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Abstract
Approximation of analog signals from noisy samples is a fundamental, but
nevertheless difficult problem. This paper addresses the problem of approximating
functions in Hγ ,Ω from randomly chosen samples, where

Hγ ,Ω =
{
f | f is continuous on Ω , and ‖Df‖L∞(Ω ) ≤ γ ‖f‖L∞(Ω )

}
.

We are concerned with the probability that functions in Hγ ,Ω can be approximated
from the noisy samples stably and how they can be approximated.
By calculating the upper bound of the covering number of a subset of Hγ ,Ω and

using the uniform law of large numbers, we conclude that functions in Hγ ,Ω can be
recovered stably with overwhelming probability provided that the sampling noise
satisfies some mild conditions and the sampling size is sufficiently large. Furthermore,
an �∞-regularized least squares model is proposed to approximate functions from
noisy samples. The alternating direction method of multipliers (ADMM) algorithm is
then applied to solve the model. In the end, numerical experiments are presented
and discussed to illustrate the efficiency of our method.
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1 Introduction
In modern digital data processing of signals, such as sound, image or video processing, one
always uses a discretized version of the original analog functions [1]. Then how the ana-
log function can be recovered from its samples and whether the reconstruction is stable
are fundamental problems in sampling theory [2]. For example, the Shannon–Whittaker
sampling theorem says for each f ∈ L2(R) and supp(f̂ ) ⊆ [– 1

2 , 1
2 ], it can be completely re-

covered from the sample points {f (j) : j ∈ Z} by the formula f (x) =
∑

j∈Z f (j) sinπ (x–j)
π (x–j) , where

the convergence is uniform on R and also in L2(R).
To characterize the conditions under which it is possible to recover particular classes of

functions from the sampling points stably, we introduce the following sampling inequali-
ties:

mp‖f ‖p
Lp(Rd) ≤

∑

xj∈X

∣∣f (xj)
∣∣p ≤ Mp‖f ‖p

Lp(Rd) ∀f ∈ V , (1.1)
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where mp and Mp are positive constants independent of f and 1 ≤ p < ∞. The set X = {xj :
j ∈ J} is said to be a stable set of sampling for function class V ⊆ Lp(Rd) if the inequalities
(1.1) hold (see e.g. [2, 3]). The sampling inequalities (1.1) imply that a small perturbation
of f causes only a small change of sampled values {f (xj)}, and vice versa. This means that
the sampling is a stable process and the reconstruction of functions in V from X is con-
tinuous. For the Shannon–Whittaker theorem, since the functions { sinπ (·–j)

π (·–j) }j∈Z form an
orthonormal basis for the space of bandlimited functions with highest cycle frequency 1

2 ,
we have ‖f ‖2

L2(R) =
∑

j∈Z |f (j)|2 and m2 = M2 = 1.
In the past years, there has been a considerable body of research on developing recon-

struction algorithms and characterizing the conditions of stable set of sampling for various
function classes. For instance, Aldroubi and Gröchenig [2] investigated the nonuniform
sampling and reconstruction in shift-invariant spaces. Xian and Li [4, 5] studied the sam-
pling set conditions and applications of weighted finitely generated shift-invariant spaces.
Sun and Zhou [6], and Sun [7] characterized the local sampling in spline subspaces and
shift-invariant spaces, respectively.

This paper addresses the problem of sampling and approximation of functions with
bounded derivatives. We define the following class of functions on Ω ⊂R

d :

Hγ ,Ω :=
{

f | f is continuous on Ω , and ‖Df ‖L∞(Ω) ≤ γ ‖f ‖L∞(Ω)
}

, (1.2)

where |Df | = |Dx1 f | + |Dx2 f | + · · · + |Dxd f |, and Dxi = ∂
∂xi

is the weak derivative of order 1.
The continuity of f at the boundary of Ω means that f can be continuously extended
to Ω . The parameter γ characterizes the degree of oscillation of functions in Hγ ,Ω . For
simplicity, throughout this paper, we always assume that Ω = (0, 1)d . Sampling in Hγ ,Ω is
an appropriate model for many applications, in particular in signal and image processing
[1]. Moreover, by Bernstein’s inequality [8], if f ∈ L2(R) and supp(f̂ ) ⊆ [– γ

4π
, γ

4π
], then f ∈

Hγ ,R. In other words, the space of bandlimited functions is a special case of Hγ ,Ω .
Random sampling approaches were used in a variety of fields, such as statistical learn-

ing theory [9], compressed sensing [10], image processing [11], and many others [12]. Re-
cently, Bass and Gröchenig in [13] studied the stability problem of random sampling in
the space of bandlimited functions. Yang et al. [14, 15] and Führ et al. [16] discussed the
stability conditions and applications of random sampling in shift-invariant spaces.

