all x ∈ [u, v], then we have the following inequality for fractional
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integrals with α > 0:

∣∣Sf (x, 0,α, u, v)
∣∣

=
∣∣∣∣ (x – u)α + (v – x)α

v – u
f (x) –

Γ (α + 1)
v – u

[
Jα
x– f (u) + Jα

x+ f (v)
]∣∣∣∣

≤ M[(x – u)α+1 + (v – x)α+1]
(v – u)

(
π

2

) 1
q
[

1
(αp + 1)

] 1
p

. (4)

Theorem 4 Under the assumption of the above theorem, we obtain

∣∣∣∣Sf

(
u + v

2
, 0,α, u, v

)∣∣∣∣

=
∣∣∣∣ (v – u)α–1

2α–1 f
(

u + v
2

)
+

δ(v – u)α–1

2α–1
f (u) + f (v)

2
–

Γ (α + 1)
v – u

[
Jα
x– f (u) + Jα

x+ f (v)
]∣∣∣∣

≤ M(v – u)α

2α

(
π

2

) 1
q
(

2
α

∫ 1

0
(δ – s)ps

1
α –1 ds –

1
α

∫ 1

0
(δ – s)ps

1
α –1 ds

) 1
p

. (5)

Theorem 5 Let f : I ⊂ R → R be a differentiable mapping on I◦ (the interior of I) such
that f ′ ∈ L1([u, v]), where a, b ∈ I with u < v. If |f ′|q is an MT-convex function on [u, v] for
q ≥ 1 and |f ′(x)| ≤ M, for all x ∈ [u, v], then we have the following inequality for fractional
integrals with α > 0 and δ ∈ [0, 1]:

∣∣Sf (x, δ,α, u, v)
∣∣

≤ M[(x – u)α+1 + (v – x)α+1]
v – u

(
2αδ1+ 1

α + 1
α + 1

– δ

)1– 1
q

×
(

2δ

(
β

(
δ

1
α ;

3
2

,
1
2

)
+ β

(
δ

1
α ;

1
2

,
3
2

))
+ β

(
α +

3
2

,
1
2

)
+ β

(
α +

1
2

,
3
2

)
– δπ

– 2
(

β

(
δ

1
α ;α +

3
2

,
1
2

)
+ β

(
δ

1
α ;α +

1
2

,
3
2

))/
2
) 1

q
. (6)

Fractional calculus was figured in 1695, soon after the advancement of classical calcu-
lus. The earliest efficient reviews were credited to Liouville, Riemann, Leibniz, etc. [15, 16,
18–23]. For quite a while, fractional calculus was viewed as a pure mathematical domain
without real applications. In any case, in recent decades, such a situation has changed. It
has been found that fractional calculus can be useful and even capable, and a diagram of
the straightforward history about fractional calculus, particularly with applications, can
be found in Machado et al. [24]. Presently, fractional calculus and its applications are ex-
periencing quick advancements with more persuading applications in this real world.

In this paper, we establish a new class of preinvex functions, which are called strongly
generalized (φ, h, s)-preinvex functions, and some generalizations for these inequalities
mentioned above. Before moving towards our main results, first we recall the following
definitions.
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Definition 1 Let f ∈ L1[u, v]. The Riemann–Liouville integrals
∫ α

u+ (f ) and
∫ α

v– (f ) of order
α > 0 with u ≥ 0 are defined by

∫ α

u+
f (x) =

1
Γ (α)

∫ x

u
(x – z)α–1f (z) dz, for x > u,

and
∫ α

v–
f (x) =

1
Γ (α)

∫ v

x
(z – x)α–1f (z) dz, for v > x,

where Γ (α) =
∫ ∞

0 e–wwα–1 dw. Here,
∫ 0

u+ f (x) =
∫ 0

v– f (x) = f (x).

In a special case, when α = 1 in Definition 1, we get the classical integral.
Here, we present new generalized inequalities using the Riemann–Liouville fractional

integral by the class of strongly generalized (φ, h, s)-preinvex functions in the second sense.

Definition 2 ([19]) The function f on the invex set Kφξ is said to be φ-preinvex with
respect to ξ and φ if

f
(
x + zeiφξ (y, x)

) ≤ (1 – z)f (x) + zf (y), ∀x, y ∈ Kφξ , z ∈ [0, 1].

