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1 Introduction
We study the existence of nontrivial solutions for the following integral boundary value

problem involving Riemann-Liouville fractional derivatives:

D D&, u(t) = f(t, u(t), u (), -D%, u(t)), O<t<l,
u©0) = (0)=0, u(1)= [ g®u'(t)dt, (1.1)
Dg,u(0) = D&H'u(0) =0,  D§u(l) = f, ()DL u(d) dt,

where «, 8 € (2,3] are two real numbers, D, , Dg , are the Riemann-Liouville fractional
derivatives, and f € C([0,1] x R3,R) (R = (-00, +00)). Moreover, the functions g, / are
defined on [0, 1] and satisfy the condition:

(HO) g,/ >0 with [ g(t)t*2dt € [0,1), and [, h(£)tP~>dt € [0,1).

Fractional-order problems arise naturally in engineering and scientific disciplines such
as physics, biophysics, chemistry, control theory, signal and image processing, and aero-
dynamics; we refer the reader to [1-3]. For example, in [4, 5] the authors introduced a
fractional-order model of infection of CD4* T-cells, and the system takes the following

form:

D*\(T) =s—KVT —dT +bI,
D () = KVT - (b + 8)I,
D*(I) = N8I —cV,
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where D% are fractional derivatives, i = 1,2, 3. Many results on the existence and multiplic-
ity of solutions (or positive solutions) of nonlinear fractional differential equations can be
found for example in [6—37] and the references therein. In [6-11, 19, 20, 26], the authors
used the fixed point index theory to study the existence of (positive) solutions for various
boundary value problems of fractional differential equations, for example, Bai in [6] ob-
tained positive solutions for the nonlocal fractional-order differential equation boundary
value problem

Dg,u(t)+f(t,u(t) =0, O0<t<l,
u(0)=0,  Bu(n) =u(l),

where 1 <a <2,0< Bn*!<1,0<n<1,fis continuous on [0,1] x R* and satisfies the

conditions

(H)p1 liurgggff(zu) > A, liurzflolopf(zu) <X1, uniformlyont € [0,1],
and

(H)pa lggljgoff(zu) > A, li:lsolipf(tl,’tu) <X1, uniformlyont € [0,1],

where A; is the first eigenvalue corresponding of the relevant linear operator. These con-
ditions can also be found in some integer-order differential equations; we refer the reader
to [38—52] and the references therein. Integral boundary conditions arise in thermal con-
duction problems, semiconductor problems and hydrodynamic problems (see [11]) and
we refer the reader to [10, 11, 18, 19, 26, 28-30, 33, 34, 39, 43, 50—52] and the references
therein. In [26] the authors studied the integral boundary value problem of the nonlinear
Hadamard fractional differential equation

Dp(gp(Du(t)) =f(t,u(t)), 1<t<e,
u(l)=u/(1) =u'(e) = 0, D*u(1) =0, gpp(D‘)‘u(e)) = /’Lfle wp(D“u(t))%,

where « € (2,3], B € (1,2] and D%, D? are Hadamard fractional derivatives.

Many papers in the literature also considered sign-changing nonlinearity problems; see
[4, 5, 7-9, 13-19, 22-30, 34, 35, 38—52] and the references therein. In [15], the authors
studied the fractional differential equation with a singular decreasing nonlinearity and a
p-Laplacian operator:

-D§, (¢p(-Dg,2))(x) = f(x,2(x)), O<x<1,
20)=0,  Djz(0)=D}z(1)=0,  z(1) = [, z(x)dx ().

Using a double iterative technique, they showed that the above problem has a unique pos-
itive solution, and from an iterative technique, they established an appropriate sequence,
which converges uniformly to the unique positive solution.

In this paper we use topological degree theory to consider the existence of nontrivial
solutions for (1.1). The novelty is twofold: (1) the nonlinearity depends on the unknown
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function u and its integer-order, fractional-order derivatives u’, —D§, u, (2) the nonlinearity
can be unbounded on [0, 1] x R3, which improves results on semipositone problems (i.e.,
boundedness from below); see [5, 21, 42, 43, 45].

2 Preliminaries
We present some definitions and notations from fractional calculus theory involving

Riemann-Liouville fractional derivatives; for details see the books [1-3].

