# Adaptive wavelet estimations for the derivative of a density in GARCH-type model 

Kaikai Cao ${ }^{1 *}$ and Jingyi Wei ${ }^{1}$

"Correspondence:
caokaikai@emails.bjut.edu.cn
' Department of Applied Mathematics, Beijing University of Technology, Beijing, P.R. China


#### Abstract

Recently, Rao investigated the estimations for the derivative of a density in GARCH-type model $S=\sigma^{2} Z$ over $L^{2}$-risk (Commun. Stat., Theory Methods 46:2396-2410, 2017). This paper extends those estimations to $L^{p}$-risk $(1 \leq p<\infty)$. In addition, we provide a lower bound for this model, which indicates one of our convergence rates to be nearly-optimal.


Keywords: Wavelets; GARCH-type model; Derivative; Besov spaces

## 1 Introduction

The GARCH-type model

$$
S=\sigma^{2} Z
$$

is considered in this paper, where $\sigma^{2}$ and $Z$ are independent random variables. In practice, we always assume that the density function $f_{\sigma^{2}}$ of $\sigma^{2}$ is unknown and $\operatorname{supp} f_{\sigma^{2}} \subseteq$ $[0,1]$, while the density of $Z$ is known. We want to estimate the first derivative of $f_{\sigma^{2}}$ based on $n$ independent and identically distributed (i.i.d.) observed samples $S_{1}, \ldots, S_{n}$ of $S$ by wavelet methods, so that we also need suppose the differentiability of $f_{\sigma^{2}}$ and $f_{\sigma^{2}}^{\prime} \in L^{p}([0,1])$.

Non-parametric estimations of a density and regression function are widely investigated in the literature [12, 14, 16]. It is well known that the estimations for the derivatives of a density are also important and interesting, which could reflect monotonicity, concavity or convexity properties of density functions. Asymptotic properties of the kernel estimators for a density derivative have been considered earlier in [15], while the wavelet type estimator was discussed in [17].
As usual, we consider the $L^{p}$ minimax risk ( $L^{p}$-risk) [13],

$$
\inf _{\hat{f}_{n} f_{\sigma^{2}} \in \Sigma} E\left\|\hat{f}_{n}-f_{\sigma^{2}}\right\|_{p}
$$

where the infimum runs over all possible estimators $\hat{f}_{n}$ and $\Sigma$ is a class of functions. Here and after, $E X$ stands for the mathematical expectation of a random variable $X$ and $\|f\|_{p}$ denotes the ordinary $L^{p}$ norm.

In 2012, Chesneau and Doosti [9] investigated the wavelet estimation of density for GARCH model under various dependence structures. Next year, Chesneau [8] studied the wavelet estimation of a density in GARCH-type model leading to upper bounds under $L^{2}$-risk. In 2017, Rao [17] considered $L^{2}$-risk for the derivative of a density in GARCH-type model over a Besov ball by wavelets.

In this paper, we address to extend Rao's work [17] to $L^{p}$-risk $(1 \leq p<\infty)$. Moreover, we show that one of our convergence rates is nearly-optimal. On the other hand, this work can also be seen as a generalization of multiplicative censoring model. Vardi $[18,19]$ introduced the multiplicative censoring model which unifies several models including nonparametric inference for renewal processes, non-parametric deconvolution problems and estimation of decreasing density functions. Recently, Abbaszadeh et al. [1] considered the wavelet estimation of a density and its derivatives under $L^{p}$-risk $(1 \leq p<\infty)$ in the multiplicative censoring one. The density estimations for the multiplicative censoring model also can be found in $[2,3]$ and $[6,7]$.
This paper is organized as follows. Section 2 briefly describes the Besov ball and wavelet estimators. The theoretical results are given in Sect. 3. Some lemmas are provided in Sect. 4. The proofs are gathered in Sect. 5.

## 2 Besov ball and estimators

This section describes the Besov ball and wavelet estimators. First, we introduce the Besov ball and its wavelet characterizations.

### 2.1 Besov ball

Let $W_{r}^{n}(\mathbb{R})$ be the Sobolev space with a non-negative integer $n$,

$$
W_{r}^{n}(\mathbb{R}):=\left\{f: f \in L^{r}(\mathbb{R}), f^{(n)} \in L^{r}(\mathbb{R})\right\},
$$

and $\|f\|_{W_{r}^{n}}:=\|f\|_{r}+\left\|f^{(n)}\right\|_{r}$. Then $L^{r}(\mathbb{R})$ can be considered as $W_{r}^{0}(\mathbb{R})$. For $1 \leq r, q \leq \infty$ and $s=n+\alpha$ with $\alpha \in(0,1]$, a Besov space $B_{r, q}^{s}(\mathbb{R})$ is defined by

$$
B_{r, q}^{s}(\mathbb{R}):=\left\{f: f \in W_{r}^{n}(\mathbb{R}),\left\|t^{-\alpha} \omega_{r}^{2}\left(f^{(n)}, t\right)\right\|_{q}^{*}<\infty\right\}
$$

with the norm $\|f\|_{B_{r, q}^{s}}:=\|f\|_{W_{r}^{n}}+\left\|t^{-\alpha} \omega_{r}^{2}\left(f^{(n)}, t\right)\right\|_{q}^{*}$. Here, $\omega_{r}^{2}(f, t):=\sup _{|h| \leq t} \| f(\cdot+2 h)-2 f(\cdot+$ $h)+f(\cdot) \|_{r}$ denotes the smoothness modulus of $f$ and

$$
\|h\|_{q}^{*}:= \begin{cases}\left(\int_{0}^{+\infty}|h(t)|^{q} \frac{d t}{t}\right)^{\frac{1}{q}} & \text { if } 1 \leq q<\infty ; \\ \operatorname{esssup}_{t}|h(t)| & \text { if } q=\infty .\end{cases}
$$

When $s>0$ and $1 \leq r, q, r^{\prime} \leq \infty$, it is well known that
(i) $B_{r, q}^{s} \hookrightarrow B_{r, \infty}^{s} \hookrightarrow B_{\infty, \infty}^{s-\frac{1}{r}}$ for $s>\frac{1}{r}$;
(ii) $B_{r, q}^{s} \hookrightarrow B_{r^{\prime}, q}^{s^{\prime}}$ for $r \leq r^{\prime}$ and $s-\frac{1}{r}=s^{\prime}-\frac{1}{r^{\prime}}$;
(iii) $B_{\infty, \infty}^{s}(\mathbb{R})$ is the classical Hölder space $H^{s}(\mathbb{R})$,
where $A \hookrightarrow B$ stands for a Banach space $A$ continuously embedded in another Banach space $B$. More precisely, $\|u\|_{B} \leq c_{1}\|u\|_{A}(u \in A)$ holds for some constant $c_{1}>0$. By (i), $B_{r, q}^{s}(\mathbb{R}) \hookrightarrow L^{\infty}(\mathbb{R})$ for $s>\frac{1}{r}$. All these notations and claims can be found in [13].