The function f is said to be φ-preconcave if and only if –f is ϕ-preinvex. Every convex
function is a φ-preinvex function, but not conversely.

Definition 3 ([5]) The function f on the invex set Kφξ is said to be sφ-preinvex with re-
spect to ξ and φ if

f
(
x + zeiφξ (y, x)

) ≤ (1 – z)sf (x) + zsf (y), ∀x, y ∈ Kφξ , z ∈ [0, 1], s ∈ (0, 1].

2 Main results
First we introduce a new concept named strongly generalized (φ, h, s)-preinvex functions
in the second sense. It is defined as follows.

Definition 4 The function f on the invex set K is said to be strongly generalized (φ, h, s)-
preinvex in the second sense with modulus c > 0 if it is nonnegative, and for all u, v ∈ K
and z × s ∈ (0, 1) × (0, 1], the following inequality holds:

f
(
v + zeiφξ (u, v)

) ≤ hs(z)f (u) + hs(1 – z)f (v) – cz(1 – z)
∥∥eiφξ (u, v)

∥∥2.

Notation. Let f : I ⊂ R → R be a differentiable mapping on I◦ (the interior of I), from
now on we will consider

Ψf
(
x, δ,σ ,α, eiφξ (u, v)

)

=
(
1 – δσ

)[ξ (v, x)αf (v + eiφξ (x, v)) + ξ (x, u)αf (u + eiφξ (x, u))
eiφξ (v, u)

]
f (x)

+ δσ

[
ξ (v, x)αf (v) + ξ (u, x)αf (u)

eiφξ (v, u)

]



Qaisar et al. Journal of Inequalities and Applications        (2019) 2019:110 Page 5 of 10

–
Γ (α + 1)

eiαφξ (v, u)α
[
Jα

(u+eiφξ (x,u))+f (u) + Jα

(v+eiφξ (x,v))+f (v)
]
,

where u < u + eiφξ (v, u), x ∈ [u, u + eiφξ (v, u)], δ ∈ [0, 1], α > 0 and Γ is Euler gamma func-
tion.

To get new integral inequalities, first we focus on proving the following lemma.

Lemma 1 Let Kφξ ⊆ R be a φ-invex subset with respect to φ(·) and ξ : Kφξ × Kφξ ⊆ R with
u < u + eiφξ (v, u) and 0 ≤ φ ≤ π

2 . Suppose that f : Kφξ → R is a differentiable mapping such
that f ′ ∈ L([u, u + eiφξ (v, u)]) for all x ∈ [u, u + eiφξ (v, u)], δ × σ ∈ [0, 1], and α > 0, then we
have

Ψf
(
x, δ,σ ,α, eiφξ (v, u)

)

=
ξ (x, u)α+1

eiφξ (v, u)

∫ 1

0

(
zα – δσ

)
f ′(u + zeiφξ (x, u)

)
dz

+
ξ (v, x)α+1

eiφξ (v, u)

∫ 1

0

(
δσ – zα

)
f ′(v + zeiφξ (x, v)

)
dz.

Proof Using integration by parts, we get

∫ 1

0

(
zα – δσ

)
f ′(u + zeiφξ (x, u)

)
dz

=
[(

zα – δσ
) f (u + zeiφξ (x, u))

eiφξ (x, u)
|10 – α

∫ 1

0
zα–1 f (u + zeiφξ (x, u))

eiφξ (x, u)
dz

]

=
[

(1 – δσ )f (u + eiφξ (x, u)) + δσ f (a)
eiφξ (x, u)

–
Γ (α + 1)

eiαφξ (x, u)α
Jα

(u+eiφξ (x,u))+f (u)
]

.

Analogously, we have

∫ 1

0

(
δσ – zα

)
f ′(v + zeiφξ (x, v)

)
dz

=
[(

zα – δσ
) f (v + zeiφξ (x, u))

eiφξ (x, u)
|10 + α

∫ 1

0
zα–1 f (v + zeiφξ (x, v))

eiφξ (x, v)
dz

]

=
[

(1 – δσ )f (v + eiφξ (x, v)) + δσ f (v)
eiφξ (v, x)

–
Γ (α + 1)

eiαφξ (v, x)α
Jα

(v+eiφξ (x,v))+f (v)
]

.