Definition 2.1 (see [1-3]) The Riemann-Liouville fractional derivative of order « > 0 of

a continuous function f : (0, +00) — (—00, +00) is given by

o e L (AN [ e
D30 oo () [ e

where n = [o] + 1, [o] denotes the integer part of number «, provided that the right side is

pointwise defined on (0, +00).

Definition 2.2 (see [1-3]) The Riemann-Liouville fractional integral of order & > 0 of a

function f : (0, +00) — (—00, +00) is given by

1

Ig+f(t) = m

t
[ e-siroas
0
provided that the right side is pointwise defined on (0, +00).

Lemma 2.3 (see [5, Lemma 2.3]) Let « > 0, then, for u,D§, u € C(0,1) N L(0,1), we have
I, Dy, u(t) = u(t) + % b et et N, forsomec; €R,i=1,2,...,N,

where N is the smallest integer greater than or equal to o.

Lemma 2.4 Suppose that (HO) holds. If let —-D{, u := v, then the fractional boundary value
problem

-D§, u(t) =v(t), O0<t<l,

X (2.1)
w0 =uw(0)=0,  w()= [} gt)(®)ds,

can be transformed into its equivalent Hammerstein integral equation, which takes the

form

1
u(t):/ G1(t,8)v(s) ds, (2.2)
0

where

o tot—l 1 -
Gi(t,s) = Gi(t,s) + —/ (£)Ga(t, s) dt,
! ! 1- [} gyte-2dt Jo g



Fu et al. Journal of Inequalities and Applications (2019) 2019:104

1 ta—l(l _ S)a—2 _ (t _ S)a_l,
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a1 (t, S) =

o O

1 ta—Z(l _ S)a—z _ (t _ S)“_z, 0
Gz(t s) = F(a) 21 _ g 0

IA
(%)
IA
A N
IA
=

IA
A N
IA
“n
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Proof From Lemma 2.3 we have
u(t) = —I§ v(t) + 1t + ot + c3t*3, forc;eR,i=1,2,3.

Note that #(0) = #/(0) = 0, and we obtain ¢, = ¢c3 = 0. Then we have

t (t _ S)oz—l tot—l

w(t) =I5 v(8) + 1t = — /0 s

Therefore, from the condition /(1) = fol g(&)u/(¢) dt, we have the equation

f-ge __[ L(t-s)? Lo
_/(; @ v(s)ds + ¢ = /0 g(t)/o T v(s)dsdt+c1f0 g2 dt.

Solving this, we have

(1 )a 2 (t— )a 2
1- fg(t)t“dt[/ I («) S)ds‘/ t)/ @ e dsdt]

(- S)a - ' L(t—s)e2
ds - dtds |.
) g(r)ta Zdt[f ws)ds fo ) f Ty s]

As a result, we obtain

t (t _ S)a—l 1 1 ta—l(l _S)a-z
= — d d
)=~ [ So s — e di |, —r@ e

ta—l 1 1 (t _ S)a—z
-—— dtd
l—flgtt"‘2dt/o g(t)/s rlay W4

I'(a) I'(a)

! 1ge-1(1 — g)a-2
d
' 1- fol g)r2dt ./o (@) v(s)ds

-1 1 g
C1- [lee2at dtd
l—folg(t)f“’2 dt/o g(t)/; @) v(s)dtds
! ~ ta—l 1 1 _

= /0 Gi(t,s)v(s)ds + W /O fo g(t)Ga(t,s) dtv(s)ds

1
= / Gi(t,s)v(s) ds.
0

I'(a)

This completes the proof.

o— 1 to— o 1 00— a—
L(t—s)*! / t“1(1-5s) 2v(s)ds—/ i § ) 21/
0 0

(s)ds
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For convenience, let

0
GZ(tr S) = &Gl(t; S)

I -2

1
=(a—1)|:éz(t,s)+ + / g(t)éz(t,s)dt}, for t,s € [0, 1].
0

1- [ g(t)ee-2dt

Lemma 2.5 Suppose that (HO) holds. If «, B, f are as in (1.1), then the fractional boundary
value problem (1.1) is equivalent to the Hammerstein integral equation

1 1 1
v(t)= | Hi(, S)f(s,/ Gy (s, ‘L')V(T)dl’,/ Ga(s, ‘L')V(T)dl',v(s)) ds, (2.4)
0 0 0
where
~ th-1 1 _
Hi(¢,s) =H1(t,S) + W[) h(t)H,(t, s) dt,
Hy(t,s) = P 1-9) - (-9, 0<s<t<1,
1, 8) = F(ﬂ) tﬂ‘l(l—s)ﬂ‘2, 0<t<s<l1, (2.5)

