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Abstract
This paper is devoted to investigating the following p-Laplacian neutral damped
Duffing equation with singularity:

(φp(u(t) – cu(t – τ ))′
)
′ + Pu′(t) + g(u(t)) = e(t),

where g has a singularity at u = 0. Applying the Manásevich–Mawhin theorem on a
continuous case of topological degree, we obtain the existence of a positive periodic
solution for this equation.
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1 Introduction
In recent years, there has been a fairly great amount of work on periodic solutions for
Duffing equations with a singularity (see [1–5, 7–11] and the references cited therein), in
account of its applications in applied sciences. For example, the Brillouin electron beam
focusing problem [2, 8] is to prove the existence of a positive π-periodic solutions of

u′′ + a(1 + cos 2t)u =
1
u

,

where a is a positive constant.
In 2012, Cheng and Ren [1] discussed the existence and multiplicity of positive periodic

solutions for the following Duffing equation:

u′′(t) + g
(
u(t)

)
= p(t), (1.1)

where the nonlinear term g has a strong singularity of repulsive type at u = 0 and satisfies
super-linearity condition at u = +∞. It is concluded that there exist infinitely many pos-
itive periodic solutions for Eq. (1.1) by applications of the generalized Poincaré–Birkhoff
twist theorem. Afterwards, Wang and Ma [11] investigated Eq. (1.1) with g has a strong
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singularity of repulsive type at u = 0 and a semi-linearity condition at x = +∞, using
the Poincaré–Birkhoff theorem, the authors proved the existence of infinitely many 2π-
periodic solutions.

Proceeding from [1, 2, 8, 11], in this paper, we further consider the following p-Laplacian
neutral Duffing equation with singularity:

(
φp

(
u(t) – cu(t – τ )

)′)′ + Pu′(t) + g
(
u(t)

)
= e(t), (1.2)

where p ≥ 2, ϕp(u) = |u|p–2u for u �= 0 and ϕp(0) = 0, c is a constant and |c| �= 1, P, τ are
constants and 0 ≤ τ < T ; e ∈ L2(R) is a T-periodic function; g : (0, +∞) → R is a L2-
Carathéodory function, the nonlinear term g of (1.2) has a singularity at u = 0, i.e., we
have a strong singularity of repulsive type (g1):

lim
u→0+

g(u) = –∞, and lim
u→0+

∫ u

1
g(s) ds = +∞;

or a strong singularity of attractive type (g2):

lim
u→0+

g(u) = +∞, and lim
u→0+

∫ u

1
g(s) ds = –∞.

Applying topological degree theory [6], we obtain the following conclusions.

Theorem 1.1 Assume that conditions |c| < 1 and (g1) hold. Suppose the following condi-
tions hold:

(H1) There exist two positive constants d1, d2 with d1 < d2 such that g(u) – e(t) < 0 for
(t, u) ∈ [0, T] × (0, d1) and g(u) – e(t) > 0 for (t, u) ∈ [0, T] × (d2, +∞).

Then Eq. (1.2) has at least one positive T-periodic solution.

Theorem 1.2 Assume that the conditions |c| > 1, (g1) and (H1) hold. Suppose the following
condition holds:

(H2) There exist two positive constants α, β such that

g(u) ≤ αup–1 + β , for all u > 0.

Then Eq. (1.2) has at least one positive T-periodic solution if α
1
p (1 + 2|c|) 1

p T < |c| – 1.

Remark 1.3 It is worth mentioning that the condition of the nonlinear term g is relatively
weak in the case that |c| < 1, i.e., the nonlinear term g may satisfy the sub-linearity, semi-
linearity or super-linearity conditions at x = ∞. The nonlinear term g in the case that
|c| > 1 only satisfies the semi-linearity condition at u = ∞. Obviously, our result can be
more general.

