RESEARCH

Open Access

Positive periodic solution for *p*-Laplacian neutral damped Duffing equation with strong singularities of attractive and repulsive type

Shaowen Yao¹ and Xiaozhong Zhang^{1*}

*Correspondence: xiaozhong99@126.com ¹ School of Mathematics and Information Science, Henan Polytechnic University, Jiaozuo, China

Abstract

This paper is devoted to investigating the following *p*-Laplacian neutral damped Duffing equation with singularity:

 $(\phi_{p}(u(t) - cu(t - \tau))')' + Pu'(t) + g(u(t)) = e(t),$

where g has a singularity at u = 0. Applying the Manásevich–Mawhin theorem on a continuous case of topological degree, we obtain the existence of a positive periodic solution for this equation.

MSC: 34B16; 34B18; 34C25

Keywords: Positive periodic solution; Neutral operator; Attractive and repulsive singularities; Duffing equation

1 Introduction

In recent years, there has been a fairly great amount of work on periodic solutions for Duffing equations with a singularity (see [1-5, 7-11] and the references cited therein), in account of its applications in applied sciences. For example, the Brillouin electron beam focusing problem [2, 8] is to prove the existence of a positive π -periodic solutions of

$$u^{\prime\prime}+a(1+\cos 2t)u=\frac{1}{u},$$

where *a* is a positive constant.

In 2012, Cheng and Ren [1] discussed the existence and multiplicity of positive periodic solutions for the following Duffing equation:

$$u''(t) + g(u(t)) = p(t), \tag{1.1}$$

where the nonlinear term *g* has a strong singularity of repulsive type at u = 0 and satisfies super-linearity condition at $u = +\infty$. It is concluded that there exist infinitely many positive periodic solutions for Eq. (1.1) by applications of the generalized Poincaré–Birkhoff twist theorem. Afterwards, Wang and Ma [11] investigated Eq. (1.1) with *g* has a strong

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

singularity of repulsive type at u = 0 and a semi-linearity condition at $x = +\infty$, using the Poincaré–Birkhoff theorem, the authors proved the existence of infinitely many 2π -periodic solutions.

Proceeding from [1, 2, 8, 11], in this paper, we further consider the following *p*-Laplacian neutral Duffing equation with singularity:

$$\left(\phi_p(u(t) - cu(t - \tau))'\right)' + Pu'(t) + g(u(t)) = e(t), \tag{1.2}$$

where $p \ge 2$, $\varphi_p(u) = |u|^{p-2}u$ for $u \ne 0$ and $\varphi_p(0) = 0$, c is a constant and $|c| \ne 1$, P, τ are constants and $0 \le \tau < T$; $e \in L^2(\mathbb{R})$ is a T-periodic function; $g : (0, +\infty) \to \mathbb{R}$ is a L^2 -Carathéodory function, the nonlinear term g of (1.2) has a singularity at u = 0, i.e., we have a strong singularity of repulsive type (g_1) :

$$\lim_{u\to 0^+}g(u)=-\infty, \quad \text{and} \quad \lim_{u\to 0^+}\int_1^u g(s)\,ds=+\infty;$$

or a strong singularity of attractive type (g_2) :

$$\lim_{u\to 0^+}g(u)=+\infty, \quad \text{and} \quad \lim_{u\to 0^+}\int_1^u g(s)\,ds=-\infty.$$

Applying topological degree theory [6], we obtain the following conclusions.

Theorem 1.1 Assume that conditions |c| < 1 and (g_1) hold. Suppose the following conditions hold:

(H₁) There exist two positive constants d_1 , d_2 with $d_1 < d_2$ such that g(u) - e(t) < 0 for $(t, u) \in [0, T] \times (0, d_1)$ and g(u) - e(t) > 0 for $(t, u) \in [0, T] \times (d_2, +\infty)$.

Then Eq. (1.2) has at least one positive *T*-periodic solution.

Theorem 1.2 Assume that the conditions |c| > 1, (g_1) and (H_1) hold. Suppose the following condition holds:

(H₂) There exist two positive constants α , β such that

$$g(u) \leq \alpha u^{p-1} + \beta$$
, for all $u > 0$.

Then Eq. (1.2) has at least one positive *T*-periodic solution if $\alpha^{\frac{1}{p}}(1+2|c|)^{\frac{1}{p}}T < |c|-1$.