1 | 2Q-5f2-(@t-5P2 0
Hy(t,s) = F(,B) #-2(1 — g2, 0

IA
©n
IA
~
A

IA
=~
IA
[}
IA
—_ =

Proof Substituting —Dj, u = v into (1.1), we have

{—D@v(t) =f(t, [y Gi(t,s)(s)ds, [, Ga(t,s)v(s)ds, v(D)), 0<t<], 26

w0)=v(0)=0,  V(1)= [, h(t)(t)dt.
Using /(t) to replace f(t, -, -), and from Lemma 2.3 we obtain
v(t) = —IL F() + c1t? ' + cotP % 4 c5tP 73, forc € R,i=1,2,3.

Note that v(0) = v/(0) = 0 implies ¢, = ¢3 = 0. Hence,
Pt—s)P1x
— | ———f(s)ds+c1tP .
|| “ra T e

From the condition V(1) = fol h()V'(t) dt, we get

1 o B2 )
[ SRy e [ [ R T [

Solving this equation, we obtain

~ / (1-s)P2
- [l u@p-2de Jo  T(B)

1
dsd
- fh(ttﬁzdt/ )/ F()f()St

F(s)ds

C1
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(1—S)‘32
d
T1- foh(ttﬂzdt/ fods

1
s)dtd
- foh(t)tf‘zdt./ )/ F() Las.

Consequently, we have

R 1 A
V(t)__/o “r O /lh”ﬁ—zdt/o re O

tﬁ—l 1 (t— ),B -2
-— | h )dtd.
1- [ ) tﬁfzdt/o O] Fe NACE

B-1_ B-1(1 _ \B-2 B-1(1 _ \B-2
:-/( 9 f()d /&f()d f&f()ds
0 0

rp) rp)

1 P11 -s)f 2
d
- fol h(t)th-2 dt /0 r'B) f(s)ds

B-1 1 YRVER
T romag ) MO TrE /@
1- fOI h(t)tﬂ_z dt/o (t)l F(ﬂ) f(S) tas

1 _ p-1 1,1 ~ _
= Hi(t,s)f(s)ds + —/ / h(t)H, (¢, s) dtf (s) ds
/o 1) 1- [} h(@)eF=2dt Jo Jo 2 f
1
:/ Hi(¢,5)f(s) ds.
0
This completes the proof. O

Lemma 2.6 The functions G;, H; (i = 1,2) satisfy the properties:
(1) Gi(t,S),Hl(t,S) = OfOI” t,s€e [01 1] X [01 1],
(if) t5—1¢5 (s) < Hi(t,s) < ¢p(s) fort,s € [0,1] x [0, 1], where

s(1 S)ﬂ -2 (Y n@Hy () dt
¢ (S) - ﬂ) 1- fl ﬂg zd se [01 1]'

Proof We only prove (ii). From [20] we have

it

s(1—5)P2 < H(t,s) <

1"(1/3) < ,8) < F?ﬂ)s(l -2, fort,se0,1] x [0,1].

Combining this with (2.5), we easily obtain the inequalities in (ii). This completes the
proof. d

Let E:= C[0,1], ||[v|| := maxe[o,1] |V(¢)| (herev € E), P:={v € E: v(t) > 0,Vt € [0,1]}. Then
(E, |l - I|) is a real Banach space, and P is a cone on E. Now, we define an operator A : E — E
as follows:

1 1 1
(Av)(2) ::/ Hl(t,s)f(s,/ Gl(s,t)v(t)dr,/ Gz(s,t)v(t)dr,v(s)) ds, (2.7)
0 0 0

for all v € E. Moreover, we note that the continuity of Gi, Gy, H; and f implies that A :
E — E is a completely continuous operator. Note that the existence of solutions of (2.6) is
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equivalent to that of fixed points of A, and then from (1.1) and (2.6) (-D{, u = v), we see
that if there exists a y € E such that Ay =y, then ¥ is a solution for (1.1). Therefore, in what
follows we study the existence of fixed points of A. For this purpose we need to define a
linear operator L, ;. : E — E as follows:

1
(Lapet) ) == / Hapelt,9V(s)ds, Vv e, 28)
0

where H,,(t,5) := aHs(t, s) + bH,(t,s) + cH1(t,s), Vt,s € [0,1], with @, b,c > 0 and a® + b* +
c? #0; here

1 1
Haltys) = f Hi(61)Go(r,s)dr,  Haltys) = f Hi(t1)Gi(r,9)dT, Va5 € [0,1].
0 0

Moreover, we know that the continuity of H; (i = 1,2, 3) implies that L, ;. is a completely
continuous operator and L, .(P) C P. Let r(L,.) denote the spectral radius of L, ., and
from Gelfand’s theorem we see that r(L, ) > 0 (the proof is standard; see [20, Lemma 5]).
Let Py = {v € P: v(t) > tP~||v|, V¥t € [0,1]}. Then if we define an operator (A;v)(t) =
fol H;i(¢,5)v(s) ds, where H; is defined by (2.5), and from Lemma 2.6(ii) we have
A1(P) C Py. (2.9)

Indeed, if v € P, Lemma 2.6(ii) implies that

/01 t’s_lqsﬁ(s)v(s) ds < /OlHl(t,s)v(s) ds < /01 @p(s)v(s)ds,
and
(A)(E) = P Ay,
Lemma 2.7 (see [53, Theorem 19.3]) Let P be a reproducing cone in a real Banach space

E and let L : E — E be a compact linear operator with L(P) C P. Let r(L) be the spectral
radius of L. If r(L) > 0, then there exists ¢ € P\ {0} such that Ly = r(L)gp.

Therefore, from Lemma 2.7 we see that there exists ¢, ;. € P\ {0} such that
Lap,cPabe =T(Lapc)Pape- (2.10)
In what follows, we prove that
Papc € Po. (2.11)

Indeed, from (2.10) we have

1 1 !
= —— (L t) = H,,.(t, d.
(pa,b,c() V(La,b,c)( a,b,c(pu,b,c)() r(La,b,c)/O‘ a,b,c( s)(pa,b,c(s) S
1

1
" rLap )/0 [aH5(t,5) + bHa(t,s) + cHi(t,5)|@anc(s)ds, te€[0,1].
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Using Lemma 2.6(ii) and the definitions of H; (i = 1,2, 3), we have

1 1 1
”(Li,b,c)/o |:a/0 #5(1)Gi(z,s)dt +h/0 Pp(1)Ga(t,s)dT +c¢ﬂ(5)]

X Qab,c(8)ds

||§0a,b,c|| =<

and

1 1 1
Pape(t) > / [a / P ps(1)Gi(T,5)dT + b / P 5(7)Ga(z,5) dt
0 0 0

r (La,h,c)

+ Ctﬁ_ld)ﬁ (S)] (pa,b,c(s) ds
> P M Qapell-
Therefore, (2.11) is true.

Lemma 2.8 (see [54]) Let E be a Banach space and §2 a bounded open set in E. Suppose
that A : 2 — E is a continuous compact operator. If there exists ug € E \ {0} such that

u—Au+# uuy, Yueo2,u>0,
then the topological degree deg(I — A, £2,0) = 0.

Lemma 2.9 (see [54]) Let E be a Banach space and $2 a bounded open set in E with 0 € 2.
Suppose that A : 2 — E is a continuous compact operator. If

Au+pu, Yueodf2,u>1,
then the topological degree deg(I — A, £2,0) = 1.

3 Main results
Let ;, Bi, v > 0 (i = 1,2) with o + B} + ¥ #0, a3 + B3 + v #0,and " (L, p.ys) = Xy iy
for i = 1,2. Now, we list our assumptions for f as follows:
(H1) feC([0,1] x R3,R).
(H2) There exist two nonnegative functions b(¢), c(t) € C[0, 1] with ¢(¢) £ 0 and a
function K (x1,%9,%3) € C[R3 R*] such that

f(t’xlxx21x3) > _b(t) - C(t)[<(xl’x2’x3): in € R; te [0) 1]; i= 1’ 2: 3.

. K(x1,%2,%3) _
(H3) liMMo, sy o1y e bsal—>+00 Gyt Brims oo fal = O

. £%1.%2, ‘
(H4) Timinfy, jy; 148, 1w+ s +00 % > Ay, 1,1 uniformly for ¢ € [0, 1].