Remark 1.4 The condition (g2) contradicts the condition (g1). Therefore, the above meth-
ods of [1, 11] and condition of Theorems 1.1–1.2 are no long applicable to prove the exis-
tence of a positive periodic solutions for Eq. (1.2) with strong singularity of attractive type.
We need to give another method and conditions to get over this problem.
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Theorem 1.5 Assume that conditions |c| < 1 and (g2) hold. Furthermore, suppose the fol-
lowing condition holds:

(H3) There exist two positive constants d3, d4 with d3 < d4 such that g(u) – e(t) > 0 for
(t, u) ∈ [0, T] × (0, d3) and g(u) – e(t) < 0 for (t, u) ∈ [0, T] × (d4, +∞).

Then Eq. (1.2) has at least one positive T-periodic solution.

Theorem 1.6 Assume that conditions |c| > 1, (g2) and (H3) hold. Suppose the following
condition holds:

(H4) There exist two positive constants m, n such that

–g(u) ≤ mup–1 + n, for all u > 0.

Then Eq. (1.2) has at least one positive T-periodic solution if m
1
p (1 + 2|c|) 1

p T < |c| – 1.

2 Periodic solution for Eq. (1.2) with strong singularity of repulsive type
Firstly, let A : CT → CT be the operator on CT := {u ∈ C(R,R) : u(t + T) ≡ u(t) ∀t ∈ R}
given by

(Au)(t) := u(t) – cu(t – τ ) ∀u ∈ CT , t ∈R.

Lemma 2.1 (see [12]) The operator A has a continuous inverse A–1 on CT , satisfying
(1) |[A–1f ](t)| ≤ ‖f ‖

|1–|c|| , ∀f ∈ CT , where ‖f ‖ := maxt∈R |f (t)|.
(2)

∫ T
0 |[A–1f ](t)|dt ≤ 1

|1–|c||
∫ T

0 |f (t)|dt, ∀f ∈ CT .

Secondly, we embed Eq. (1.2) into the following equation family with a parameter λ ∈
(0, 1]:

(
φp(Au)′(t)

)′ + λPu′(t) + λg
(
u(t)

)
= λe(t). (2.1)

The following lemma is a consequence of Theorem 3.1 of [6].

Lemma 2.2 Assume that there exist positive constants E1, E2, E3 and E1 < E2 such that the
following conditions hold:

(1) Each possible periodic solution u to Eq. (2.1) such that E1 < u(t) < E2, for all t ∈ [0, T]
and ‖u′‖ < E3.

(2) Each possible solution C to the equation

g(C) –
1
T

∫ T

0
e(t) dt = 0

satisfies C ∈ (E1, E2).
(3) We have

(
g(E1) –

1
T

∫ T

0
e(t) dt

)(
g(E2) –

1
T

∫ T

0
e(t) dt

)
< 0.

Then Eq. (1.2) has at least one T-periodic solution.
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2.1 Proof of Theorem 1.1

Proof of Theorem 1.1 Firstly, integrating both sides of Eq. (2.1) over [0, T], we get

∫ T

0

[
g
(
u(t)

)
– e(t)

]
dt = 0. (2.2)

In view of the mean value theorem of integrals, there exists a point ξ ∈ (0, T) such that

g
(
u(ξ )

)
– e(ξ ) = 0.

From condition (H1) and u(t) being continuous, we have

d1 ≤ u(ξ ) ≤ d2. (2.3)

Multiplying both sides of Eq. (2.1) by (Au)′(t) and integrating from 0 to T , we deduce

∫ T

0

(
φp

(
(Au)′(t)

))′(Au)′(t) dt + λP
∫ T

0
u′(t)(Au)′(t) dt + λ

∫ T

0
g
(
u(t)

)
(Au)′(t) dt

= λ

∫ T

0
e(t)(Au)′(t) dt. (2.4)

Moreover,

∫ T

0

(
φp(Au)′(t)

)′(Au)′(t) dt =
∫ T

0
(Au)′(t) dφp(Au)′(t) = 0 (2.5)

and

∫ T

0
g
(
u(t)

)
(Au)′(t) dt =

∫ T

0
g
(
u(t)

)(
Au′)(t) dt

=
∫ T

0
g
(
u(t)

)(
u′(t) – cu′(t – τ )

)
dt

=
∫ T

0
g
(
u(t)

)
du(t) – c

∫ T

0
g
(
u(t)

)
du(t – τ )

= –c
∫ T

0
g
(
u(t)

)
du(t)

= 0, (2.6)

since (Au)′(t) = (Au′)(t) and du(t) = du(t–τ )
d(t–τ ) dt = du(t – τ ).