The purpose of this paper is to investigate random sampling of functions in Hγ ,Ω .
Let {(xj, yj)}n

j=1 be the sampling of f ∈ Hγ ,Ω , where {xj} is uniformly drawn from Ω , and
yj = f (xj) + εj with εj being a random noise. We consider the probability that {(xj, yj)}n

j=1
is a stable set of sampling for Hγ ,Ω , and how f can be approximated from these samples.
By estimating the upper bound of the capacity of Hγ ,Ω and applying the uniform law of
large numbers of the sampling values, we conclude that with overwhelming probability,
the sampling inequalities (1.1) hold uniformly for all functions in Hγ ,Ω when the sampling
noise satisfies some mild conditions. Furthermore, an �∞-regularized least squares model
is proposed, and the corresponding numerical algorithm is discussed.

The rest of this paper is structured as follows. Section 2 introduces some mathematical
notation and the covering number of Hγ ,Ω . Section 3 characterizes the stability properties
of random sampling in Hγ ,Ω . Section 4.1 presents an optimization model and the corre-
sponding numerical algorithm to approximate f ∈ Hγ ,Ω from its noisy samples. Section 4.2
discusses some numerical experiments. Finally, Sect. 5 concludes and discusses future di-
rections.
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2 Preliminaries
We first introduce some notation. Let N denote the set of positive integers. As usual, for
x ∈ R, let 	x
 denote the largest integer smaller than or equal to x, and �x� denote the
smallest integer greater than or equal to x. For x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R

d , let
|x – y| := max1≤i≤d{|xi – yi|}.

For two sets A and B, the Cartesian product A × B is the set of all ordered pairs defined
by A × B = {(a, b) | a ∈ A and b ∈ B}. Similarly, it can be generalized to an m-ary Cartesian
product over m sets.

Let M be a Lebesgue measurable set. For 1 ≤ p < ∞, we denote by Lp(M) the Banach
space of all functions such that

‖f ‖Lp(M) :=
(∫

M

∣∣f (x)
∣∣p dx

)1/p

< ∞ for 1 ≤ p < ∞,

and ‖f ‖L∞(M) is the essential supremum of f on M.
We can similarly define �p = �p(Zd) the Banach space of all sequences a = (ak)k∈Zd such

that ‖a‖�p < ∞, where

‖a‖�p :=
(∑

k∈Zd

|ak|p
)1/p

for 1 ≤ p < ∞,

and ‖a‖�∞ is the supremum of a on Z
d .

The first main result of this paper is to estimate the probability such that the sampling
inequalities (1.1) hold uniformly for all functions in Hγ ,Ω . Such similar problems are clas-
sical in statistical learning theory [9]. The most powerful tool used there is the capacity of
the involved function set and the uniform law of large numbers [17–19]. Our analysis is
following this strategy.

Since the covering number is a very convenient and powerful tool for metric space, we
choose it to characterize the capacity of function sets. Let S be a metric space. For any
η > 0, the covering number N (S,η) is the minimal number of balls with radius η that can
cover S. When S is compact, N (S,η) is finite for any given η > 0.

It is not hard to verify that any f ∈ Hγ ,Ω satisfies the inequalities (1.1) if and only if
f /‖f ‖L∞(Rd) does. So we consider the subset

H∗
γ ,Ω :=

{
f ∈ Hγ ,Ω , and ‖f ‖L∞(Ω) = 1

}
. (2.1)

The following proposition gives an upper bound for the covering number of H∗
γ ,Ω , and the

proof follows the line of argument in [9, Proposition 5.4] where d = 1.

Proposition 2.1 Let H∗
γ ,Ω be defined by (2.1). For any η > 0, the covering number of H∗

γ ,Ω
with respect to ‖ · ‖L∞

N
(
H∗

γ ,Ω ,η
) ≤ exp

(
ln 2 +

2
η

+
(

4γ

η

)d

ln 3
)

.