Remark 1.3 It is worth mentioning that the condition of the nonlinear term *g* is relatively weak in the case that |c| < 1, i.e., the nonlinear term *g* may satisfy the sub-linearity, semi-linearity or super-linearity conditions at $x = \infty$. The nonlinear term *g* in the case that |c| > 1 only satisfies the semi-linearity condition at $u = \infty$. Obviously, our result can be more general.

Remark 1.4 The condition (g_2) contradicts the condition (g_1) . Therefore, the above methods of [1, 11] and condition of Theorems 1.1–1.2 are no long applicable to prove the existence of a positive periodic solutions for Eq. (1.2) with strong singularity of attractive type. We need to give another method and conditions to get over this problem.

Theorem 1.5 Assume that conditions |c| < 1 and (g_2) hold. Furthermore, suppose the following condition holds:

(H₃) There exist two positive constants d_3 , d_4 with $d_3 < d_4$ such that g(u) - e(t) > 0 for $(t, u) \in [0, T] \times (0, d_3)$ and g(u) - e(t) < 0 for $(t, u) \in [0, T] \times (d_4, +\infty)$.

Then Eq. (1.2) has at least one positive *T*-periodic solution.

Theorem 1.6 Assume that conditions |c| > 1, (g_2) and (H_3) hold. Suppose the following condition holds:

(H₄) There exist two positive constants m, n such that

 $-g(u) \leq mu^{p-1} + n$, for all u > 0.

Then Eq. (1.2) has at least one positive *T*-periodic solution if $m^{\frac{1}{p}}(1+2|c|)^{\frac{1}{p}}T < |c|-1$.

2 Periodic solution for Eq. (1.2) with strong singularity of repulsive type

Firstly, let $A : C_T \to C_T$ be the operator on $C_T := \{u \in C(\mathbb{R}, \mathbb{R}) : u(t + T) \equiv u(t) \; \forall t \in \mathbb{R}\}$ given by

 $(Au)(t) := u(t) - cu(t - \tau) \quad \forall u \in C_T, t \in \mathbb{R}.$

Lemma 2.1 (see [12]) The operator A has a continuous inverse A^{-1} on C_T , satisfying

- (1) $|[A^{-1}f](t)| \leq \frac{\|f\|}{|1-|c||}, \forall f \in C_T, where \|f\| := \max_{t \in \mathbb{R}} |f(t)|.$
- (2) $\int_0^T |[A^{-1}f](t)| dt \leq \frac{1}{|1-|c||} \int_0^T |f(t)| dt, \forall f \in C_T.$

Secondly, we embed Eq. (1.2) into the following equation family with a parameter $\lambda \in (0, 1]$:

$$\left(\phi_p(Au)'(t)\right)' + \lambda Pu'(t) + \lambda g\left(u(t)\right) = \lambda e(t).$$
(2.1)

The following lemma is a consequence of Theorem 3.1 of [6].

Lemma 2.2 Assume that there exist positive constants E_1 , E_2 , E_3 and $E_1 < E_2$ such that the following conditions hold:

- (1) Each possible periodic solution u to Eq. (2.1) such that $E_1 < u(t) < E_2$, for all $t \in [0, T]$ and $||u'|| < E_3$.
- (2) Each possible solution C to the equation

$$g(C) - \frac{1}{T} \int_0^T e(t) dt = 0$$

satisfies $C \in (E_1, E_2)$.

(3) We have

$$\left(g(E_1) - \frac{1}{T}\int_0^T e(t)\,dt\right)\left(g(E_2) - \frac{1}{T}\int_0^T e(t)\,dt\right) < 0.$$

Then Eq. (1.2) has at least one T-periodic solution.

2.1 Proof of Theorem 1.1

Proof of Theorem 1.1 Firstly, integrating both sides of Eq. (2.1) over [0, T], we get

$$\int_{0}^{T} \left[g(u(t)) - e(t) \right] dt = 0.$$
(2.2)

In view of the mean value theorem of integrals, there exists a point $\xi \in (0, T)$ such that

$$g(u(\xi)) - e(\xi) = 0.$$

From condition (H_1) and u(t) being continuous, we have

$$d_1 \le u(\xi) \le d_2. \tag{2.3}$$

Multiplying both sides of Eq. (2.1) by (Au)'(t) and integrating from 0 to *T*, we deduce

$$\int_{0}^{T} \left(\phi_{p} \left((Au)'(t) \right) \right)' (Au)'(t) \, dt + \lambda P \int_{0}^{T} u'(t) (Au)'(t) \, dt + \lambda \int_{0}^{T} g \left(u(t) \right) (Au)'(t) \, dt$$