Substituting Eqs. (2.5) and (2.6) into (2.4), we obtain

P
∫ T

0
u′(t)

(
Au′)(t) dt =

∫ T

0
e(t)

(
Au′)(t) dt. (2.7)

From Eq. (2.7), we arrive at

∣∣
∣∣P

∫ T

0

∣
∣u′(t)

∣
∣2 dt

∣∣
∣∣ =

∣∣
∣∣Pc

∫ T

0
u′(t)u′(t – τ ) dt +

∫ T

0
e(t)

(
Au′)(t) dt

∣∣
∣∣.
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From the Hölder inequality and
∫ T

0 |u′(t – τ )|2 dt =
∫ T

0 |u′(t)|2 dt, we see that

|P|
∫ T

0

∣
∣u′(t)

∣
∣2 dt ≤ |P||c|

∫ T

0

∣
∣u′(t)

∣
∣
∣
∣u′(t – τ )

∣
∣dt +

(
1 + |c|)

∫ T

0

∣
∣e(t)

∣
∣
∣
∣u′(t)

∣
∣dt

≤ |P||c|
(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2
(∫ T

0

∣∣u′(t – τ )
∣∣2 dt

) 1
2

+
(
1 + |c|)

(∫ T

0

∣
∣e(t)

∣
∣2 dt

) 1
2
(∫ T

0

∣
∣u′(t)

∣
∣dt

) 1
2

= |P||c|
∫ T

0

∣∣u′(t)
∣∣2 dt +

(
1 + |c|)‖e‖2

(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2

,

where ‖e‖2 := (
∫ T

0 |e(t)|2 dt) 1
2 . Obviously, |P| – |P||c| > 0, since |c| < 1. Hence, we deduce

(∫ T

0

∣
∣u′(t)

∣
∣2 dt

) 1
2 ≤ (1 + |c|)‖e‖2

|P| – |P||c| := M′
1. (2.8)

From Eqs. (2.3), (2.8) and the Hölder inequality, we see that

u(t) = u(ξ ) +
∫ t

ξ

u′(s) ds ≤ d2 +
√

T
(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2

≤ d2 +
√

T
(1 + |c|)‖e‖2

|P| – |P||c| := M1. (2.9)

On the other hand, from Eq. (2.2), it is clear that

∫ T

0

∣∣g
(
u(t)

)∣∣dt =
∫

g(u(t))≥0
g
(
u(t)

)
dt –

∫

g(u(t))≤0
g
(
u(t)

)
dt

= 2
∫

g(u(t))≥0
g
(
u(t)

)
dt –

∫ T

0
e(t) dt. (2.10)

Case (I). If e := 1
T

∫ T
0 e(t) dt ≤ 0, from Eq. (2.10), we have

∫ T

0

∣
∣g

(
u(t)

)∣∣dt ≤ 2
∫ T

0

(
g+(

u(t)
)

– e(t)
)

dt,

where g+(u) := max{g(u), 0}. Since g+(u(t)) – e(t) ≥ 0, from condition (H1), we know u(t) ≥
d2. Then we deduce

∫ T

0

∣∣g
(
u(t)

)∣∣dt ≤ 2
∫ T

0
g+(

u(t)
)

dt +
∫ T

0

∣∣e(t)
∣∣dt

≤ 2T
∥∥g+

M1

∥∥ + T
1
2 ‖e‖2, (2.11)
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where ‖g+
M1

‖ := maxd2≤u≤M1 g+(u). As (Au)(0) = (Au)(T), there exists a point t1 ∈ [0, T]
such that (Au)′(t1) = 0, from Eqs. (2.2), (2.8) and (2.11), we have

∥
∥φp

(
(Au)′

)∥∥ = max
t∈[t1,t1+T]

{∣∣
∣∣

∫ t

t1

(
φp

(
(Au)′(s)

))′ ds
∣∣
∣∣

}

≤ |P|
∫ T

0

∣
∣u′(t)

∣
∣dt +

∫ T

0

∣
∣g

(
u(t)