In this paper, a Besov ball

$$
B_{r, q}^{s}(M)=\left\{f \in B_{r, q}^{s}(\mathbb{R}):\|f\|_{B_{r, q}^{s}}^{s} \leq M\right\}, \quad M>0,
$$

is considered.
Let $\phi$ be a scaling function and $\psi$ be the corresponding wavelet function such that

$$
\left\{\phi_{\tau, k}, \psi_{j, k}: j \geq \tau, k \in \mathbb{Z}\right\}
$$

constitutes an orthonormal basis of $L^{2}(\mathbb{R})$, where $\tau$ is a positive integer and $g_{j, k}(x)=$ $2^{\frac{j}{2}} g\left(2^{j} x-k\right)$ for $g=\phi$ or $\psi$. Then, for $h \in L^{2}(\mathbb{R})$,

$$
\begin{equation*}
h=\sum_{k \in \Omega_{\tau}} \alpha_{\tau, k} \phi_{\tau, k}+\sum_{j=\tau}^{\infty} \sum_{k \in \Omega_{j}} \beta_{j, k} \psi_{j, k} \tag{1}
\end{equation*}
$$

with $\alpha_{j, k}=\left\langle h, \phi_{j, k}\right\rangle, \beta_{j, k}=\left\langle h, \psi_{j, k}\right\rangle$ and

$$
\Omega_{j}=\left\{k \in \mathbb{Z}: \operatorname{supp} h \cap \operatorname{supp} \phi_{j, k} \neq \emptyset\right\} \cup\left\{k \in \mathbb{Z}: \operatorname{supp} h \cap \operatorname{supp} \psi_{j, k} \neq \emptyset\right\} .
$$

In particular, when $\phi, \psi$ and $h$ have compact supports, the cardinality of $\Omega_{j}$ satisfies $\left|\Omega_{j}\right| \leq$ $C 2^{j}$, where $C>0$ is a constant depending only on the support lengths of $\phi, \psi$ and $h$.
As usual, the orthogonal projection operator $P_{j}$ is given by

$$
\begin{equation*}
P_{j} h=\sum_{k \in \Omega_{j}} \alpha_{j, k} \phi_{j, k} . \tag{2}
\end{equation*}
$$

When $\phi \in C^{m}$ (so does $\psi$ ) is compactly supported, the identity (1) and (2) hold in $L^{p}$ sense for $p \geq 1$ [13]. Here and throughout, $C^{m}$ stands for the set consisting of all $m$ times continuously differentiable functions.
The following wavelet characterization theorem of Besov space is needed in Sect. 5 .

Lemma 2.1 ([13]) Let a scaling function $\phi \in C^{m}$ be compactly supported. Then, for $r, q \in$ $[1,+\infty], 0<s<m$ and $h \in L^{r}(\mathbb{R})$, the following assertions are equivalent:
(i) $\quad h \in B_{r, q}^{s}(\mathbb{R})$;
(ii) $\quad 2^{j s}\left\|P_{j} h-h\right\|_{r} \in l_{q}$;
(iii) $\left\|\alpha_{j_{0},} \cdot\right\|_{l_{r}}+\left\|\left\{2^{j\left(s+\frac{1}{2}-\frac{1}{r}\right)}\left\|\beta_{j_{0},} \cdot\right\|_{l_{r}}\right\}_{j \geq j_{0}}\right\|_{l_{q}}<\infty$.

In each case,

$$
\|h\|_{B_{r, q}^{s}} \sim\|h\|_{s, r, q}:=\left\|\alpha_{j_{0},} \cdot\right\|_{l_{r}}+\left\|\left\{2^{j\left(s+\frac{1}{2}-\frac{1}{r}\right)}\left\|\beta_{j_{0}, \cdot}\right\|_{l_{r}}\right\}_{j \geq j_{0}}\right\|_{l_{q}} .
$$

Here and afterwards, $A \lesssim B$ means $A \leq c_{2} B$ for some constant $c_{2}>0 ; A \gtrsim B$ denotes $B \lesssim A$; we also use $A \sim B$ to stand for both $A \lesssim B$ and $A \gtrsim B$.

### 2.2 Estimators

This part introduces our wavelet estimators for the GARCH-type model $S=\sigma^{2} Z$ described earlier. Suppose

$$
Z=\prod_{i=1}^{v} U_{i},
$$

where $v$ is a known positive integer and $U_{1}, \ldots, U_{v}$ are i.i.d. random variables with standard uniform distribution. Clearly, the density function of $Z$ satisfies

$$
f_{Z}(z)=\frac{1}{(v-1)!}(-\ln z)^{\nu-1}, \quad 0 \leq z \leq 1 .
$$

As in $[8,17]$, we assume that there exists a known constant $C_{*}$ such that

$$
\begin{equation*}
\sup _{x \in[0,1]} f_{s}(x) \leq C_{*}, \tag{3}
\end{equation*}
$$

where $f_{s}$ is the density function of $S$.
For any $x \in[0,1], h \in C^{k}([0,1])$, we define

$$
\begin{equation*}
T(h)(x)=(x h(x))^{\prime}=h(x)+x h^{\prime}(x), \quad T_{k}(h)(x)=T\left(T_{k-1}(h)\right)(x) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
G(h)(x)=-x h^{\prime}(x), \quad G_{k}(h)(x)=G\left(G_{k-1}(h)\right)(x) \tag{5}
\end{equation*}
$$

where $k$ is a positive integer. Then the following lemma holds.