Both sides of the above equalities are multiplied by ξ (x,u)α+1

eiφξ (v,u) and ξ (v,x)α+1

eiφξ (v,u) analogously, and
then adding them, we obtain the required result. This completes the proof. �

Theorem 6 Let Kφξ ⊆ R be a φ-invex subset with respect to φ(·) and ξ : Kφξ ×Kφξ ⊆ R with
u < u + eiφξ (v, u) and 0 ≤ φ ≤ π

2 . Suppose that f : Kφξ → R is a differentiable mapping such
that f ′ ∈ L([u, u + eiφξ (v, u)]). If |f ′| is strongly generalized (φ, h, s)-preinvex in the second
sense and |f ′(x)| ≤ M, then for all x ∈ [u, u + eiφξ (v, u)], δ × σ ∈ [0, 1], and α > 0, we have

∣∣Ψf
(
x, δ,σ ,α, eiφξ (u, v)

)∣∣

≤ ξ (x, u)α+1

eiφξ (v, u)
[
M

(
Ψ1(δ,σ ,α, s) + Ψ2(δ,σ ,α, s)

)
– c

∥∥eiφξ (u, x)
∥∥2

Ψ3(δ,σ ,α)
]
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+
ξ (v, x)α+1

eiφξ (v, u)
[
M

(
Ψ1(δ,σ ,α, s) + Ψ2(δ,σ ,α, s)

)
– c

∥∥eiφξ (v, x)
∥∥2

Ψ3(δ,σ ,α)
]
. (7)

Proof Using Lemma 1, the property of modulus, and strongly generalized (φ, h, s)-
preinvexity in the second sense, we obtain

∣∣Ψf
(
x, δ,σ ,α, eiφξ (u, v)

)∣∣

≤ ξ (x, u)α+1

eiφξ (v, u)

∫ 1

0

∣∣zα – δσ
∣∣∣∣f ′(u + eiφzξ (x, u)

)∣∣dz

+
ξ (v, x)α+1

eiφξ (v, u)

∫ 1

0

∣∣zα – δσ
∣∣∣∣f ′(v + eiφzξ (x, v)

)∣∣dz

≤ ξ (x, u)α+1

eiφξ (v, u)

∫ 1

0

∣∣zα – δσ
∣∣(hs(z)

∣∣f ′(x)
∣∣ + hs(1 – z)

∣∣f ′(u)
∣∣ – cz(1 – z)

∥∥eiφξ (u, x)
∥∥2)dz

+
ξ (v, x)α+1

eiφξ (v, u)

∫ 1

0

(
δσ – zα

)(
hs(z)

∣∣f ′(x)
∣∣ + hs(1 – z)

∣∣f ′(u)
∣∣

– cz(1 – z)
∥∥eiφξ (v, x)

∥∥2)dz

=
ξ (x, u)α+1

eiφξ (v, u)
[
Ψ1(δ,σ ,α, s)

∣∣f ′(x)
∣∣ + Ψ2(δ,σ ,α, s)

∣∣f ′(u)
∣∣ – c

∥∥eiφξ (u, x)
∥∥2

Ψ3(δ,σ ,α)
]

+
ξ (v, x)α+1

eiφξ (v, u)
[
Ψ1(δ,σ ,α, s)

∣∣f ′(x)
∣∣ + Ψ2(δ,σ ,α, s)

∣∣f ′(v)
∣∣ – c

∥∥eiφξ (v, x)
∥∥2

Ψ3(δ,σ ,α)
]
,

where we used the fact

Ψ1(δ,σ ,α, s) =
∫ 1

0

∣∣zα – δσ
∣∣hs(z) dz,

Ψ2(δ,σ ,α, s) =
∫ 1

0

∣∣zα – δσ
∣∣hs(1 – z) dz,

Ψ3(δ,σ ,α) =
∫ 1

0

∣∣zα – δσ
∣∣z(1 – z) dz

= 2δσ β
(
δ

σ
α , 2, 2

)
– 2β

(
δ

σ
α ,α + 2, 2

)
+ β(α + 2, 2) – δσ β(2, 2).

Hence the proof. �

Remark 1 On letting s = 1, ξ (u, v) = u – v, φ = c = σ = 0, x = u+v
2 , and h(z) =

√
z

2
√

1–z in Theo-
rem 6, then inequality (7) reduces to inequality (2).