Proof We first define a set of regular grid points in Ω with equal distance δ = η

4γ
. Let

I = {1, 2, . . . , 	 1
δ

} and i := (i1, i2, . . . , id) ∈ Id . For each i� ∈ I, set xi� = i�δ. Then one can check
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that the point set

X :=
{

xi = (xi1 , xi2 , . . . , xid ) | xi� = i�δ, i ∈ Id}

is a regular grid in Ω with equal distance δ, which is also a δ-net of Ω .
For f ∈ H∗

γ ,Ω , we have ‖Df ‖L∞ ≤ γ ‖f ‖L∞ ≤ γ . Moreover, by the continuity of f , for any
x, y ∈ Ω , we have –1 ≤ f (x) ≤ 1 and |f (x) – f (y)| ≤ γ |x – y|. It follows that

(νi – 1)
η

2
≤ f (xi) ≤ νi

η

2
, ∀xi ∈ X,

for some νi ∈ J := {–� 2
η
� + 1, –� 2

η
� + 2, . . . , � 2

η
�}. For each

ν = (ν(1,1,...,1),ν(2,1,...,1), . . . ,νi, . . . ,ν(	 1
δ

,	 1

δ

,...,	 1

δ

)) ∈ J|Id |,

define

Hν :=
{

f ∈ H∗
γ ,Ω

∣∣∣ (νi – 1)
η

2
≤ f (xi) ≤ νi

η

2
,∀i ∈ Id

}
.

Then we obtain

H∗
γ ,Ω ⊆

⋃

ν∈J|Id |
Hν .

Besides, for every f , g ∈ Hν , there exist ĩ ∈ Id and xĩ ∈ X such that

max
x∈Ω

∣∣f (x) – g(x)
∣∣ = max

|x–xĩ|≤δ

∣∣f (x) – g(x)
∣∣

≤ max
|x–xĩ|≤δ

∣∣f (x) – f (xĩ)
∣∣ +

∣∣g(x) – g(xĩ)
∣∣ +

∣∣f (xĩ) – g(xĩ)
∣∣

≤ 2γ δ +
η

2
= η.

Hence, we conclude that the diameter of Hν ⊆ H∗
γ ,Ω is at most η, and

{
Hν : ν ∈ J|I

d |}

is an η-covering of H∗
γ ,Ω .

In the following, we count the number of sets {Hν}, ν ∈ J|Id |. Let f ∈ Hν . For every fixed
i = (i1, i2, . . . , i�, . . . , id) ∈ Id and xi ∈ X, we have

(νi – 1)
η

2
≤ f (xi) ≤ νi

η

2
.

Similarly, for xi ∈ X with i = (i1, i2, . . . , i� + 1, . . . , id) ∈ Id , a δ-neighboring point of xi, we
have

(νi – 1)
η

2
≤ f (xi) ≤ νi

η

2
.
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It follows that

(νi – νi – 1)
η

2
≤ f (xi) – f (xi) ≤ (νi – νi + 1)

η

2
. (2.2)

Since f ∈ Hν ⊆ H∗
γ ,Ω and |xi – xi| = δ, we have

∣∣f (xi) – f (xi)
∣∣ ≤ γ δ =

η

4
. (2.3)

By (2.2) and (2.3), we obtain |νi – νi| η

2 – η

2 ≤ η

4 . Hence,

νi ∈ {νi,νi + 1,νi – 1}.

In addition, since ν(1,1,...,1) has at most 2� 2
η
� possible values, the number of nonempty sets

{Hν}, ν ∈ J|Id | is at most

2
⌈

2
η

⌉
3|Id | ≤ 2

(
2
η

+ 1
)

3	 1
δ

d

≤ exp

(
ln

(
2
(

2
η

+ 1
))

+
⌊

1
δ

⌋d

ln 3
)

≤ exp

(
ln

(
2
(

2
η

+ 1
))

+
⌊

4γ

η

⌋d

ln 3
)

.

Moreover, since ln(1 + t) ≤ t for t ≥ 0, we have

exp

(
ln

(
2
(

2
η

+ 1
))

+
⌊

4γ

η

⌋d

ln 3
)

≤ exp

(
ln 2 +

2
η

+
(

4γ

η

)d

ln 3
)

.