= $\lambda \int_{0}^{T} e(t) (Au)'(t) \, dt.$ (2.4)

Moreover,

$$\int_0^T \left(\phi_p(Au)'(t)\right)'(Au)'(t)\,dt = \int_0^T (Au)'(t)\,d\phi_p(Au)'(t) = 0$$
(2.5)

and

$$\int_{0}^{T} g(u(t))(Au)'(t) dt = \int_{0}^{T} g(u(t))(Au')(t) dt$$

= $\int_{0}^{T} g(u(t))(u'(t) - cu'(t - \tau)) dt$
= $\int_{0}^{T} g(u(t)) du(t) - c \int_{0}^{T} g(u(t)) du(t - \tau)$
= $-c \int_{0}^{T} g(u(t)) du(t)$
= 0, (2.6)

since (Au)'(t) = (Au')(t) and $du(t) = \frac{du(t-\tau)}{d(t-\tau)} dt = du(t-\tau)$. Substituting Eqs. (2.5) and (2.6) into (2.4), we obtain

$$P\int_{0}^{T} u'(t) (Au')(t) dt = \int_{0}^{T} e(t) (Au')(t) dt.$$
(2.7)

From Eq. (2.7), we arrive at

$$\left| P \int_0^T |u'(t)|^2 dt \right| = \left| Pc \int_0^T u'(t)u'(t-\tau) dt + \int_0^T e(t) (Au')(t) dt \right|.$$

$$\begin{split} |P| \int_0^T |u'(t)|^2 dt &\leq |P||c| \int_0^T |u'(t)| |u'(t-\tau)| dt + (1+|c|) \int_0^T |e(t)| |u'(t)| dt \\ &\leq |P||c| \left(\int_0^T |u'(t)|^2 dt \right)^{\frac{1}{2}} \left(\int_0^T |u'(t-\tau)|^2 dt \right)^{\frac{1}{2}} \\ &+ (1+|c|) \left(\int_0^T |e(t)|^2 dt \right)^{\frac{1}{2}} \left(\int_0^T |u'(t)| dt \right)^{\frac{1}{2}} \\ &= |P||c| \int_0^T |u'(t)|^2 dt + (1+|c|) ||e||_2 \left(\int_0^T |u'(t)|^2 dt \right)^{\frac{1}{2}}, \end{split}$$

where $||e||_2 := (\int_0^T |e(t)|^2 dt)^{\frac{1}{2}}$. Obviously, |P| - |P||c| > 0, since |c| < 1. Hence, we deduce

$$\left(\int_{0}^{T} \left|u'(t)\right|^{2} dt\right)^{\frac{1}{2}} \leq \frac{(1+|c|)\|e\|_{2}}{|P|-|P||c|} := M'_{1}.$$
(2.8)

From Eqs. (2.3), (2.8) and the Hölder inequality, we see that

$$u(t) = u(\xi) + \int_{\xi}^{t} u'(s) \, ds \le d_2 + \sqrt{T} \left(\int_{0}^{T} \left| u'(t) \right|^2 \, dt \right)^{\frac{1}{2}} \\ \le d_2 + \sqrt{T} \frac{(1+|c|) \|e\|_2}{|P| - |P||c|} := M_1.$$
(2.9)

On the other hand, from Eq. (2.2), it is clear that

$$\int_{0}^{T} |g(u(t))| dt = \int_{g(u(t))\geq 0} g(u(t)) dt - \int_{g(u(t))\leq 0} g(u(t)) dt$$
$$= 2 \int_{g(u(t))\geq 0} g(u(t)) dt - \int_{0}^{T} e(t) dt.$$
(2.10)

Case (I). If $\overline{e} := \frac{1}{T} \int_0^T e(t) dt \le 0$, from Eq. (2.10), we have

$$\int_0^T \left| g(u(t)) \right| dt \le 2 \int_0^T \left(g^+(u(t)) - e(t) \right) dt,$$

where $g^+(u) := \max\{g(u), 0\}$. Since $g^+(u(t)) - e(t) \ge 0$, from condition (H₁), we know $u(t) \ge d_2$. Then we deduce

$$\int_{0}^{T} |g(u(t))| dt \leq 2 \int_{0}^{T} g^{+}(u(t)) dt + \int_{0}^{T} |e(t)| dt$$
$$\leq 2T ||g_{M_{1}}^{+}|| + T^{\frac{1}{2}} ||e||_{2}, \qquad (2.11)$$