Theorem 7 Let Kφξ ⊆ R be a φ-invex subset with respect to φ(·) and ξ : Kφξ ×Kφξ ⊆ R with
u < u + eiφξ (v, u) for 0 ≤ φ ≤ π

2 . Suppose that f : Kφξ → R is a differentiable mapping such
that f ′ ∈ L([u, u + eiφξ (v, u)]). If |f ′| is strongly generalized (φ, h, s)-preinvex in the second
sense with q > 1, 1

p + 1
q = 1, and |f ′(x)| ≤ M, then for all x ∈ [u, u + eiφξ (v, u)], δ × σ ∈

(0, 1] × (0, 1], and α > 0, we have

∣∣Ψf
(
x, δ,σ ,α, eiφξ (u, v)

)∣∣

≤ ξ (x, u)α+1

eiφξ (v, u)
Ψ6(δ,σ ,α)

1
p
[
Mq(Ψ4 + Ψ5) – c

∥∥eiφξ (u, x)
∥∥2

β(2, 2)
] 1

q
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+
ξ (v, x)α+1

eiφξ (v, u)
Ψ6(δ,σ ,α)

1
p
[
Mq(Ψ4 + Ψ5) – c

∥∥eiφξ (v, x)
∥∥2

β(2, 2)
] 1

q . (8)

Proof Using Lemma 1 and the Holder integral inequality, we obtain

∣∣Ψf
(
x, δ,σ ,α, eiφξ (u, v)

)∣∣

≤ ξ (x, u)α+1

eiφξ (v, u)

∫ 1

0

∣∣zα – δσ
∣∣∣∣f ′(u + zeiφξ (x, u)

)∣∣dz

+
ξ (v, x)α+1

eiφξ (v, u)

∫ 1

0

∣∣δσ – zα
∣∣∣∣f ′(v + zeiφξ (x, v)

)∣∣dz.

≤ ξ (x, u)α+1

eiφξ (v, u)

(∫ 1

0

∣∣zα – δσ
∣∣p dz

) 1
p
(∫ 1

0

∣∣f ′(u + zeiφξ (x, u)
)∣∣q dz

) 1
q

+
ξ (v, x)α+1

eiφξ (v, u)

(∫ 1

0

∣∣δσ – zα
∣∣p dz

) 1
p
(∫ 1

0

∣∣f ′(v + zeiφξ (x, v)
)∣∣q dz

) 1
q

≤ ξ (x, u)α+1

eiφξ (v, u)

(∫ 1

0

∣∣δσ – zα
∣∣p dz

) 1
p

×
(∫ 1

0

(
hs(z)|f ′(x)|q

+ hs(1 – z)|f ′(u)|q – cz(1 – z)‖eiφξ (u, x)‖2

)
dz

) 1
q

+
ξ (v, x)α+1

eiφξ (v, u)

(∫ 1

0

∣∣δσ – zα
∣∣p dz

) 1
p

×
(∫ 1

0

(
hs(z)|f ′(x)|q

+ hs(1 – z)|f ′(u)|q – cz(1 – z)‖eiφξ (v, x)‖2

)
dz

) 1
q

=
ξ (x, u)α+1

eiφξ (v, u)
Ψ6(δ,σ ,α)

1
p
[
Mq(Ψ4 + Ψ5) – c

∥∥eiφξ (u, x)
∥∥2

β(2, 2)
] 1

q

+
ξ (v, x)α+1

eiφξ (v, u)
Ψ6(δ,σ ,α)

1
p
[
Mq(Ψ4 + Ψ5) – c

∥∥eiφξ (v, x)
∥∥2

β(2, 2)
] 1

q ,

where we used the fact

Ψ4 =
∫ 1

0
hs(z) dz,

Ψ5 =
∫ 1

0
hs(1 – z) dz,

Ψ6(δ,σ ,α) =
∫ 1

0

∣∣zα – δσ
∣∣dz =

1 + 2αδσ ( 1+α
α )

1 + α
– δσ .

This completes the proof. �

Remark 2 On letting δ = s = 1, ξ (u, v) = u – v, φ = c = 0, and h(z) =
√

z
2
√

1–z in Theorem 7,
inequality (8) reduces to inequality (3).