Lemma 2.2 ([8]) Let $G$ and $T$ be defined as above. Then
(i) $f_{\sigma^{2}}(x)=G_{\nu}\left(f_{s}\right)(x), x \in[0,1]$;
(ii) For any $h \in C^{y}([0,1])$,

$$
\int_{0}^{1} f_{\sigma^{2}}(x) h(x) d x=\int_{0}^{1} f_{s}(x) T_{v}(h)(x) d x
$$

Next, we will introduce wavelet estimators, which can be found in Ref. [17]. Define

$$
\begin{equation*}
\widehat{\alpha}_{j 0, k}=-\frac{1}{n} \sum_{i=1}^{n} T_{v}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{i}\right) \quad \text { and } \quad \widehat{\beta}_{j, k}=-\frac{1}{n} \sum_{i=1}^{n} T_{v}\left(\left(\psi_{j, k}\right)^{\prime}\right)\left(S_{i}\right) . \tag{6}
\end{equation*}
$$

Here and after, let $\phi$ be Daubechies' scaling function $D_{2 N}$ with large N and $\psi$ be the corresponding wavelet function. It is well known that $\phi, \psi \in C^{\nu+1}$ with $N$ large enough. Furthermore, the linear wavelet estimator is given by

$$
\begin{equation*}
\widehat{f_{\sigma^{2}}^{\prime}} \operatorname{lin}=\sum_{k \in \Omega_{j_{0}}} \widehat{\alpha}_{j 0, k} \phi_{j_{0}, k} \tag{7}
\end{equation*}
$$

where $j_{0}$ is a positive integer which will be chosen later.

In order to get adaptivity, we need the thresholding method [4, 14, 17]. As in [17], let

$$
2^{j_{1}} \sim\left(\frac{n}{\ln n}\right)^{\frac{1}{2(\nu+1)+1}}, \quad \lambda_{j}=2^{(\nu+1) j} \sqrt{\frac{j}{n}}, \quad \widetilde{\beta}_{j, k}=\widehat{\beta}_{j, k} I\left\{\left|\widehat{\beta}_{j, k}\right| \geq \Upsilon \lambda_{j}\right\}
$$

with the constants $\Upsilon=c \gamma, c>\max \left\{8 C_{\min }, 1\right\}$ and $\gamma \geq p(2 v+3)$. Here,

$$
\begin{equation*}
C_{\min }=(v+2)!\sum_{u=0}^{v}\left[(v+1)(v+2)!C_{*}\left\|\psi^{(u+1)}\right\|_{2}^{2}+2\left\|\psi^{(u+1)}\right\|_{\infty}\right] \tag{8}
\end{equation*}
$$

with $C_{*}$ given in (3). This special choice $c$ is used in Lemma 4.3, while $\gamma \geq p(2 v+3)$ is needed in the estimations of $E e_{1}$ and $E e_{3}$ (see Sect. 5). Here, we replace $\lambda_{j}=2^{(v+1) j} \sqrt{\frac{\ln n}{n}}$ (see [17]) by $\lambda_{j}=2^{(v+1) j} \sqrt{\frac{j}{n}}$, which is used in the proof of Lemma 4.3. In fact, the universal threshold of classical adaptive density estimation is $\sqrt{\frac{j}{n}}$ (see [11]) and two forms do not influence the convergence rates of our results.
The nonlinear wavelet estimator is given by

$$
\begin{equation*}
{\widehat{f_{\sigma^{2}}^{\prime}}}^{\text {non }}=\sum_{k \in \Omega_{\tau}} \widehat{\alpha}_{\tau, k} \phi_{\tau, k}+\sum_{j=\tau}^{j_{1}} \sum_{k \in \Omega_{j}} \widetilde{\beta}_{j, k} \psi_{j, k} \tag{9}
\end{equation*}
$$

with some positive integer $\tau$.

## 3 Results

This section describes the results in this paper.

Theorem 3.1 Assume $r \in[1,+\infty), q \in[1,+\infty]$ and $s>\frac{1}{r}$, then, for $p \in[1,+\infty)$, the estimator $\widehat{\sigma^{\prime}}{ }^{\operatorname{lin}}$ in (7) with $2^{j_{0}} \sim n^{\frac{1}{2 s^{\prime}+2(\nu+1)+1}}$ satisfies

$$
\sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|\widehat{f_{\sigma^{2}}^{\prime}}-\operatorname{lin}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim n^{-\frac{s^{\prime} p}{2 s^{\prime}+2(v+1)+1}}
$$

where $s^{\prime}=s-\left(\frac{1}{r}-\frac{1}{p}\right)_{+}$and $a_{+}=\max \{a, 0\}$.
Remark 1 When $p=2$ and $r \geq 2$, the above estimation shows

$$
\sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|\widehat{f_{\sigma^{2}}^{\prime}}-\operatorname{lin}_{\sigma^{2}}^{\prime}\right\|_{2}^{2} \lesssim n^{-\frac{2 s}{2 s+2(v+1)+1}},
$$

which coincides with Theorem 5.1 of Ref. [17].

Remark 2 The condition $s>\frac{1}{r}$ can be replaced by $s^{\prime}=s-\left(\frac{1}{r}-\frac{1}{p}\right)_{+}>0$, because the former condition is only used to conclude $B_{r, q}^{s} \hookrightarrow B_{p, q}^{s^{\prime}}$ in the proof of Theorem 3.1.

The next theorem gives an adaptive upper bound estimation by the nonlinear wavelet estimator ${\widehat{f_{\sigma^{2}}^{\prime}}}^{\text {non }}$ in (9).

Theorem 3.2 Let $r \in[1,+\infty), q \in[1,+\infty]$ and $s>\frac{1}{r}$. Then, for $p \in[1,+\infty)$,

$$
\sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|{\widehat{f_{\sigma^{2}}^{\prime}}}^{\text {non }}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim(\ln n)^{p}\left(n^{-1} \ln n\right)^{\alpha p}
$$

with $\alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}\right\}$.
Remark 3 When $s r+\left(v+\frac{3}{2}\right) r-\left(v+\frac{3}{2}\right) p \geq 0, \alpha=\frac{s}{2 s+2(v+1)+1}$. In particular, the above result with $p=2$ coincides with Theorem 5.2 in [17].