where $||g_{M_1}^+|| := \max_{d_2 \le u \le M_1} g^+(u)$. As (Au)(0) = (Au)(T), there exists a point $t_1 \in [0, T]$ such that $(Au)'(t_1) = 0$, from Eqs. (2.2), (2.8) and (2.11), we have

$$\begin{aligned} \left\| \phi_{p} \big((Au)' \big) \right\| &= \max_{t \in [t_{1}, t_{1} + T]} \left\{ \left| \int_{t_{1}}^{t} \big(\phi_{p} \big((Au)'(s) \big) \big)' \, ds \right| \right\} \\ &\leq |P| \int_{0}^{T} \left| u'(t) \right| \, dt + \int_{0}^{T} \left| g \big(u(t) \big) \right| \, dt + \int_{0}^{T} \left| e(t) \right| \, dt \\ &\leq |P| T^{\frac{1}{2}} \left(\int_{0}^{T} \left| u'(t) \right|^{2} \, dt \right)^{\frac{1}{2}} + \int_{0}^{T} \left| g \big(u(t) \big) \right| \, dt + \int_{0}^{T} \left| e(t) \right| \, dt \\ &\leq |P| T^{\frac{1}{2}} M_{1}^{\frac{1}{2}} + 2T \left\| g_{M_{1}}^{+} \right\| + 2T^{\frac{1}{2}} \| e \|_{2} := M_{2}'. \end{aligned}$$

$$(2.12)$$

We claim that there exists a positive constant $M_2^{**} > M_2' + 1$ such that, for all $t \in \mathbb{R},$

$$\|(Au)'\| \le M_2^{**}.\tag{2.13}$$

In fact, if x' is not bounded, there exists a positive constant M''_2 such that $||u'|| > M''_2$ for some $u' \in \mathbb{R}$. Therefor, it is clear that

$$\left\|\phi_{p}(Au)'\right\| = \left\|\phi_{p}(Au')\right\| = \left\|Au'\right\|^{p-1} = \left(1+|c|\right)^{p-1} \left\|u'\right\|^{p-1} \ge \left(1+|c|\right)^{p-1} M_{2}''^{p-1} := M_{2}^{*}.$$

Then we have a contradiction. So, Eq. (2.13) holds. By Lemma 2.1 and Eq. (2.13), we get

$$\begin{aligned} \|u'\| &= \|A^{-1}Au'\| = \|A^{-1}(Au)'\| \\ &\leq \frac{\|(Au)'\|}{1-|c|} \\ &\leq \frac{M_2^{**}}{1-|c|} := M_2, \end{aligned}$$
(2.14)

since |c| < 1.

Case (II). If $\overline{e} > 0$, from Eq. (2.10), we obtain

$$\int_0^T \left| g(u(t)) \right| dt \leq 2 \int_0^T g^+(u(t)) dt.$$

Since $g^+(u(t)) \ge 0$, from condition (H₁), we know that there exists a positive constant d_2^* such that $u(t) \ge d_2^*$. Therefore, we see that

$$\begin{split} \int_0^T \left| g \big(u(t) \big) \right| dt &\leq 2 \int_0^T g^+ \big(u(t) \big) dt \\ &\leq 2T \left\| g_M^+ \right\|, \end{split}$$

where $||g_M^+|| := \max_{d_2^* \le u \le M_1} g^+(x)$. Similarly, we deduce $||u'|| \le M_2$.

Multiplying both sides of Eq. (2.1) by u'(t) and integrating on the interval $[\xi, t]$, where $\xi \in [0, T]$ is defined in Eq. (2.3), we get

$$\lambda \int_{u(\xi)}^{u(t)} g(v) \, dv = \lambda \int_{\xi}^{t} g(u(s))u'(s) \, ds$$
$$= -\int_{\xi}^{t} \left(\phi_{p}((Au)'(s)) \right)' u'(s) \, ds - \lambda P \int_{\xi}^{t} |u'(s)|^{2} \, ds$$
$$+ \lambda \int_{\xi}^{t} e(s)u'(s) \, ds.$$
(2.15)

Furthermore, from Eqs. (2.12), (2.8) and (2.14), we get

$$\begin{split} \lambda \left| \int_{u(\xi)}^{u(t)} g(v) \, dv \right| &\leq \int_{\xi}^{t} \left| \left(\phi_p \big((Au)'(s) \big) \big)' \left| \left| u'(s) \right| \, ds + \lambda P \int_{\xi}^{t} \left| u'(s) \right|^2 \, ds \right. \\ &+ \lambda \int_{\xi}^{t} \left| e(s) \right| \left| u'(s) \right| \, ds \\ &\leq \lambda M_2 M_2' + \lambda |P| \big(M_1' \big)^2 + \lambda M_2 T^{\frac{1}{2}} \| e \|_2 \coloneqq \lambda M_3'. \end{split}$$

From the repulsive condition (g_1) , we know that there exists a constant $M_3 > 0$ such that

$$u(t) \ge M_3, \quad \forall t \in [\xi, T]. \tag{2.16}$$

Similarly, we can discuss $t \in [0, \xi]$.