)∣∣dt +
∫ T

0

∣
∣e(t)

∣
∣dt

≤ |P|T 1
2

(∫ T

0

∣∣u′(t)
∣∣2 dt

) 1
2

+
∫ T

0

∣∣g
(
u(t)

)∣∣dt +
∫ T

0

∣∣e(t)
∣∣dt

≤ |P|T 1
2 M′ 1

2
1 + 2T

∥∥g+
M1

∥∥ + 2T
1
2 ‖e‖2 := M′

2. (2.12)

We claim that there exists a positive constant M∗∗
2 > M′

2 + 1 such that, for all t ∈R,

∥∥(Au)′
∥∥ ≤ M∗∗

2 . (2.13)

In fact, if x′ is not bounded, there exists a positive constant M′′
2 such that ‖u′‖ > M′′

2 for
some u′ ∈R. Therefor, it is clear that

∥∥φp(Au)′
∥∥ =

∥∥φp
(
Au′)∥∥ =

∥∥Au′∥∥p–1 =
(
1 + |c|)p–1∥∥u′∥∥p–1 ≥ (

1 + |c|)p–1M′′p–1
2 := M∗

2.

Then we have a contradiction. So, Eq. (2.13) holds. By Lemma 2.1 and Eq. (2.13), we get

∥∥u′∥∥ =
∥∥A–1Au′∥∥ =

∥∥A–1(Au)′
∥∥

≤ ‖(Au)′‖
1 – |c|

≤ M∗∗
2

1 – |c| := M2, (2.14)

since |c| < 1.
Case (II). If e > 0, from Eq. (2.10), we obtain

∫ T

0

∣
∣g

(
u(t)

)∣∣dt ≤ 2
∫ T

0
g+(

u(t)
)

dt.

Since g+(u(t)) ≥ 0, from condition (H1), we know that there exists a positive constant d∗
2

such that u(t) ≥ d∗
2 . Therefore, we see that

∫ T

0

∣
∣g

(
u(t)

)∣∣dt ≤ 2
∫ T

0
g+(

u(t)
)

dt

≤ 2T
∥
∥g+

M
∥
∥,

where ‖g+
M‖ := maxd∗

2≤u≤M1 g+(x). Similarly, we deduce ‖u′‖ ≤ M2.
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Multiplying both sides of Eq. (2.1) by u′(t) and integrating on the interval [ξ , t], where
ξ ∈ [0, T] is defined in Eq. (2.3), we get

λ

∫ u(t)

u(ξ )
g(v) dv = λ

∫ t

ξ

g
(
u(s)

)
u′(s) ds

= –
∫ t

ξ

(
φp

(
(Au)′(s)

))′u′(s) ds – λP
∫ t

ξ

|u′(s)|2 ds

+ λ

∫ t

ξ

e(s)u′(s) ds. (2.15)

Furthermore, from Eqs. (2.12), (2.8) and (2.14), we get

λ

∣∣
∣∣

∫ u(t)

u(ξ )
g(v) dv

∣∣
∣∣ ≤

∫ t

ξ

∣
∣(φp

(
(Au)′(s)

))′∣∣∣∣u′(s)
∣
∣ds + λP

∫ t

ξ

∣
∣u′(s)

∣
∣2 ds

+ λ

∫ t

ξ

∣∣e(s)
∣∣∣∣u′(s)

∣∣ds

≤ λM2M′
2 + λ|P|(M′

1
)2 + λM2T

1
2 ‖e‖2 := λM′

3.

From the repulsive condition (g1), we know that there exists a constant M3 > 0 such that

u(t) ≥ M3, ∀t ∈ [ξ , T]. (2.16)

Similarly, we can discuss t ∈ [0, ξ ].
From Eqs. (2.3), (2.9), (2.14) and (2.16), it is obvious that a periodic solution u to Eq. (2.1)

satisfies

E1 < u(t) < E2,
∥∥u′∥∥ < E3.