Remark 4 The condition $s>\frac{1}{r}$ in Theorem 3.2 can't be replaced by $s^{\prime}=s-\left(\frac{1}{r}-\frac{1}{p}\right)_{+}>0$ for $r \leq p$, since we need $\alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}\right\} \leq \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1} \leq \frac{s-\frac{1}{r}+\frac{1}{p}}{2(v+1)+1}$ for the estimation of $A_{3}$ in Sect. 5.

Remark 5 Let $m$ be a constant such that $m>s$, and $2^{j_{0}} \sim n^{\frac{1}{2 m+2(v+1)+1}}$. Then the number of calculations can be reduced effectively, when the level $\tau$ in ${\widehat{f_{\sigma^{2}}^{\prime}}}^{\text {non }}$ is replaced by $j_{0}$.

The following theorem shows a lower bound estimation.

Theorem 3.3 Assume $s>0$ and $r, q \in[1,+\infty]$, then, for any $p \in[1,+\infty)$,

$$
\inf _{\hat{f}_{\sigma^{2}}^{\prime}} \sup _{f^{\prime}} \in B_{r, q}^{s}(M), ~\| \| \widehat{f}_{\sigma^{2}}^{\prime}-f_{\sigma^{2}}^{\prime} \|_{p}^{p} \gtrsim n^{-\frac{\left(s-\frac{1}{r}+\frac{1}{p}\right) p}{2\left(s-\frac{1}{r}+2(v+1)+1\right.}},
$$

where $\widehat{f}_{\sigma^{2}}^{\prime}$ runs over all possible estimators off $\sigma_{\sigma^{2}}^{\prime}$.

Remark 6 Combining Theorem 3.3 with Theorem 3.2, we find that the convergence rate $\frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}$ is nearly-optimal. As for the other one, we will study it below.

## 4 Some lemmas

This section is devoted to providing some lemmas, which are needed for the proofs of our theorems.

Lemma 4.1 ([13]) Let g be a scaling function or a wavelet function with

$$
\sup _{x \in \mathbb{R}} \sum_{k}|g(x-k)|<+\infty .
$$

Then there exists $C>0$ such that, for $\lambda=\left\{\lambda_{k}\right\} \in l^{p}(\mathbb{Z})$ and $1 \leq p \leq \infty$,

$$
\left\|\sum_{k \in \mathbb{Z}} \lambda_{k} g_{j k}\right\|_{p} \leq C 2^{j\left(\frac{1}{2}-\frac{1}{p}\right)}\|\lambda\|_{l_{p}} .
$$

We need the well-known Rosenthal's inequality [13], in order to prove Lemma 4.2.

Rosenthal's inequality. Let $X_{1}, \ldots, X_{n}$ be independent random variables and $E X_{i}=0$. Then

$$
E\left|\sum_{i=1}^{n} X_{i}\right|^{p} \leq \begin{cases}C_{p}\left[\sum_{i=1}^{n} E\left|X_{i}\right|^{p}+\left(\sum_{i=1}^{n} E\left|X_{i}\right|^{2}\right)^{\frac{p}{2}}\right], & 2 \leq p<\infty \\ \left(\sum_{i=1}^{n} E\left|X_{i}\right|^{2}\right)^{\frac{p}{2}}, & 0<p<2\end{cases}
$$

where $C_{p}>0$ is a constant.
Lemma 4.2 Let $\widehat{\alpha}_{j, k}$ and $\widehat{\beta}_{j, k}$ be given by (6). Then, for $p \in(0,+\infty)$,
(i) $E \widehat{\alpha}_{j, k}=\alpha_{j, k}, E \widehat{\beta}_{j, k}=\beta_{j, k}$;
(ii) $E\left|\widehat{\alpha}_{j, k}-\alpha_{j, k}\right|^{p} \lesssim n^{-\frac{p}{2}} 2^{(v+1) j p}, E\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p} \lesssim n^{-\frac{p}{2}} 2^{(v+1) j p}$,
where $\alpha_{j, k}=\left\langle f_{\sigma^{2}}^{\prime}, \phi_{j, k}\right\rangle$ and $\beta_{j, k}=\left\langle f_{\sigma^{2}}^{\prime}, \psi_{j, k}\right\rangle$.
Proof (i) One only need prove $E \widehat{\alpha}_{j, k}=\alpha_{j, k}$ and the second one is the same. According to the definition of $\widehat{\alpha}_{j, k}$ in (6), one gets

$$
E \widehat{\alpha}_{j, k}=-E\left[T_{v}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{1}\right)\right]=-\int_{0}^{1} T_{v}\left(\left(\phi_{j, k}\right)^{\prime}\right)(x) f_{s}(x) d x
$$

thanks to $S_{1}, \ldots, S_{n}$ are i.i.d. On the other hand, $f_{\sigma^{2}}(0)=f_{\sigma^{2}}(1)=0$ follows from supp $f_{\sigma^{2}} \subseteq$ $[0,1]$ and the continuity of $f_{\sigma^{2}}$. These with Lemma 2.2 imply

$$
E \widehat{\alpha}_{j, k}=-\int_{0}^{1} f_{\sigma^{2}}(x)\left(\phi_{j, k}\right)^{\prime}(x) d x=-\left.f_{\sigma^{2}}(x) \phi_{j, k}(x)\right|_{0} ^{1}+\int_{0}^{1} f_{\sigma^{2}}^{\prime}(x) \phi_{j, k}(x) d x=\alpha_{j, k}
$$

(ii) One also prove the first inequality and the second one is similar. By (6) and the results of (i),

$$
\widehat{\alpha}_{j, k}-\alpha_{j, k}=\widehat{\alpha}_{j, k}-E \widehat{\alpha}_{j, k}=\frac{1}{n} \sum_{i=1}^{n}\left\{E\left[T_{\nu}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right]-T_{\nu}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right\} .
$$