From Eqs. (2.3), (2.9), (2.14) and (2.16), it is obvious that a periodic solution u to Eq. (2.1) satisfies

$$E_1 < u(t) < E_2$$
, $||u'||| < E_3$.

Then the condition (1) of Lemma 2.2 is satisfied. For a possible solution C to the equation

$$g(C)-\frac{1}{T}\int_0^T e(t)\,dt=0,$$

we have $C \in (E_1, E_2)$. Hence, the condition (2) of Lemma 2.2 holds. Finally, it is clear that the condition (3) of Lemma 2.2 is also satisfied. In fact, from condition (H₁), we can get

$$g(E_1)-\frac{1}{T}\int_0^T e(t)\,dt<0$$

and

$$g(E_2) - \frac{1}{T} \int_0^T e(t) dt > 0.$$

Using Lemma 2.2, it is concluded that Eq. (1.2) has at least one positive periodic solution.

2.2 Proof of Theorem 1.2

Proof of Theorem **1**.2 The same strategy and notation are followed as in the proof of Theorem **1**.1. Then we see that

$$u(t) \le d_2 + \int_0^T \left| u'(t) \right| dt.$$
(2.17)

Multiplying both sides of Eq. (2.1) by (Au)(t) and integrating on the interval [0, T], it is clear that

$$\int_{0}^{T} \left(\phi_{p} \left((Au)'(t) \right) \right)'(Au)(t) dt + \lambda P \int_{0}^{T} u'(t)(Au)(t) dt + \lambda \int_{0}^{T} g(u(t))(Au)(t) dt = \lambda \int_{0}^{T} e(t)(Au)(t) dt.$$
(2.18)

Substituting $\int_0^T (\phi_p(Au)'(t))'(Au)(t) dt = -\int_0^T |(Au)'(t)|^p dt$ and $P \int_0^T u'(t)u(t) dt = 0$ into Eq. (2.18), we have

$$\int_{0}^{T} |(Au)'(t)|^{p} dt = -\lambda P c \int_{0}^{T} u'(t) u(t-\tau) dt + \lambda \int_{0}^{T} g(u(t)) (u(t) - cu(t-\tau)) dt$$
$$-\lambda \int_{0}^{T} e(t) (u(t) - cu(t-\tau)) dt.$$
(2.19)

Furthermore, we deduce

$$\int_0^T u'(t)u(t-\tau)\,dt = \int_0^T u(t-\tau)\,du(t) = \int_0^T u(t-\tau)\,du(t-\tau) = 0.$$
(2.20)

From condition (H_2) and u(t) > 0, we see that

$$\int_0^T g(u(t))u(t)\,dt \le \alpha \int_0^T (u(t))^p\,dt + \beta \int_0^T u(t)\,dt.$$
(2.21)

Substituting Eqs. (2.20) and (2.21) into (2.19), applying the Hölder inequality, we obtain

$$\int_{0}^{T} |(Au)'(t)|^{p} dt \leq \alpha \int_{0}^{T} (u(t))^{p} dt + \beta \int_{0}^{T} u(t) dt + |c| \int_{0}^{T} |g(u(t))| |u(t-\tau)| dt$$
$$+ (1+|c|) ||u|| \int_{0}^{T} |e(t)| dt$$
$$\leq \alpha T ||u||^{p} + \beta T ||u|| + |c|||u|| \int_{0}^{T} |g(u(t))| dt$$
$$+ (1+|c|) ||u|| T^{\frac{1}{2}} ||e||_{2}.$$
(2.22)

From Eq. (2.10) and condition (H_2) , we get

$$\int_{0}^{T} |g(u(t))| dt = 2 \int_{g(u(t))\geq 0} g(u(t)) dt - \int_{0}^{T} e(t) dt$$

$$\leq 2\alpha ||u||^{p-1} T + 2\beta T + ||e||_{2} T^{\frac{1}{2}}.$$
 (2.23)