Then the condition (1) of Lemma 2.2 is satisfied. For a possible solution C to the equation

g(C) –
1
T

∫ T

0
e(t) dt = 0,

we have C ∈ (E1, E2). Hence, the condition (2) of Lemma 2.2 holds. Finally, it is clear that
the condition (3) of Lemma 2.2 is also satisfied. In fact, from condition (H1), we can get

g(E1) –
1
T

∫ T

0
e(t) dt < 0

and

g(E2) –
1
T

∫ T

0
e(t) dt > 0.

Using Lemma 2.2, it is concluded that Eq. (1.2) has at least one positive periodic solution.
�
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2.2 Proof of Theorem 1.2

Proof of Theorem 1.2 The same strategy and notation are followed as in the proof of The-
orem 1.1. Then we see that

u(t) ≤ d2 +
∫ T

0

∣∣u′(t)
∣∣dt. (2.17)

Multiplying both sides of Eq. (2.1) by (Au)(t) and integrating on the interval [0, T], it is
clear that

∫ T

0

(
φp

(
(Au)′(t)

))′(Au)(t) dt + λP
∫ T

0
u′(t)(Au)(t) dt + λ

∫ T

0
g
(
u(t)

)
(Au)(t) dt

= λ

∫ T

0
e(t)(Au)(t) dt. (2.18)

Substituting
∫ T

0 (φp(Au)′(t))′(Au)(t) dt = –
∫ T

0 |(Au)′(t)|p dt and P
∫ T

0 u′(t)u(t) dt = 0 into
Eq. (2.18), we have

∫ T

0

∣
∣(Au)′(t)

∣
∣p dt = –λPc

∫ T

0
u′(t)u(t – τ ) dt + λ

∫ T

0
g
(
u(t)

)(
u(t) – cu(t – τ )

)
dt

– λ

∫ T

0
e(t)

(
u(t) – cu(t – τ )

)
dt. (2.19)

Furthermore, we deduce

∫ T

0
u′(t)u(t – τ ) dt =

∫ T

0
u(t – τ ) du(t) =

∫ T

0
u(t – τ ) du(t – τ ) = 0. (2.20)

From condition (H2) and u(t) > 0, we see that

∫ T

0
g
(
u(t)

)
u(t) dt ≤ α

∫ T

0

(
u(t)

)p dt + β

∫ T

0
u(t) dt. (2.21)

Substituting Eqs. (2.20) and (2.21) into (2.19), applying the Hölder inequality, we obtain

∫ T

0

∣∣(Au)′(t)
∣∣p dt ≤ α

∫ T

0

(
u(t)

)p dt + β

∫ T

0
u(t) dt + |c|

∫ T

0

∣∣g
(
u(t)

)∣∣∣∣u(t – τ )
∣∣dt

+
(
1 + |c|)‖u‖

∫ T

0

∣
∣e(t)

∣
∣dt

≤ αT‖u‖p + βT‖u‖ + |c|‖u‖
∫ T

0

∣∣g
(
u(t)

)∣∣dt

+
(
1 + |c|)‖u‖T

1
2 ‖e‖2. (2.22)

From Eq. (2.10) and condition (H2), we get

∫ T

0

∣∣g
(
u(t)

)∣∣dt = 2
∫

g(u(t))≥0
g
(
u(t)

)
dt –

∫ T

0
e(t) dt

≤ 2α‖u‖p–1T + 2βT + ‖e‖2T
1
2 . (2.23)
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Substituting Eqs. (2.17) and (2.23) into (2.22), we see that

∫ T

0

∣
∣(Au)′(t)

∣
∣p dt

≤ α
(
1 + 2|c|)T‖u‖p +

(
1 + 2|c|)(βT + T

1
2 ‖e‖2

)‖u‖

≤ α
(
1 + 2|c|)T

(
d2 +

∫ T

0

∣∣u′(t)
∣∣dt

)p

+ N1

(
d2 +

∫ T

0

∣∣u′(t)
∣∣dt

)

= α
(
1 + 2|c|)T

((∫ T

0

∣
∣u′(t)

∣
∣dt

)p

+ pd2

(∫ T

0

∣
∣u′(t)

∣
∣dt

)p–1

+ · · · + dp
2

)

+ N1

(
d2 +

∫ T

0

∣∣u′(t)
∣∣dt

)
, (2.24)

where N1 := (1 + 2|c|)(βT + T 1
2 ‖e‖2). Applying Lemma 2.1, we have

∫ T

0

∣∣u′(t)
∣∣dt =

∫ T

0

∣∣(A–1Au′)(t)
∣∣dt

≤
∫ T

0 |(Au)′(t)|dt
|c| – 1

≤ T
1
q (

∫ T
0 |(Au)′(t)|p dt)

1
p

|c| – 1
, (2.25)

since 1
p + 1

q = 1 and |c| > 1. We apply the inequality

(x + y)k ≤ xk + yk , for x, y > 0, 0 < k < 1.