Let $X_{i}:=E\left[T_{v}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right]-T_{v}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)$. Then $X_{1}, \ldots, X_{n}$ are i.i.d., $E X_{i}=0$ and

$$
\begin{equation*}
E\left|\widehat{\alpha}_{j, k}-\alpha_{j, k}\right|^{p}=E\left|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right|^{p}=n^{-p} E\left|\sum_{i=1}^{n} X_{i}\right|^{p} . \tag{10}
\end{equation*}
$$

According to (4),

$$
\begin{equation*}
\left|T_{v}\left(\left(\phi_{j, k}\right)^{\prime}\right)(x)\right| \leq(v+2)!\sum_{u=0}^{v}\left|x^{u}\left(\phi_{j, k}\right)^{(u+1)}(x)\right| . \tag{11}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\sup _{x \in[0,1]}\left|T_{\nu}\left(\left(\phi_{j, k}\right)^{\prime}\right)(x)\right| & \leq(v+2)!\sup _{x \in[0,1]} \sum_{u=0}^{v}\left|x^{u}\left(\phi_{j, k}\right)^{(u+1)}(x)\right| \\
& \leq(v+2)!\sum_{u=0}^{v} \sup _{x \in[0,1]}\left|\left(\phi_{j, k}\right)^{(u+1)}(x)\right|
\end{aligned}
$$

$$
\leq(v+2)!\sum_{u=0}^{v}\left\|\phi^{(u+1)}\right\|_{\infty} 2^{\left(v+\frac{3}{2}\right) j} .
$$

Clearly,

$$
\begin{equation*}
\left|X_{i}\right| \leq E\left|T_{v}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right|+\left|T_{v}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right| \leq C_{1} 2^{\left(v+\frac{3}{2}\right) j} \tag{12}
\end{equation*}
$$

where $C_{1}=2(v+2)!\sum_{u=0}^{v}\left\|\phi^{(u+1)}\right\|_{\infty}$. On the other hand, $\sup _{x \in[0,1]} f_{s}(x) \leq C_{*}$ in (3) and $S_{i} \in[0,1]$ show that

$$
E\left|\left(\phi_{j, k}\right)^{(u+1)}\left(S_{i}\right)\right|^{2}=\int_{0}^{1}\left|\left(\phi_{j, k}\right)^{(u+1)}(x)\right|^{2} f_{s}(x) d x \leq C_{*}\left\|\phi^{(u+1)}\right\|_{2}^{2} 2^{(2 u+2) j}
$$

This with (11) and $S_{i} \in[0,1]$ leads to

$$
\begin{aligned}
E\left[T_{v}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right]^{2} & \leq[(v+2)!]^{2} E\left[\sum_{u=0}^{v}\left|S_{i}^{u}\left(\phi_{j, k}\right)^{(u+1)}\left(S_{i}\right)\right|\right]^{2} \\
& \leq(v+1)[(v+2)!]^{2} \sum_{u=0}^{v} E\left|\left(\phi_{j, k}\right)^{(u+1)}\left(S_{i}\right)\right|^{2} \\
& \leq(v+1)[(v+2)!]^{2} C_{*} \sum_{u=0}^{v}\left\|\phi^{(u+1)}\right\|_{2}^{2} 2^{(2 v+2) j} .
\end{aligned}
$$

Furthermore,

$$
\begin{equation*}
E\left|X_{i}\right|^{2} \leq E\left[T_{\nu}\left(\left(\phi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right]^{2} \leq C_{2} 2^{(2 \nu+2) j} \tag{13}
\end{equation*}
$$

where $C_{2}=(v+1)[(v+2)!]^{2} C_{*} \sum_{u=0}^{v}\left\|\phi^{(u+1)}\right\|_{2}^{2}$.
When $0<p<2$, by using (10), Jensen's inequality and (13),

$$
E\left|\widehat{\alpha}_{j, k}-\alpha_{j, k}\right|^{p}=n^{-p} E\left|\sum_{i=1}^{n} X_{i}\right|^{p} \lesssim n^{-p}\left[\sum_{i=1}^{n} E\left|X_{i}\right|^{2}\right]^{\frac{p}{2}} \lesssim n^{-\frac{p}{2}} 2^{(\nu+1) j p} .
$$

For the case of $2 \leq p<\infty$, according to Rosenthal's inequality,

$$
\begin{aligned}
E\left|\sum_{i=1}^{n} X_{i}\right|^{p} & \lesssim \sum_{i=1}^{n} E\left|X_{i}\right|^{p}+\left(\sum_{i=1}^{n} E\left|X_{i}\right|^{2}\right)^{\frac{p}{2}} \\
& \lesssim n 2^{\left(v+\frac{3}{2}\right)(p-2) j} 2^{(2 v+2) j}+\left(n 2^{(2 v+2) j}\right)^{\frac{p}{2}} \\
& \lesssim n^{\frac{p}{2}} 2^{(v+1) p j}\left[n^{1-\frac{p}{2}} 2^{\left(\frac{p}{2}-1\right) j}+1\right]
\end{aligned}
$$

because of (12) and (13). Moreover, $n^{1-\frac{p}{2}} 2^{\left(\frac{p}{2}-1\right) j} \leq 1$ follows from $2^{j} \leq n$ and $p \geq 2$. Then

$$
E\left|\widehat{\alpha}_{j, k}-\alpha_{j, k}\right|^{p}=n^{-p} E\left|\sum_{i=1}^{n} X_{i}\right|^{p} \lesssim n^{-\frac{p}{2}} 2^{(v+1) p j}
$$

due to (10). This completes the proof.