: [f (£,%1,%2,%3)]
(H5) 1 SUPq, 1y 11 gy ey ks 0 311+ B o raia]

We now present our main result.

< Aay,Ba,ye» uniformly for ¢ € [0,1].

Theorem 3.1 Suppose that (HO)—(H5) hold. Then (1.1) has at least one nontrivial solution.
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Proof From (H4) there exist g9 > 0 and X, > 0 such that

f(t1x11x21x3) = ()\-al,ﬁl,yl + 80)(0{1|.?C1| + ﬁ1|x2| + V1|x3|),

Vi € [0,1], o [x1] + Bilxal + y1lxs] > Xo. (3.1)
For any given ¢ with &g — ||c||¢ > 0, and from (H3) there exists X; > X, such that
K(x1,%2,%3) < & (e lx| + Bulowal + 1lxsl),  Yaulwr] + Bilaa] + yilas| > X (3.2)
It follows from (H2), (3.1), (3.2) that

S (& %1,%2,%3) = (hay g1 + €0) (1 1%1] + Brlxal + 1 lx3]) — b(E) — c(£)K (%1, %, %3)
> (hay gy + €0) (a1 lx1] + Bulxa] + y1lx3])
= b() — ec(t)(ar|x1] + B1lxa] + y1lx3])
> (Ray prn + 0 = ec(®)) (o] + Bulxal + yilasl) = b(D)
> (hayprn + €0 = ellell) (] + Brlaal + yils))
=I&ll,  Vailxi] + Bilxa| + yilws] > Xi. (3.3)
Let Cx; = (Aayprn + €0 — ellcl)X1 + MaXo<s<ioqfe |+ lwal o lasl <Xy U (E%1,%2,%3)], K* =
MAXq, |5, [+ 81 o +71 3| <Xy K (1, %2,3). Then it easy to see that

St x1,%2,%3) = (Aayprn + €0 —€llell) (x| + Bulxal + y1las])

- b(t) - CXI! v(t;xI;xZ;xB) € [01 1] X Rs‘ (34')

Note that ¢ can be chosen arbitrarily small, and we let

’

* 1
R> max{ (151l + llcllK* + Cx,) Jy dn(s)ds
1—eMa, i licll

1
(hay prn + 280 = 2llclle) 1B + Il K* + Cx,) [y buls) ds}
&0 — ||C||8 - 8||C||Mot1,ﬂ1,]/1 ()‘-011,;31,)/1 + 2‘90 - 2”6”8) ’

where Mo, 5,1 = [y $u()en fiy Gi(s,T)dt + By [y Gas,7)dT +y1)ds, and ¢y(s) = A

ere T(6)
Jo R(O)H> () dt
1-[y kB2 ar’ s€0,1].
Now we prove that
V—AV ¥ UPa, g1, YV EIBr, >0, (3.5)

where ¢4, g,,,, is the positive eigenfunction of Ly, g,,,, corresponding to the eigenvalue

Aoy Bryrs and then Parpry = *arprnLarprn Porprn and Parprn € Po by (2.11).
Suppose (3.5) is not true. Then there exists vy € dBg and 1 > 0 such that

Vo _AVO = MO‘Pal,ﬂl,yl . (36)
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Let
1 1 1
V() = /(; H(t,s) |:b(s) + c(s)I((/O Gl(s,r)vo(r)dr,/o Ga(s, r)vo(r)dt,vo(s))
+ Cxl] ds, Vte]l0,1]. (3.7)
Then we have

1 1
v(t) 5/ Hl(t,s)|:b(s)+c(s)[8(a1 / Gi(s,t)vo(T)dT
0 0

1
+,31/0 Ga(s, T)vo(T)dT

+y1|vo(s)|> +K*:| +Cxlj|ds
1 1
5/0 tﬁ_1¢h(s)|:b(s)+c(s)|:8<a1/O G1(S,T)’V0(T)’df
1
+,61f Gz(s,l')|vo(f)|df+V1|V0(5)|) +K*] +CX1]dS
0
1 1
Stﬁ_l/o ¢h(5)[||b|| + IICII[S(OH/O Gi(s,7)dr
1
+ﬂ1/ Gz(s,r)dHVl)IIVoII +K*] +Cx1]d5
0
1
< ¢ (I1Bll + llc| K™ + Cxy) f Puls)ds
0
1 1 1
+ P el /0 ¢>h(s><a1 fo Gi(s, 1) dr + /0 Gz(s,wdrm)nwllds