This completes the proof of Proposition 2.1. �

3 Stability of random sampling
Let X = {xj : j ∈ N} be a sequence of independent and identically distributed (i.i.d.) ran-
dom variables, each of which is uniformly drawn from Ω , and yj = f (xj) + εj with εj being
a random noise. In this section, we investigate the probability that any f ∈ Hγ ,Ω can be
recovered from its samples {(xj, yj)}n

j=1 stably. We will prove that if the random noise satis-
fies some mild conditions, then, with overwhelming probability, the sampling inequalities
(1.1) hold uniformly for all functions in Hγ ,Ω with (noisy) sampling values.

For every fixed f ∈ Hγ ,Ω , we define the random variable

Xj(f ) :=
∣∣f (xj)

∣∣p –
∫

Ω

∣∣f (x)
∣∣p dx, (3.1)

where {xj} is uniformly drawn from Ω . Then one can check that the sequence {Xj(f ) : j ∈N}
is independent and the expectation E(Xj(f )) = 0. Besides, for the variance of Xj(f ), we have

Var
(
Xj(f )

)
= E

(
Xj(f )2) –

(
E

(
Xj(f )

))2

= E
(∣∣f (xj)

∣∣2p) –
(∫

Ω

∣∣f (x)
∣∣p dx

)2
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≤ E
(∣∣f (xj)

∣∣2p)

=
∫

Ω

∣∣f (x)
∣∣2p dx

≤ ‖f ‖2p
L∞(Ω).

The following Bernstein inequality plays an important role in probability theory, which
gives bounds on the probability that the sum of independent random variables deviates
from the expectation.

Lemma 3.1 ([20]) Let ξ1, ξ2, . . . , ξn be independent random variables. Assume that E(ξj) =
0, Var(ξj) ≤ σ 2 and |ξj| ≤ K almost surely for all j. Then, for any λ ≥ 0,

Prob

(∣∣∣∣∣
1
n

n∑

j=1

ξj

∣∣∣∣∣
≥ λ

)

≤ 2 exp

(
–

nλ2

2σ 2 + 2
3 Kλ

)
.

Lemma 3.2 Let {xj : j = 1, 2, . . . , n} be a sequence of i.i.d. random variables that are uni-
formly drawn from Ω = (0, 1)d . Let H∗

γ ,Ω be defined by (2.1), and Xj(f ) be given by (3.1).
Then, for any λ ≥ 0 and n ∈N,

Prob

(

sup
f ∈H∗

γ ,Ω

∣∣∣∣∣
1
n

n∑

j=1

Xj(f )

∣∣∣∣∣
≥ λ

)

≤ 2N
(

H∗
γ ,Ω ,

λ

2p

)
exp

(
–

3nλ2

24 + 4λ

)
.

Proof Let {f�}�=1,...,L, where L = N (H∗
γ ,Ω , λ

2p ), be a sequence in H∗
γ ,Ω such that H∗

γ ,Ω can
be covered by the L∞ balls centered at f� with radius λ

2p . For each fixed f� ∈ H∗
γ ,Ω , since

‖f�‖L∞(Ω) = 1, we have Var(Xj(f�)) ≤ 1 and |Xj(f�)| ≤ 1. By Lemma 3.1, we obtain

Prob

(∣∣∣
∣∣
1
n

n∑

j=1

Xj(f�)

∣∣∣∣∣
≥ λ

)

≤ 2 exp

(
–

nλ2

2 + 2
3λ

)
. (3.2)

For any given f ∈ H∗
γ ,Ω , there exists some � ∈ {1, 2, . . . , L} such that ‖f – f�‖L∞ ≤ λ

2p . Thus,
by the mean value theorem,

∣∣∣∣∣
1
n

n∑

j=1

Xj(f ) –
1
n

n∑

j=1

Xj(f�)

∣∣∣∣∣

=

∣∣∣∣∣
1
n

n∑

j=1

(∣∣f (xj)
∣∣p –

∣∣f�(xj)
∣∣p)

∣∣∣∣∣

≤ p
(
max

{‖f ‖L∞(Ω),‖f�‖L∞(Ω)
})p–1‖f – f�‖L∞(Ω)

≤ p‖f – f�‖L∞(Ω)

≤ λ

2
.
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Combining this with (3.2), we conclude that, for each fixed �, 1 ≤ � ≤ L,

Prob

{

sup
{f :‖f –f�‖L∞≤ λ

2p }

∣∣∣∣∣
1
n

n∑

j=1

Xj(f )

∣∣∣∣∣
≥ λ

}

≤ Prob

{∣∣∣∣∣
1
n

n∑

j=1

Xj(f�)

∣∣∣∣∣
≥ λ –

λ

2

}

≤ 2 exp

(
–

3nλ2

24 + 4λ

)
.