Substituting Eqs. (2.24) into (2.25), we have

∫ T

0

∣
∣u′(t)

∣
∣dt ≤ α

1
p (1 + 2|c|) 1

p T
∫ T

0 |u′(t)|dt
|c| – 1

+
α

1
p (1 + 2|c|) 1

p (pd2)
1
p T(

∫ T
0 |u′(t)|dt)

p–1
p

|c| – 1

+ · · · +
T

1
q (N

1
p

1 + (pdp–1
2 )

1
p )(

∫ T
0 |u′(t)|dt)

1
p + T

1
p (d2 + (N1d2)

1
p )

|c| – 1
.

Since α
1
p (1 + 2|c|) 1

p T < |c| – 1, we know that there exists a positive constant M′
1 such that

∫ T

0

∣∣u′(t)
∣∣dt ≤ M′

1. (2.26)

From Eqs. (2.17) and (2.26), we have

‖u‖ ≤ d2 +
1
2

∫ T

0

∣∣u′(t)
∣∣dt ≤ d2 +

M′
1

2
:= M1.

The proof is left for the reader, being the same as that of Theorem 1.1. �
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3 Periodic solution for Eq. (1.2) with strong singularity of attractive type
3.1 Proof of Theorem 1.5

Proof of Theorem 1.5 We follow the same strategy and notation as in the proof of Theo-
rem 1.1. We can get

u(t) ≤ M1.

From Eq. (2.10), we have

∫ T

0

∣∣g
(
u(t)

)∣∣dt =
∫

g(u(t))≥0
g
(
u(t)

)
dt –

∫

g(u(t))≤0
g
(
u(t)

)
dt

= –2
∫

g(u(t))≤0
g–(

u(t)
)

dt +
∫ T

0
e(t) dt, (3.1)

where g– := min{g(u), 0}.
Case (I). If e ≥ 0, from Eq. (3.1), we obtain

∫ T

0

∣∣g
(
u(t)

)∣∣dt ≤ –2
∫ T

0

(
g–(

u(t)
)

– e(t)
)

dt.

Since g–(u(t)) – e(t) ≤ 0, from condition (H3), we know that u(t) ≥ d4. Then we deduce

∫ T

0

∣
∣g

(
u(t)

)∣∣dt ≤ –2
∫ T

0
g–(

u(t)
)

dt +
∫ T

0

∣
∣e(t)

∣
∣dt

≤ 2T
∥∥g–

M1

∥∥ + T
1
2 ‖e‖2, (3.2)

where ‖g–
M1

‖ := maxd4≤u≤M1 (–g–(u)). From Eqs. (2.12) and (3.2), we see that

∥∥φp
(
(Au)′

)∥∥ ≤ |p|
∫ T

0

∣∣u′(t)
∣∣dt +

∫ T

0

∣∣g
(
u(t)

)∣∣dt +
∫ T

0

∣∣e(t)
∣∣dt

≤ |p|T 1
2 M′ 1

2
1 + 2T

∥∥g–
M1

∥∥ + 2T
1
2 ‖e‖2 := M′

2. (3.3)

Case (II). If e < 0, from Eq. (3.1), we arrive at

∫ T

0

∣
∣g

(
u(t)

)∣∣dt ≤ –2
∫ T

0
g–(

u(t)
)

dt.