1
< (IB] + el K" + Cx,) [0 o4() ds

1 1 1
+ £||c||R/ on(s) <a1 / Gi(s,t)dt + ,31/ Gay(s,t)dt + yl) ds. (3.8)
0 0 0

Consequently, we have

1
VI < (151l + llcll K* + Cxl)/O on(s)ds
1 1 1
+8||C||Rf d)h(s)(ozl/ Gi(s,t)dt +,31/ Ga(s,7)dt + y1> ds
0 0 0
<R. (3.9)

Note that V € Py, and then from (2.9), ¢4, ,,,1 € Po, and

Vvo(2) + V() = Avo(t) + [LoPay 1,1 (E) + V(E)

1 1 1
- / Hl(t,s)[f<s, / Gi(s, T)volc) dr, / Gz(s,mo(r)dr,m(s))
0

0 0
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1 1
+b(s) + c(s)]((/ Gy(s, r)vo(t)dr,/ Ga(s, T)vo(T) dr,vo(s)> + CX1:| ds
0 0

+ oPar,B1,1 (t)r

we have
Vo +7V € Py, (3.10)
using the fact that
1 1
f(s,/ Gl(s,r)vo(t)dr,/ Gz(S,‘L')Vo(‘L')d‘L',Vo(S)> + b(s)
0 0
1 1
+ c(s)K(/ Gl(s,t)vo(r)dt,/ Gz(s,r)vo(t)dr,vo(s)> +Cy, €P.
0 0
Therefore, (2.10), (3.4) and (3.7) enable us to obtain
Avo(t) +V(t)
1 1 1
= / Hi (¢, s)f(s,/ Gi(s, t)vo(r)dt,/ Ga(s, T)vo(T) dT, vo(s)) ds
0 0 0
1 1 1
+/0 Hl(t,s)|:b(s) +c(s)1((/0 Gl(s,r)vo(t)dr,/o Gz(s,r)vo(r)dr,vo(s))
+ Cxl] ds

1
/ Gi(s, T)vo(T)dT
0

1
z ()‘0‘17/31,1/1 *t&o _5||C||)/0 Hi(t,s) |:Ol1

1
+ﬁ1/0 Ga(s, T)vo(t)dT

+V1|V0(S)|i|d5

1
—/ Hl(t,s)[b(s)+CX1]ds

0

1 1 1

Hi(t,s)| b K G (s, drt, Gy(s, dt,
. /0 X s)[ (5) + c(s) ( /O (s, )vo(r) dr /0 (5, 7)vo(t) rvO(s))
+Cxl]ds

1
f Gi(s, T)vo(T)dT
0

1
= ()"al,ﬂl,yl + &0 — 8”6”) ‘/0 Hl(t)s) [al

1
+,31/(; Ga(s, T)vo(t)dT

+ y1|vo(s)|:| ds

> (Aappr + €0 —£llcll)

1 1
al/o Hl(t,s)/o Gi(s,T)vo(t)dr ds

1 1 1
‘B f Hi(6,9) f Gals T)vole) dr ds + 1, f Hut,9)vols) ds
0 0 0

> (Aappop + €0 —ellcll)

1 1
alj(; Hg(t,t)vo(t)dt+,31/0 Hy(t, T)vo(T)dT
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1
in f Hy(t,5)vols) ds
0

1
= (Aarpin + €0 —€llcll) V Hg, g1 (8:5)vo(s) ds
> (Raypun + 20 —lcl / oo (9)Vos) s (3.11)

From the definition of operator Lg, g, ,,, we get

(hanun + 60— liclle / o (6 5)vol6) ds
= Aoy, B / B (6 s vo(s) +V(s )) ds + (80 —|Iclle f w1811 (& S)Vo(s) ds
Aoy i f w1, pu (& S)V(s) ds
= e Lanun (0 + )0 + (20  lcle / oo (65 (v0(6) + 7(s)) ds
~ (e + 0 llclle) /0 Hay oo (65)706) ds. (312)

From (3.10), we get vo(£) +V(£) > t#71||lvo + V|| > tP~1(||vo | - I[V]l), £ € [0, 1], and hence from
(3.8) we have