Bernstein's inequality [13] is necessary in the proof of Lemma 4.3.
Bernstein's inequality. Let $X_{1}, \ldots, X_{n}$ be i.i.d. random variables, $E X_{i}=0$ and $\left|X_{i}\right| \leq\|X\|_{\infty}$ $(i=1, \ldots, n)$. Then, for each $\gamma>0$,

$$
P\left\{\left|\frac{1}{n} \sum_{i=1}^{n}\right|>\gamma\right\} \leq 2 \exp \left(-\frac{n \gamma^{2}}{2\left(E X_{i}^{2}+\|X\|_{\infty} \gamma / 3\right)}\right)
$$

Lemma 4.3 Let $\beta_{j, k}$ be the wavelet coefficient off $f_{\sigma^{2}}^{\prime}, \widehat{\beta}_{j, k}$ be defined in (6) and $\Upsilon=c \gamma$. Then, for any $j>0, j 2^{j} \leq n$ and $\gamma \geq 1$, there exists a constant $c \geq \max \left\{8 C_{\min }, 1\right\}$ such that

$$
P\left\{\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|>\Upsilon \lambda_{j} / 2\right\} \lesssim 2^{-\gamma j}
$$

where $C_{\min }$ is given by (8).
Proof According to the definition of $\widehat{\beta}_{j, k}$ in (6), one obtains

$$
\widehat{\beta}_{j, k}-\beta_{j, k}=\frac{1}{n} \sum_{i=1}^{n}\left\{E\left[T_{v}\left(\left(\psi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right]-T_{v}\left(\left(\psi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right\}=\frac{1}{n} \sum_{i=1}^{n} Y_{i},
$$

where $Y_{i}:=E\left[T_{\nu}\left(\left(\psi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)\right]-T_{\nu}\left(\left(\psi_{j, k}\right)^{\prime}\right)\left(S_{i}\right)$.
Similar to (12) and (13),

$$
\begin{equation*}
\left|Y_{i}\right| \leq C_{1}^{\prime} 2^{\left(v+\frac{3}{2}\right) j}:=M \quad \text { and } \quad E Y_{i}^{2} \leq C_{2}^{\prime} 2^{(2 v+2) j} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{1}^{\prime}=2(v+2)!\sum_{u=0}^{v}\left\|\psi^{(u+1)}\right\|_{\infty} \quad \text { and } \quad C_{2}^{\prime}=(v+1)[(v+2)!]^{2} C_{*} \sum_{u=0}^{v}\left\|\psi^{(u+1)}\right\|_{2}^{2} \tag{15}
\end{equation*}
$$

Then Bernstein's inequality tells that

$$
\begin{equation*}
P\left\{\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|>\Upsilon \lambda_{j} / 2\right\}=P\left\{\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right|>\Upsilon \lambda_{j} / 2\right\} \leq 2 \exp \left\{-\frac{n\left(\Upsilon \lambda_{j} / 2\right)^{2}}{2\left(E Y_{i}^{2}+M \Upsilon \lambda_{j} / 6\right)}\right\} . \tag{16}
\end{equation*}
$$

On the other hand, combining with (14), $\lambda_{j}=2^{(v+1) j} \sqrt{\frac{j}{n}}$ and $2^{j} \leq n$, one shows

$$
\begin{aligned}
E Y_{i}^{2}+M \Upsilon \lambda_{j} / 6 & \leq C_{2}^{\prime} 2^{(2 v+2) j}+\frac{C_{1}^{\prime} \Upsilon}{6} 2^{\left(v+\frac{3}{2}\right) j} 2^{(v+1) j} \sqrt{\frac{j}{n}} \\
& =2^{(2 v+2) j}\left(C_{2}^{\prime}+\frac{C_{1}^{\prime} \Upsilon}{6} \sqrt{\frac{j 2 j}{n}}\right) \leq\left(C_{2}^{\prime}+C_{1}^{\prime} \Upsilon\right) 2^{(2 v+2) j}
\end{aligned}
$$

This with (15), $c \geq \max \left\{8 C_{\text {min }}, 1\right\}$ implies that

$$
\begin{equation*}
\frac{n\left(\Upsilon \lambda_{j} / 2\right)^{2}}{2\left(E Y_{i}^{2}+M \Upsilon \lambda_{j} / 6\right)} \geq \frac{\Upsilon^{2} j}{8\left(C_{2}^{\prime}+C_{1}^{\prime} \Upsilon\right)}=\frac{(c \gamma)^{2} j}{8\left(C_{2}^{\prime}+C_{1}^{\prime} c \gamma\right)} \geq \gamma j \ln 2 \tag{17}
\end{equation*}
$$

thanks to $j>0$ and $\gamma>1$.

Hence, it follows from (16)-(17) that

$$
P\left\{\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|>\Upsilon \lambda_{j} / 2\right\} \leq 2 \exp \left\{-\frac{(c \gamma)^{2} j}{8\left(C_{2}^{\prime}+C_{1}^{\prime} c \gamma\right)}\right\} \lesssim 2^{-\gamma j}
$$

which is the conclusion of Lemma 4.3.

At the end of this section, we list two more lemmas which will play key roles in the proof of Theorem 3.3.

Lemma $4.4([5])$ Let $g \in B_{r, q}^{s}(\mathbb{R})$ and $f(x)=g(b x)(b \geq 1)$. Then

$$
\|f\|_{B_{r, q}^{s}} \leq b^{s-\frac{1}{r}}\|g\|_{B_{r, q}^{s}} .
$$

To state the last lemma, we need a concept: Let $P$ and $Q$ be two probability measures on $(\Omega, \aleph)$ and $P$ be absolutely continuous with respect to $Q$ (denoted by $P \ll Q$ ), the Kullback-Leibler divergence is defined by

$$
K(P, Q):=\int_{p \cdot q>0} p(x) \ln \frac{p(x)}{q(x)} d x
$$

where $p$ and $q$ are density functions of $P, Q$, respectively.
Lemma 4.5 (Fano's lemma, [10]) Let $\left(\Omega, \aleph, P_{k}\right)$ be probability measurable spaces and $A_{k} \in$ $\kappa, k=0,1, \ldots, m$. If $A_{k} \cap A_{v}=\emptyset$ for $k \neq v$, then

$$
\sup _{0 \leq k \leq m} P_{k}\left(A_{k}^{c}\right) \geq \min \left\{\frac{1}{2}, \sqrt{m} \exp \left(-3 e^{-1}-\kappa_{m}\right)\right\}
$$

where $A^{c}$ stands for the complement of $A$ and $\kappa_{m}=\inf _{0 \leq v \leq m} \frac{1}{m} \sum_{k \neq v} K\left(P_{k}, P_{v}\right)$.

## 5 Proofs of results

In this section, we will prove our main results.