Since g–(u(t)) ≤ 0, from condition (H3), we know that there exists a positive constant d∗
4

such that u(t) ≥ d∗
4 . Therefore, we have

∫ T

0

∣
∣g

(
u(t)

)∣∣dt ≤ –2
∫ T

0
g–(

u(t)
)

dt

≤ 2T
∥∥g–

M
∥∥,

where ‖g–
M‖ := maxd∗

4≤u≤M1 (–g–(u)). Similarly, we can get |φp((Au)′(t))| ≤ M′
2.

The proof left for the reader, being the same as that of Theorem 1.1. �
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3.2 Proof of Theorem 1.6

Proof of Theorem 1.6 The same strategy and notation are followed as in the proof of The-
orem 1.2. We only consider

∫ T
0 |g(u(t))|dt. From Eqs. (2.23), (3.1) and condition (H4), we

deduce

∫ T

0

∣∣g
(
u(t)

)∣∣dt = –2
∫

g(u)≤0
g–1(u(t)

)
dt +

∫ T

0
e(t) dt

≤ 2m‖u‖p–1T + 2nT + T
1
2 ‖e‖2. (3.4)

From Eqs. (2.24) and (3.1), we obtain

∫ T

0

∣∣(Au)′(t)
∣∣p dt ≤ m

(
1 + 2|c|)T

((∫ T

0

∣∣u′(t)
∣∣dt

)p

+ · · · + dp
4

)

+ N1

(
d4 +

∫ T

0

∣∣u′(t)
∣∣dt

)
.

The proof left for the reader, being the same as that of Theorem 1.1. �

4 Examples
Example 4.1 Consider the following neutral Duffing equation with strong singularity of
repulsive type:

(
φp

(
u(t) –

1
2

u(t – τ )
)′)′

+ Pu′(t) +
n∑

i=1

u2i(t) –
1

uμ
= ecos t , (4.1)

where τ is a positive constant and 0 < τ < T , P and μ are constants and μ ≥ 1, n is an
integer.

Comparing Eqs. (4.1) to (1.2), we know that g(u) =
∑n

i=1 u2i(t) – 1
uμ , T = 2π , c = 1

2 < 1.
Obviously, there exist constants d1 = 0.1 and d2 = 1 such that condition (H1) holds. In
fact, limu→0+

∫ u
1 g(s) ds = limu→0+

∫ u
1 (

∑n
i=1 u2i(t) – 1

uμ ) ds = +∞, thus, the condition (H2)
holds. Therefore, applying Theorem 1.1, we know that Eq. (4.1) has at least one positive
2π-periodic solution.

Example 4.2 Consider the following neutral Duffing equation with strong singularity of
attractive type:

(
φp

(
u(t) – 40u(t – τ )

)′)′ + 8u′(t) – 16u3 +
1
u

= esin 2t , (4.2)

where p = 4, τ is a constant and 0 ≤ τ < T .
It is clear that T = π , P = 8, c = 40 > 1, g(u) = 16u3 – 1

u , e(t) = esin 2t . Obviously, it is
easy to see that there exist constants d3 = 1

4 and d4 = 3
5 such that condition (H3) holds.

limu→0+
∫ u

1 g(s) ds = limu→0+
∫ u

1 (–16s3 + 1
s ) ds = –∞, thus, the condition (g2) holds. Con-

sider –g(u) ≤ 16u3 + 1, where m = 16, n = 1. So, condition (H4) is satisfied. Next, it is
verified that

m
1
p (1 + 2|c|) 1

p T
|c| – 1

=
2 × 3 × π

39
< 1.
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Therefore, using Theorem 1.6, it is concluded that Eq. (4.2) has at least one positive π-
periodic solution.

5 Conclusion
In this paper, using the Manásevich–Mawhin theorem on the continuous case of topo-
logical degree, we discuss the existence of a positive periodic solution for the p-Laplacian
neutral Duffing equation (1.2). The nonlinear term g satisfies the strong singularity of at-
tractive and repulsive type at u = 0 and may obey the sub-linearity, semi-linearity or super-
linearity conditions at u = ∞. First, we obtain the existence of a positive periodic solution
for Eq. (1.2) with a strong singularity of repulsive type. Afterwards, we prove the existence
of a positive periodic solution for Eq. (1.2) with a strong singularity of attractive type. Our
results improve and extend the results in [1, 2, 8, 11].
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