Remark 3 On letting s = 1, ξ (u, v) = u – v, φ = c = δ = 0, and h(z) =
√

z
2
√

1–z in Theorem 7,
inequality (8) reduces to inequality (4).
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Remark 4 On letting σ = s = 1, ξ (u, v) = u – v, φ = c = 0, x = u+v
2 , and h(z) =

√
z

2
√

1–z in Theo-
rem 7, inequality (8) reduces to inequality (5).

Theorem 8 Let f : I = [u, u + eiφξ (v, u)] ⊂ [0,∞) → R be a differentiable mapping on I◦

such that f ′ ∈ L1([u, u + eiφξ (v, u)]). If |f ′|q is strongly generalized (φ, h, s)-preinvex and
|f ′(x)| ≤ M for all x ∈ [u, u + eiφξ (v, u)], δ × σ ∈ [0, 1] × (0, 1], and α > 0, we have

∣∣Ψf
(
x, δ,σ ,α, eiφξ (u, v)

)∣∣

≤ ξ (x, u)α+1

eiφξ (v, u)
(
Ψ6(δ,σ ,α)

) 1
p
[
Mq(Ψ1(δ,σ ,α, s) + Ψ2(δ,σ ,α, s)

)

– c
∥∥eiφξ (u, x)

∥∥2
β(2, 2)

] 1
q

+
ξ (v, x)α+1

eiφξ (v, u)
(
Ψ6(δ,σ ,α)

) 1
p
[
Mq(Ψ1(δ,σ ,α, s) + Ψ2(δ,σ ,α, s)

)

– c
∥∥eiφξ (v, x)

∥∥2
β(2, 2)

] 1
q . (9)

Proof Using Lemma 1, the property of modulus and power mean inequality, we have

∣∣Ψf
(
x, δ,σ ,α, eiφξ (u, v)

)∣∣

≤ ξ (x, u)α+1

eiφξ (v, u)

∫ 1

0

(
zα – δσ

)∣∣f ′(u + zeiφξ (x, u)
)∣∣dz

+
ξ (v, x)α+1

eiφξ (v, u)

∫ 1

0

(
δσ – zα

)∣∣f ′(v + zeiφξ (x, v)
)∣∣dz

≤ ξ (x, u)α+1

eiφξ (v, u)

(∫ 1

0

∣∣zα – δσ
∣∣dz

)1– 1
q
(∫ 1

0

∣∣zα – δσ
∣∣∣∣f ′(u + zeiφξ (x, u)

)∣∣dz
) 1

q

+
ξ (v, x)α+1

eiφξ (v, u)

(∫ 1

0

∣∣zα – δσ
∣∣dz

)1– 1
q
(∫ 1

0

∣∣zα – δσ
∣∣∣∣f ′(v + zeiφξ (x, v)

)∣∣dz
) 1

q

≤ ξ (x, u)α+1

eiφξ (v, u)

(∫ 1

0

∣∣zα – δσ
∣∣dz

)1– 1
q

×
(∫ 1

0

∣∣zα – δσ
∣∣
(

hs(z)Mq

+ hs(1 – z)Mq – cz(1 – z)‖eiφξ (u, x)‖2

)
dz

) 1
q

+
ξ (v, x)α+1

eiφξ (v, u)

(∫ 1

0

∣∣zα – δσ
∣∣dz

)1– 1
q

×
(∫ 1

0

∣∣zα – δσ
∣∣
(

hs(z)Mq

+ hs(1 – z)Mq – cz(1 – z)‖eiφξ (v, x)‖2

)
dz

) 1
q

=
ξ (x, u)α+1

eiφξ (v, u)
(
Ψ6(δ,σ ,α)

) 1
p
[
Mq(Ψ1(δ,σ ,α, s) + Ψ2(δ,σ ,α, s)

)

– c
∥∥eiφξ (u, x)

∥∥2
β(2, 2)

] 1
q

+
ξ (v, x)α+1

eiφξ (v, u)
(
Ψ6(δ,σ ,α)

) 1
p
[
Mq(Ψ1(δ,σ ,α, s) + Ψ2(δ,σ ,α, s)

)
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– c
∥∥eiφξ (v, x)

∥∥2
β(2, 2)

] 1
q .

Hence the proof. �

Remark 5 On letting σ = s = 1, ξ (u, v) = u – v, φ = c = 0, x = u+v
2 , and h(z) =

√
z

2
√

1–z in Theo-
rem 8, inequality (9) reduces to inequality (6).
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