Substituting Eqs. (2.17) and (2.23) into (2.22), we see that

$$\int_{0}^{T} |(Au)'(t)|^{p} dt
\leq \alpha (1+2|c|) T ||u||^{p} + (1+2|c|) (\beta T + T^{\frac{1}{2}} ||e||_{2}) ||u||
\leq \alpha (1+2|c|) T (d_{2} + \int_{0}^{T} |u'(t)| dt)^{p} + N_{1} (d_{2} + \int_{0}^{T} |u'(t)| dt)
= \alpha (1+2|c|) T (((\int_{0}^{T} |u'(t)| dt)^{p} + pd_{2} ((\int_{0}^{T} |u'(t)| dt)^{p-1} + \dots + d_{2}^{p})
+ N_{1} (d_{2} + \int_{0}^{T} |u'(t)| dt),$$
(2.24)

where $N_1 := (1 + 2|c|)(\beta T + T^{\frac{1}{2}} ||e||_2)$. Applying Lemma 2.1, we have

$$\int_{0}^{T} |u'(t)| dt = \int_{0}^{T} |(A^{-1}Au')(t)| dt$$

$$\leq \frac{\int_{0}^{T} |(Au)'(t)| dt}{|c| - 1}$$

$$\leq \frac{T^{\frac{1}{q}} (\int_{0}^{T} |(Au)'(t)|^{p} dt)^{\frac{1}{p}}}{|c| - 1},$$
(2.25)

since $\frac{1}{p} + \frac{1}{q} = 1$ and |c| > 1. We apply the inequality

$$(x + y)^k \le x^k + y^k$$
, for $x, y > 0, 0 < k < 1$.

Substituting Eqs. (2.24) into (2.25), we have

$$\begin{split} \int_{0}^{T} \left| u'(t) \right| dt &\leq \frac{\alpha^{\frac{1}{p}} (1+2|c|)^{\frac{1}{p}} T \int_{0}^{T} |u'(t)| dt}{|c|-1} \\ &+ \frac{\alpha^{\frac{1}{p}} (1+2|c|)^{\frac{1}{p}} (pd_{2})^{\frac{1}{p}} T (\int_{0}^{T} |u'(t)| dt)^{\frac{p-1}{p}}}{|c|-1} \\ &+ \dots + \frac{T^{\frac{1}{q}} (N_{1}^{\frac{1}{p}} + (pd_{2}^{p-1})^{\frac{1}{p}}) (\int_{0}^{T} |u'(t)| dt)^{\frac{1}{p}} + T^{\frac{1}{p}} (d_{2} + (N_{1}d_{2})^{\frac{1}{p}})}{|c|-1}. \end{split}$$

Since $\alpha^{\frac{1}{p}}(1+2|c|)^{\frac{1}{p}}T < |c|-1$, we know that there exists a positive constant M'_1 such that

$$\int_{0}^{T} |u'(t)| dt \le M_{1}'.$$
(2.26)

From Eqs. (2.17) and (2.26), we have

$$\|u\| \le d_2 + rac{1}{2} \int_0^T \left| u'(t) \right| dt \le d_2 + rac{M_1'}{2} := M_1.$$

The proof is left for the reader, being the same as that of Theorem 1.1.

3 Periodic solution for Eq. (1.2) with strong singularity of attractive type 3.1 Proof of Theorem 1.5

Proof of Theorem **1.5** We follow the same strategy and notation as in the proof of Theorem **1.1**. We can get

 $u(t) \leq M_1.$

From Eq. (2.10), we have

$$\int_{0}^{T} \left| g(u(t)) \right| dt = \int_{g(u(t)) \ge 0} g(u(t)) dt - \int_{g(u(t)) \le 0} g(u(t)) dt$$
$$= -2 \int_{g(u(t)) \le 0} g^{-}(u(t)) dt + \int_{0}^{T} e(t) dt, \qquad (3.1)$$

where $g^{-} := \min\{g(u), 0\}$.