Besides, since

H∗
γ ,Ω ⊆

L⋃

�=1

{
f : ‖f – f�‖L∞ ≤ λ

2p

}
,

we obtain

Prob

(

sup
f ∈H∗

γ ,Ω

∣∣∣∣∣
1
n

n∑

j=1

Xj(f )

∣∣∣∣∣
≥ λ

)

≤
L∑

�=1

Prob

{

sup
{f :‖f –f�‖L∞≤ λ

2p }

∣∣∣∣∣
1
n

n∑

j=1

Xj(f )

∣∣∣∣∣
≥ λ

}

.

Therefore, noting that L = N (H∗
γ ,Ω , λ

2p ), we conclude that

Prob

(

sup
f ∈H∗

γ ,Ω

∣∣∣∣∣
1
n

n∑

j=1

Xj(f )

∣∣∣∣∣
≥ λ

)

≤ 2N
(

H∗
γ ,Ω ,

λ

2p

)
exp

(
–

3nλ2

24 + 4λ

)
.

�

Theorem 3.3 Let Hγ ,Ω be defined by (1.2). Assume that {xj : j = 1, 2, . . . , n} is a sequence
of i.i.d. random variables that are uniformly drawn from Ω . Then, for any 0 < λ < 1

(p+1)dγ d ,
the following sampling inequalities:

n
(
1 – (p + 1)dγ dλ

)∫

Ω

∣∣f (x)
∣∣p dx ≤

n∑

j=1

∣∣f (xj)
∣∣p ≤ n

(
1 + (p + 1)dγ dλ

)∫

Ω

∣∣f (x)
∣∣p dx (3.3)

hold uniformly for all functions in Hγ ,Ω with probability at least

1 – 2 exp

(
ln 2 +

4p
λ

+
(

8pγ

λ

)d

ln 3 –
3nλ2

24 + 4λ

)
.

Proof Obviously that every f ∈ Hγ ,Ω satisfies (3.3) if and only if f /‖f ‖L∞ does. Thus, we
assume that ‖f ‖L∞ = 1 and f ∈ H∗

γ ,Ω .
Let Xj(f ) be defined by (3.1), and one can check that the event

E =

{

sup
f ∈H∗

γ ,Ω

∣∣∣∣∣
1
n

n∑

j=1

Xj(f )

∣∣∣∣∣
≥ λ

}

is the complement of

Ẽ =

{

n
∫

Ω

∣∣f (x)
∣∣p dx – λn ≤

n∑

j=1

∣∣f (xj)
∣∣p ≤ n

∫

Ω

∣∣f (x)
∣∣p dx + λn,∀f ∈ H∗

γ ,Ω

}

.
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For an arbitrary f ∈ H∗
γ ,Ω , there exists an x� ∈ Ω such that |f (x�)| = ‖f ‖L∞ = 1. Without

loss of generality, we assume that f (x�) = 1. Then, for x ∈ Ω∗, where Ω∗ := {x ∈ Ω , |x–x�| ≤
1
γ
}, we have

f
(
x�

)
– f (x) =

∣∣f (x) – f
(
x�

)∣∣ ≤ γ
∣∣x – x�

∣∣ ≤ 1.

It follows that

f (x) ≥ 1 – γ
∣∣x – x�

∣∣ ≥ 0 for x ∈ Ω∗

and
∫

Ω

∣∣f (x)
∣∣p dx ≥

∫

Ω∗

(
1 – γ

∣∣x – x�
∣∣)p dx ≥ 1

(p + 1)dγ d .