1
(60 ele) [ Huygun (690009 +76)
0
1
- ()Wl:ﬁmq +&0— ||C||<9)/ Hg, g (8, 5)V(s) ds
0
1
= (80 - ||C||8) (R_ ”V”)/ Sﬂ_lHO/lyﬁlyn (¢,5)ds - ()“011;51»)’1 &0 — ”0“‘9)
0
1 1
X [(Hb” + [lellK* + Cxl)/ Pu(s)ds +5||C||RMa1,ﬂ1,y1]/ S Hy, gy, (8,5) ds
0 0

>0, (3.13)
Combining (3.11), (3.12) and (3.13), and we obtain

Avo(8) + V() = Aay pry1 Lay,prn (Vo + D)), t€[0,1]. (3.14)
Therefore, using (3.6) and (3.14) we have

Vo +V=AVo + LoPay prn TV = Ay iy Loy i (vo+7) + HoPay,pry1 = HoPay,prp -

Define

W =sup{i >0:vo + V> U@y 9 )

Page 12 of 16
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It is easy to see that u* > uo and vo +V > u*@y, gy, From @u, 8,1 = Aayprn Loy X
©ay,p1,y1» We obtain

* _ *
)‘al,ﬁbyll’al,ﬁl,n (vo +T;) z )‘abﬂlynl’alyﬂlyn/‘ Pay,pry = M Pay,pryr
Hence
-~ *
Vot V= )\"ll:ﬂlx)/ll’al:lslx)’l (vo + T;) + U0Pay prn = (/’LO Tu )%tlyﬁl,n'

which contradicts the definition of u*. Therefore, (3.5) holds, and from Lemma 2.8 we
obtain

deg(I — A, Bg,0) = 0. (3.15)
From (H5) there exist 0 < &1 < Ag,,g,,, and 0 <7 < R such that
V(tl X1,%2, x?)){ = ()"Otg,ﬂz,yg - 81)(a2|x1| + ﬂ2|x2| + V2|x3|),

forall x; e R, i=1,2,3, ¢t € [0,1] with 0 < ay|x1] + Ba]|x2| + y2lx3] < r. Consequently, we
obtain

1 1
(AV)(O)] = Cra s — £1) / Hl(t,s)(az f Gu(s, T)v(r) d
0 0

1
+,82/0 Ga(s, T)v(r)dt

+ y2|v(s)’) ds
1 1
< (apom — 81)/ Hi(t,s) (052/ G (s, T)|V(T){ dt
0 0
1
+ ,32/ Gg(s,r)|v(1)| dr + y2|v(s)|> ds
0
1
= (hag,poyn = €1) / Hay o1, (£:9)| V()| ds
0
= (as oy — €1) (Lan o V1) (0),  VE€[0,1],v € E, |lv]| <.
Now for this r, we prove that
Av#iv, VYvedB,r> 1. (3.16)

Assume the contrary. Then there exist vy € 3B, and A¢ > 1 such that Avy = Agvy. Let w(t) =
[vo(£)]. Then w € 0B, N P and

1
o= )L_()‘azyﬂz'l/z - Sl)Laz,ﬂz,yzw = ()‘azyﬂz,yz - ‘91)L0t2,f32,)/2w'
0

n

to oy @ fOr n=1,2,.... As aresult, we have

By induction, we have < (Aq, gy, — €1)"L

ol < Cappoys =€) | L, gy 10 | 1]l

Page 13 0of 16
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and thus

1< ()‘azxﬁz,n —&1)" ”Lgtz,ﬁzvl’z ”

Therefore, by Gelfand’s theorem, we have

()\‘D‘2)/32vy2 - gl)r(Laz'ﬂz,Vz) = (}‘azvﬁzvyz - 81)n1LrI;o / ” Zz:ﬁz,yz ” =1L

This contradicts

(ar oy = €M Lagprn) = 1= 17 (Lay,p,1,) < 1.
Thus (3.16) holds and from Lemma 2.9 we have

deg(I - A,B,,0) = 1. (3.17)
Now (3.15) and (3.17) imply that

deg(I — A, Bg \ B,,0) = deg(I — A, Bg,0) — deg(I — A, B,,0) = —1.

Therefore the operator A has at least one fixed point in By \ B,. Equivalently, (1.1) has at
least one nontrivial solution. This completes the proof. d
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