Case (I). If $\overline{e} \ge 0$, from Eq. (3.1), we obtain

$$\int_0^T \left| g(u(t)) \right| dt \leq -2 \int_0^T \left(g^-(u(t)) - e(t) \right) dt.$$

Since $g^{-}(u(t)) - e(t) \le 0$, from condition (H₃), we know that $u(t) \ge d_4$. Then we deduce

$$\int_{0}^{T} |g(u(t))| dt \leq -2 \int_{0}^{T} g^{-}(u(t)) dt + \int_{0}^{T} |e(t)| dt$$
$$\leq 2T ||g_{M_{1}}^{-}|| + T^{\frac{1}{2}} ||e||_{2}, \qquad (3.2)$$

where $||g_{M_1}^-|| := \max_{d_4 \le u \le M_1}(-g^-(u))$. From Eqs. (2.12) and (3.2), we see that

$$\|\phi_{p}((Au)')\| \leq |p| \int_{0}^{T} |u'(t)| dt + \int_{0}^{T} |g(u(t))| dt + \int_{0}^{T} |e(t)| dt$$
$$\leq |p| T^{\frac{1}{2}} M_{1}^{'\frac{1}{2}} + 2T \|g_{M_{1}}^{-}\| + 2T^{\frac{1}{2}} \|e\|_{2} := M_{2}'.$$
(3.3)

Case (II). If $\overline{e} < 0$, from Eq. (3.1), we arrive at

$$\int_0^T \left| g(u(t)) \right| dt \leq -2 \int_0^T g^-(u(t)) dt.$$

Since $g^{-}(u(t)) \leq 0$, from condition (H₃), we know that there exists a positive constant d_{4}^{*} such that $u(t) \geq d_{4}^{*}$. Therefore, we have

$$egin{aligned} &\int_0^T \left| gig(u(t)ig)
ight| \, dt \leq -2 \int_0^T g^-ig(u(t)ig) \, dt \ &\leq 2T \left\| g_M^-
ight\|, \end{aligned}$$

where $||g_M^-|| := \max_{d_4^* \le u \le M_1} (-g^-(u))$. Similarly, we can get $|\phi_p((Au)'(t))| \le M'_2$. The proof left for the reader, being the same as that of Theorem 1.1.

3.2 Proof of Theorem 1.6

Proof of Theorem **1.6** The same strategy and notation are followed as in the proof of Theorem **1.2**. We only consider $\int_0^T |g(u(t))| dt$. From Eqs. (2.23), (3.1) and condition (H₄), we deduce

$$\int_{0}^{T} \left| g(u(t)) \right| dt = -2 \int_{g(u) \le 0} g^{-1}(u(t)) dt + \int_{0}^{T} e(t) dt$$
$$\leq 2m \|u\|^{p-1} T + 2nT + T^{\frac{1}{2}} \|e\|_{2}.$$
(3.4)

From Eqs. (2.24) and (3.1), we obtain

$$\int_{0}^{T} |(Au)'(t)|^{p} dt \leq m (1+2|c|) T \left(\left(\int_{0}^{T} |u'(t)| dt \right)^{p} + \dots + d_{4}^{p} \right) + N_{1} \left(d_{4} + \int_{0}^{T} |u'(t)| dt \right).$$

The proof left for the reader, being the same as that of Theorem 1.1.

4 Examples

Example 4.1 Consider the following neutral Duffing equation with strong singularity of repulsive type:

$$\left(\phi_p\left(u(t) - \frac{1}{2}u(t-\tau)\right)'\right)' + Pu'(t) + \sum_{i=1}^n u^{2i}(t) - \frac{1}{u^{\mu}} = e^{\cos t},\tag{4.1}$$

where τ is a positive constant and $0 < \tau < T$, *P* and μ are constants and $\mu \ge 1$, *n* is an integer.

Comparing Eqs. (4.1) to (1.2), we know that $g(u) = \sum_{i=1}^{n} u^{2i}(t) - \frac{1}{u^{\mu}}$, $T = 2\pi$, $c = \frac{1}{2} < 1$. Obviously, there exist constants $d_1 = 0.1$ and $d_2 = 1$ such that condition (H₁) holds. In fact, $\lim_{u\to 0^+} \int_1^u g(s) ds = \lim_{u\to 0^+} \int_1^u (\sum_{i=1}^n u^{2i}(t) - \frac{1}{u^{\mu}}) ds = +\infty$, thus, the condition (H₂) holds. Therefore, applying Theorem 1.1, we know that Eq. (4.1) has at least one positive 2π -periodic solution.

Example 4.2 Consider the following neutral Duffing equation with strong singularity of attractive type:

$$\left(\phi_p(u(t) - 40u(t-\tau))'\right)' + 8u'(t) - 16u^3 + \frac{1}{u} = e^{\sin 2t},\tag{4.2}$$

where p = 4, τ is a constant and $0 \le \tau < T$.