Therefore, the event

Ē =

{

n
(
1 – (p + 1)dγ dλ

)∫

Ω

∣∣f (x)
∣∣p dx ≤

n∑

j=1

∣∣f (xj)
∣∣p ≤ n

(
1 + (p + 1)dγ dλ

)∫

Ω

∣∣f (x)
∣∣p dx,

∀f ∈ H∗
γ ,Ω

}

contains the event Ẽ .
Thus, by Lemma 3.2 and Proposition 2.1, the inequalities (3.3) hold uniformly for all

functions in Hγ ,Ω with probability

Prob(Ē) ≥ Prob(Ẽ) = 1 – Prob(E)

≥ 1 – 2 exp

(
ln 2 +

4p
λ

+
(

8pγ

λ

)d

ln 3 –
3nλ2

24 + 4λ

)
. �

Corollary 3.4 Under the same conditions of Theorem 3.3, let yj = f (xj) + εj, j = 1, 2, . . . , n
be the sampling of f . Suppose that the random noise {εj} are independent with E(|εj|p) = σ p

and ||εj|p – σ p| ≤ M‖f ‖p
Lp for all εj. In addition, we assume that σp

‖f ‖p
Lp

≤ ρ � 1. Then, for
any 0 < λ < 21–p–ρ

21–p(p+1)dγ d+1 , the inequalities

n
(
21–p – ρ –

(
21–p(p + 1)dγ d + 1

)
λ
)∫

Ω

∣∣f (x)
∣∣p dx

≤
n∑

j=1

∣∣f (xj) + εj
∣∣p

≤ 2p–1n
(
1 + ρ +

(
(p + 1)dγ d + 1

)
λ
)∫

Ω

∣∣f (x)
∣∣p dx (3.4)

hold uniformly for all functions in Hγ ,Ω with probability at least

(
1 – 2 exp

(
–

nλ2

2M2

))(
1 – 2 exp

(
ln 2 +

4p
λ

+
(

8pγ

λ

)d

ln 3 –
3nλ2

24 + 4λ

))
.
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Proof One can check that every f ∈ Hγ ,Ω satisfies the inequalities of (3.4) if and only if
f /‖f ‖Lp does. Thus, we assume that ‖f ‖Lp = 1. By Hoeffding’s inequality [21], we have

Prob

{∣∣∣∣∣
1
n

n∑

j=1

|εj|p – σ p

∣∣∣∣∣
≥ λ

}

≤ 2 exp

(
–

nλ2

2M2

)
.

So, with probability 1 – 2 exp(– nλ2

2M2 ),

1
n

n∑

j=1

|εj|p ≤ σ p + λ‖f ‖p
Lp .

For 1 ≤ p < ∞, since tp is a convex function of t on [0, +∞), by Jensen’s inequality, we
have

∣∣f (xj) + εj
∣∣p ≤ (∣∣f (xj)

∣∣ + |εj|
)p ≤ 2p–1(∣∣f (xj)

∣∣p + |εj|p
)

and

∣∣f (xj) + εj
∣∣p ≥ (∣∣f (xj)

∣∣ – |εj|
)p ≥ 21–p∣∣f (xj)

∣∣p – |εj|p.

Hence, with the same probability, we have

n∑

j=1

∣∣f (xj) + εj
∣∣p ≤ 2p–1

n∑

j=1

∣∣f (xj)
∣∣p + 2p–1n

(
σ p + λ‖f ‖p

Lp

)

and

n∑

j=1

∣∣f (xj) + εj
∣∣p ≥ 21–p

n∑

j=1

∣∣f (xj)
∣∣p – n

(
σ p + λ‖f ‖p

Lp

)
.

Combining this with Theorem 3.3, we conclude that

n
(
21–p – ρ –

(
21–p(p + 1)dγ d + 1

)
λ
)∫

Ω

∣∣f (x)
∣∣p dx

≤
n∑

j=1

∣∣f (xj) + εj
∣∣p

≤ 2p–1n
(
1 + ρ +

(
(p + 1)dγ d + 1

)
λ
)∫

Ω

∣∣f (x)
∣∣p dx

holds with probability at least

(
1 – 2 exp

(
–

nλ2

2M2

))(
1 – 2 exp

(
ln 2 +

4p
λ

+
(

8pγ

λ

)d

ln 3 –
3nλ2

24 + 4λ

))
. �

We remark that ρ in Corollary 3.4 is connected with the signal-to-noise ratio (SNR) of
f , and the signal can be recovered from its noisy samples stably only if the noise level is
relatively small.
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4 Approximation algorithm and numerical examples
4.1 Approximation model and algorithm
In this subsection, we consider how to approximate f ∈ Hγ ,Ω from its noisy samples
{(xj, yj)}n