### 5.1 Proofs of upper bounds

We rewrite Theorem 3.1 as follows before giving its proof.
Theorem 5.1 Assume $r \in[1,+\infty), q \in[1,+\infty]$ and $s>\frac{1}{r}$, then, for $p \in[1,+\infty)$, the estimator $\widehat{\sigma^{\prime}}{ }^{\text {lin }}$ in (7) with $2^{j_{0}} \sim n^{\frac{1}{2 s^{\prime}+2(v+1)+1}}$ satisfies

$$
\sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|\widehat{f_{\sigma^{2}}^{\prime}} \operatorname{lin}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim n^{-\frac{s^{\prime} p}{2 s^{\prime}+2(v+1)+1}}
$$

where $s^{\prime}=s-\left(\frac{1}{r}-\frac{1}{p}\right)_{+}$and $a_{+}=\max \{a, 0\}$.
Proof When $r>p, s^{\prime}=s-\left(\frac{1}{r}-\frac{1}{p}\right)_{+}=s$. Denote $\Omega=\operatorname{supp}\left(\widehat{f_{\sigma^{2}}^{\prime}}-f_{\sigma^{2}}^{\prime}\right)$. Then

$$
E\left\|\widehat{f_{\sigma^{2}}^{\prime}}-f_{\sigma^{2}}^{\prime \operatorname{lin}}\right\|_{p}^{p}=E \int\left|\widehat{\sigma_{\sigma^{2}}^{\prime}} \operatorname{lin}-f_{\sigma^{2}}^{\prime}\right|^{p} d x
$$

$$
\leq E\left[\int_{\Omega}\left(\left|\widehat{\sigma^{2}} \widehat{\operatorname{lin}}^{\operatorname{lin}}-f_{\sigma^{2}}^{\prime}\right|^{p}\right)^{\frac{r}{p}} d x\right]^{\frac{p}{r}}\left(\int_{\Omega} 1 d x\right)^{1-\frac{p}{r}} \lesssim E\left(\left\|\widehat{f_{\sigma^{2}}^{\prime}} \operatorname{lin}-f_{\sigma^{2}}^{\prime}\right\|_{r}^{r}\right)^{\frac{p}{r}}
$$

due to the Hölder inequality. Furthermore, according to Jensen's inequality and $\frac{p}{r}<1$,

$$
\begin{equation*}
\sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|\widehat{f_{\sigma^{2}}^{\prime}} \operatorname{lin}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim \sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)}\left(E\left\|\widehat{f_{\sigma^{2}}^{\prime}} \operatorname{lin}-f_{\sigma^{2}}^{\prime}\right\|_{r}^{r}\right)^{\frac{p}{r}} . \tag{18}
\end{equation*}
$$

By $s^{\prime}=s-\frac{1}{r}+\frac{1}{p} \leq s$ and $r \leq p$, one finds $B_{r, q}^{s} \hookrightarrow B_{p, q \cdot}^{s^{\prime}}$. Hence,

$$
\begin{equation*}
\sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|\widehat{f_{\sigma^{2}}^{\prime}} \operatorname{lin}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim \sup _{f_{\sigma^{2}}^{\prime} \in B_{p, q}^{s^{\prime}(M)}} E \| \widehat{f_{\sigma^{2}}^{\prime}} \text { lin }-f_{\sigma^{2}}^{\prime} \|_{p}^{p} . \tag{19}
\end{equation*}
$$

Next, one only need estimate $\sup _{f_{\sigma^{\prime}}^{\prime} \in B_{p, q}^{s^{\prime}(M)}} E\left\|\widehat{f_{\sigma^{2}}^{\prime}}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p}$ by (18) and (19). Note that

$$
\begin{align*}
E\left\|\widehat{\sigma_{\sigma^{2}}^{\prime}}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} & \leq E\left[\left\|\widehat{\sigma_{\sigma^{2}}^{\prime}} \operatorname{lin}-P_{j_{0}} f_{\sigma^{2}}^{\prime}\right\|_{p}+\left\|P_{j_{0}} f_{\sigma^{2}}^{\prime}-f_{\sigma^{2}}^{\prime}\right\|_{p}\right]^{p} \\
& \lesssim E\left\|\widehat{f_{\sigma^{2}}^{\prime}} \operatorname{lin}-P_{j_{0}} f_{\sigma^{2}}^{\prime}\right\|_{p}^{p}+\left\|P_{j_{0}} f_{\sigma^{2}}^{\prime}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} . \tag{20}
\end{align*}
$$

Combining $2^{j_{0}} \sim n^{\frac{1}{2 s^{\prime}+2(v+1)+1}}, f_{\sigma^{2}}^{\prime} \in B_{p, q}^{s^{\prime}}(M)$ with Lemma 2.1, one concludes

$$
\begin{equation*}
\left\|P_{j_{0}} f_{\sigma^{2}}^{\prime}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim 2^{-j_{0} s^{\prime} p} \lesssim n^{-\frac{s^{\prime} p}{2 s^{\prime}+2(v+1)+1}} \tag{21}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
E\left\|{\widehat{f_{\sigma^{2}}^{\prime}}}^{\operatorname{lin}}-P_{j_{0}} f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim 2^{j 0\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j_{0}}} E\left|\widehat{\alpha}_{j_{0}, k}-\alpha_{j_{0}, k}\right|^{p} \lesssim n^{-\frac{p}{2}} 2^{\left(v+1+\frac{1}{2}\right) j_{0} p} \tag{22}
\end{equation*}
$$

thanks to Lemma 4.1 and Lemma 4.2. Then it follows

$$
E\left\|\widehat{f_{\sigma^{2}}} \operatorname{lin}-P_{j_{0}} f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim n^{-\frac{s^{\prime} p}{2 s^{\prime}+2(v+1)+1}}
$$

from $2^{j_{0}} \sim n^{\frac{1}{2 s^{\prime}+2(v+1)+1}}$. This with (20) and (21) leads to

$$
\begin{equation*}
\sup _{f_{\sigma^{2}}^{\prime} \in B_{p, q}^{s^{\prime}(M)}} E\left\|\widehat{{\sigma^{2}}^{\prime}}-\operatorname{lin}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim n^{-\frac{s^{\prime} p}{2 s^{\prime}+2(v+1)+1}} . \tag{23}
\end{equation*}
$$

Combining (23) with (18) and (19), one finds that

$$
\sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|\widehat{f_{\sigma^{2}}^{\prime}}-\operatorname{lin}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim n^{-\frac{s^{\prime} p}{2 s^{\prime}+2(v+1)+1}} .
$$

The proof is done.