It is clear that $T = \pi$, P = 8, c = 40 > 1, $g(u) = 16u^3 - \frac{1}{u}$, $e(t) = e^{\sin 2t}$. Obviously, it is easy to see that there exist constants $d_3 = \frac{1}{4}$ and $d_4 = \frac{3}{5}$ such that condition (H₃) holds. $\lim_{u\to 0^+} \int_1^u g(s) ds = \lim_{u\to 0^+} \int_1^u (-16s^3 + \frac{1}{s}) ds = -\infty$, thus, the condition (g₂) holds. Consider $-g(u) \le 16u^3 + 1$, where m = 16, n = 1. So, condition (H₄) is satisfied. Next, it is verified that

$$\frac{m^{\frac{1}{p}}(1+2|c|)^{\frac{1}{p}}T}{|c|-1} = \frac{2\times 3\times \pi}{39} < 1.$$

Therefore, using Theorem 1.6, it is concluded that Eq. (4.2) has at least one positive π - periodic solution.

5 Conclusion

In this paper, using the Manásevich–Mawhin theorem on the continuous case of topological degree, we discuss the existence of a positive periodic solution for the *p*-Laplacian neutral Duffing equation (1.2). The nonlinear term *g* satisfies the strong singularity of attractive and repulsive type at u = 0 and may obey the sub-linearity, semi-linearity or superlinearity conditions at $u = \infty$. First, we obtain the existence of a positive periodic solution for Eq. (1.2) with a strong singularity of repulsive type. Afterwards, we prove the existence of a positive periodic solution for Eq. (1.2) with a strong singularity of attractive type. Our results improve and extend the results in [1, 2, 8, 11].

Acknowledgements

SWY and XZZ are grateful to anonymous referees for their constructive comments and suggestions, which have greatly improved this paper.

Funding

This work was supported by National Natural Science Foundation of China (Nos. 71601072, 11501170).

Abbreviations

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval and consent to participate

SWY and XZZ contributed to each part of this study equally and declare that they have no competing interests.

Competing interests

SWY and XZZ declare that they have no competing interests.

Consent for publication

SWY and XZZ read and approved the final version of the manuscript.

Authors' contributions

SWY and XZZ contributed equally and significantly in writing this article. Both authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 2 December 2018 Accepted: 8 April 2019 Published online: 15 April 2019

References

- 1. Cheng, Z., Ren, J.: Periodic and subharmonic solutions for Duffing equation with a singularity. Discrete Contin. Dyn. Syst., Ser. A **32**(5), 1557–1574 (2013)
- 2. Cheng, Z., Yao, S.: New results for Brillouin electron beam focusing system. Bound. Value Probl. 2017, 70 (2017)
- Chu, J., Wang, F.: Prevalence of stable periodic solutions for Duffing equations. J. Differ. Equ. 260(11), 7800–7820 (2016)
- Ding, T., Zanolin, F.: Periodic solutions of Duffing's equations with superquadratic potential. J. Differ. Equ. 97(2), 328–378 (1992)
- Fonda, A., Manásevich, R., Zanolin, F.: Subharmonic solutions for some second-order differential equations with singularities. Proc. R. Soc. Edinb. 120(3–4), 231–243 (1992)
- Lu, S.: Periodic solutions to a second order *p*-Laplacian neutral functional differential system. Nonlinear Anal. TMA 69(11), 4215–4229 (2008)
- Mishra, L., Agarwal, R., Sen, M.: Solvability and asymptotic behavior for some nonlinear quadratic integral equation involving Erdelyi–Kober fractional integrals on the unbounded interval. Prog. Fract. Differ. Appl. 2(3), 153–168 (2016)
- Ren, J., Cheng, Z., Siegmund, S.: Positive periodic solution for Brillouin electron beam focusing system. Discrete Contin. Dvn. Svst., Ser, B 16(1), 385–392 (2011)
- 9. Torres, P.: Weak singularities may help periodic solutions to exist. J. Differ. Equ. 232(1), 277–284 (2007)
- 10. Wang, H.: Positive periodic solutions of singular systems with a parameter. J. Differ. Equ. 249(12), 2986–3002 (2010)

- Wang, Z., Ma, T.: Existence and multiplicity of periodic solutions of semilinear resonant Duffing equations with singularities. Nonlinearity 25(2), 279–307 (2012)
- Zhang, M.: Periodic solutions of linear and quasilinear neutral functional differential equations. J. Math. Anal. Appl. 189(3), 378–392 (1995)

Submit your manuscript to a SpringerOpen[●] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com