j=1, where yj = f (xj) + εj and εj is a random noise. The main idea is that we seek
an approximant f ∗ by solving the following optimization problem:

min
g∈V

n∑

i=1

(
g(xi) – yi

)2 + Γ (g), (4.1)

where the first term tries to fit f ∗(xi) to yi, and the second term is a regularization term.
For the function space V in (4.1), there are several choices, such as the Sobolev space,

reproducing kernel Hilbert space, polynomial space or a principal shift-invariant space
Sh(φ,Ω), which is defined by

Sh(φ,Ω) =
{∑

α∈I

u(α)φ
( ·

h
– α

)
: u(α) ∈R

}
,

with

I =
{
α ∈ Z

d : suppφ

( ·
h

– α

)
∩ Ω �= ∅

}
.

Here, function φ is called the generator of Sh(φ,Ω), and h > 0 is a scaling parameter that
controls the refinement of the space. The compact support of φ is preferred since it gener-
ates sparse matrices. In addition, Sh(φ,Ω) provides good approximation to smooth func-
tions if φ satisfies certain conditions (see e.g. [22–24]).

The regularization term in (4.1) is chosen such that the derivative of f ∗ is controlled
and the sampling noise can be reduced. For g =

∑
α∈I u(α)φ( ·

h – α), we take Γ (g) =
‖diag(λ)Wu‖�∞ , where W is the discrete wavelet frame transform, and diag(λ) is a diag-
onal matrix based on the vector λ which scales different wavelet channels. The advantage
of using wavelet frames here is that the model has fast algorithms, and wavelet frames can
be regarded as certain discretizations to the general differential operator [25]. Moreover,
with properly chosen parameters diag(λ), we have ‖Dg‖L∞(Ω) ∼ ‖diag(λ)Wu‖�∞ [26].

In summary, we determine the approximating function by minimizing

n∑

j=1

(∑

α∈I

u(α)φ
(

xj

h
– α

)
– yj

)2

+
∥∥diag(λ)Wu

∥∥
�∞ , (4.2)

where u are the coefficients to solve. Finally, let

f ∗ =
∑

α∈I

u∗(α)φ
( ·

h
– α

)

with u∗ being the minimizer of (4.2).
Next, we show how to numerically solve (4.2), which can be written in the following

matrix-vector form:

min
u∈Rm

‖Au – y‖2
�2 +

∥∥diag(λ)Wu
∥∥

�∞ , (4.3)
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where y = [y1, y2, . . . , yn]T , Ajk = φ(xj/h – αk), X = {x1, . . . , xn} and I = {α1, . . . ,αm}. This is
equivalent to

min
u,d

‖Au – f‖2
�2 +

∥∥diag(λ)d
∥∥

�∞ subject to d = Wu. (4.4)

Then the alternating direction method of multipliers (ADMM) method [12, 25] can be
applied to solve (4.4) as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ui+1 = arg minu ‖Au – f‖2
�2

+ μ

2 ‖Wu – di + bi‖2
�2

, (4.5)

di+1 = arg mind ‖diag(λ)d‖�∞ + μ

2 ‖d – Wui+1 – bi‖2
�2

, (4.6)

bi+1 = bi + Wui+1 – di+1, (4.7)

with initial guesses u0, d0, b0 and a parameter μ.
The quadratic problem (4.5) has the first order optimality condition

(
2AT A + μI

)
u = 2AT f + μWT(

di – bi). (4.8)

This is a sparse and positive definite linear system, and we use the conjugate gradient (CG)
method to solve the problem. The solution to (4.6) is equivalent to the proximal operator
of ‖ · ‖�∞ , i.e.,

prox λ
μ ‖·‖�∞

(
Wui+1 + bi) = arg min

d
‖d‖�∞ +

μ

2λ

∥∥d –
(
Wui+1 + bi)∥∥2

�2
.

By the property of the Moreau decomposition [12],

prox λ
μ ‖·‖�∞

(
Wui+1 + bi) = Wui+1 + bi – projB1(0, λ

μ )
(
Wui+1 + bi),

where projB1(0, λ
μ ) is the projection to the �1-norm ball given by

projB1(0, λ
μ )(t) = arg min

‖v‖�1 ≤ λ
μ

‖v – t‖2
�2 . (4.9)

The exact solution of (4.9) can be computed at most O(N) time [27], where N is the di-
mension of the space.

Note that the numerical computation of WT (di – bi) in (4.8) is done by fast wavelet algo-
rithm, similar to (4.6) and (4.7); see [25, 28] for detailed discussions. Finally, the proposed
algorithm is summarized in Algorithm 1.

4.2 Numerical examples and discussions
In this subsection, we show the efficiency of the proposed approach (4.2) by approximating
two functions in Hγ ,Ω from some noisy samples.

In the first example, we test to approximate the well-known Franke function [29], which
is defined as follows:

franke(x1, x2) =
3
4

e–((9x1–2)2+(9x2–2)2)/4 +
3
4

e–((9x1+1)2)/49–(9x2+1)/10

+
1
2

e–((9x1–7)2+(9x2–3)2)/4 –
1
5

e–(9x1–4)2–(9x2–7)2
.
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Algorithm 1 �∞-regularized least squares algorithm
Initialize: Set initial guesses d0, u0 and b0. Choose an appropriate set of parameters μ

and λ. Given a tolerance ε > 0. Set i = 0.
while ‖di – Wui‖�2 ≥ ε do

ui+1 = (2AT A + μI)–1(2AT f + μWT (di – bi))
di+1 = Wui+1 + bi – projB1(0, λ

μ )(Wui+1 + bi)
bi+1 = bi + Wui+1 – di+1

i = i + 1
end while

Figure 1 Approximation of 1000 samples from the Franke function

We randomly sample {xj}1000
j=1 from Ω = (0, 1)2, and take the sampling values yj =

franke(xj)+εj, where εj is a random variable drawn from the normal distribution N(0, 0.01).
Set the scaling parameter h = 1/180, and the tensor product of the cubic spline

B4(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3/6 if 0 ≤ x < 1,

(–3x3 + 12x2 – 12x + 4)/6 if 1 ≤ x < 2,

(3x3 – 24x2 + 60x – 44)/6 if 2 ≤ x < 3,

(4 – x)3/6 if 3 ≤ x < 4,

0 else,

as generator φ, with its associated wavelet tight frame masks h1 = [1/16, –1/4, 3/8, –1/4,
1/16], h2 = [–1/8, 1/4, 0, –1/4, 1/8], h3 = [

√
6/16, 0, –

√
6/8, 0,

√
6/16] and h4 = [–1/8, –1/4,

0, 1/4, 1/8].
Figure 1(a) illustrates the approximation result obtained by Algorithm 1, whereas

Fig. 1(b) shows the original Franke function. It can be seen that the proposed model (4.2)
is able to approximate function well.

In the second example, we test to approximate

f (x1, x2) = sin(2πx1)2 cos(2πx2). (4.10)

Using a similar method to the first example, we randomly sample {xj}1000
j=1 from Ω = (0, 1)2

and take the sampling values yj = f (xj) + εj with εj drawn from N(0, 0.01). We use the
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Figure 2 Approximation of 1000 samples from f (x1, x2) (4.10)

same generator φ and parameter h. In Fig. 2(a) the approximation is depicted, whereas
in Fig. 2(b) the original function f (x1, x2) is depicted.

5 Conclusion and future work
In this paper, we investigated random sampling of functions with bounded derivatives. We
considered the probability that functions in Hγ ,Ω can be recovered from noisy samples
stably and how they can be approximated.

For the stability problem, we first estimated the capacity of Hγ ,Ω . By using the uniform
law of large numbers, we concluded that functions in Hγ ,Ω can be recovered stably with
overwhelming probability when the sampling noise satisfies some mild conditions. Then
we proposed an �∞-regularized least squares model in order to control the fluctuation of
functions and suppress noise. The ADMM algorithm was applied to solve the optimization
model. Finally, experiments on some function approximation tasks indicate the efficiency
of the proposed approach.

In future work, it is of interest to present an error analysis for different kinds of denoising
schemes when they are applied to reconstructing functions from random sampling.
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