Now, the upper bound of nonlinear wavelet estimator (Theorem 3.2) is restated below.

Theorem 5.2 Let $r \in[1,+\infty), q \in[1,+\infty]$ and $s>\frac{1}{r}$. Then, for any $p \in[1,+\infty)$, the estimator ${\widehat{f_{\sigma^{2}}^{\prime}}}^{\text {non }}$ in (9) satisfies

$$
\sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|{\widehat{f_{\sigma^{2}}^{\prime}}}^{\text {non }}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim(\ln n)^{p}\left(n^{-1} \ln n\right)^{\alpha p}
$$

where $\alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}\right\}$.
Proof When $r>p$, similar to (18),

$$
\sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|\widehat{f_{\sigma^{2}}^{\prime}}{ }^{\text {non }}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim \sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)}\left(E \| \widehat{f_{\sigma^{2}}^{\prime}} \text { non }-f_{\sigma^{2}}^{\prime} \|_{r}^{r} r^{\frac{p}{r}} .\right.
$$

Hence, it suffices to establish the result for $r \leq p$. According to (1), (2) and (9), $E \|{\widehat{\sigma_{\sigma^{\prime}}^{\prime}}}^{\text {non }}-$ $f_{\sigma^{2}}^{\prime} \|_{p}^{p} \lesssim A_{1}+A_{2}+A_{3}$, where

$$
\begin{aligned}
& A_{1}=E\left\|\sum_{k \in \Omega_{\tau}}\left(\widehat{\alpha}_{j, k}-\alpha_{j, k}\right) \phi_{j, k}\right\|_{p}^{p} ; \quad A_{2}=E\left\|\sum_{j=\tau}^{j_{1}} \sum_{k \in \Omega_{j}}\left(\widetilde{\beta}_{j, k}-\beta_{j, k}\right) \psi_{j, k}\right\|_{p}^{p} \text { and } \\
& A_{3}=\left\|P_{j_{1}+1} f_{\sigma^{2}}^{\prime}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p}
\end{aligned}
$$

Next, one proves $A_{1}+A_{2}+A_{3} \lesssim(\ln n)^{p}\left(n^{-1} \ln n\right)^{\alpha p}$ for $f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)$ and $r \leq p$.
By the same arguments as (22),

$$
A_{1} \lesssim 2^{\tau\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{\tau}} E\left|\widehat{\alpha}_{\tau, k}-\alpha_{\tau, k}\right|^{p} \lesssim n^{-\frac{p}{2}} 2^{\left(v+1+\frac{1}{2}\right) \tau p} \sim n^{-\frac{p}{2}} \lesssim\left(n^{-1} \ln n\right)^{\alpha p}
$$

thanks to $\alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}+2(v+1)+1\right.}\right\}<\frac{1}{2}$.
Note that $f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s} \hookrightarrow B_{p, q}^{s-\frac{1}{r}+\frac{1}{p}}$ for $r \leq p$. This with Lemma 2.1 and $2^{j_{1}} \sim\left(\frac{n}{\ln n}\right)^{\frac{1}{2(v+1)+1}}$ shows

$$
A_{3}=\left\|P_{j_{1}+1} f_{\sigma^{2}}^{\prime}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \lesssim 2^{-j_{1}\left(s-\frac{1}{r}+\frac{1}{p}\right) p} \lesssim\left(\frac{\ln n}{n}\right)^{\frac{\left(s-\frac{1}{r}+\frac{1}{p}\right) p}{2(v+1)+1}} \lesssim\left(n^{-1} \ln n\right)^{\alpha p}
$$

because $s>\frac{1}{r}$ and $\alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}\right\} \leq \frac{s-\frac{1}{r}+\frac{1}{p}}{2(v+1)+1}$.
To estimate $A_{2}$, define

$$
\widehat{B}_{j}=\left\{k:\left|\widehat{\beta}_{j, k}\right| \geq \Upsilon \lambda_{j}\right\} ; \quad B_{j}=\left\{k:\left|\beta_{j, k}\right| \geq \frac{1}{2} \Upsilon \lambda_{j}\right\} \quad \text { and } \quad C_{j}=\left\{k:\left|\beta_{j, k}\right| \geq 2 \Upsilon \lambda_{j}\right\} .
$$

Then $E\left\|\sum_{j=\tau}^{j_{1}} \sum_{k \in \Omega_{j}}\left(\widetilde{\beta}_{j, k}-\beta_{j, k}\right) \psi_{j, k}\right\|_{p}^{p} \lesssim(\ln n)^{p-1} \sum_{i=1}^{4} E e_{i}$ by Lemma 4.1, where

$$
e_{1}=\sum_{j=\tau}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j} \cap B_{j}^{c}\right\} ;
$$

$$
\begin{aligned}
& e_{2}=\sum_{j=\tau}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j} \cap B_{j}\right\} ; \\
& e_{3}=\sum_{j=\tau}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}\right\} ; \\
& e_{4}=\sum_{j=\tau}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}^{c}\right\} .
\end{aligned}
$$

By the Hölder inequality and $\left\{k \in \widehat{B}_{j} \cap B_{j}^{c}\right\} \subseteq\left\{\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|>\Upsilon \lambda_{j} / 2\right\}$,

$$
E\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j} \cap B_{j}^{c}\right\} \leq\left(E\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{2 p}\right)^{\frac{1}{2}} P^{\frac{1}{2}}\left\{\left|\widehat{\mid}_{j, k}-\beta_{j, k}\right|>\Upsilon \lambda_{j} / 2\right\} .
$$

This with Lemma 4.2 and Lemma 4.3 shows that

$$
E e_{1} \lesssim \sum_{j=\tau}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}} n^{-\frac{p}{2}} 2^{j\left[(v+1) p-\frac{\gamma}{2}\right]} \lesssim n^{-\frac{p}{2}} 2^{\tau\left(v p+\frac{3}{2} p-\frac{\gamma}{2}\right)} \lesssim\left(\frac{\ln n}{n}\right)^{\alpha p}
$$

where one uses $\gamma>p(2 v+3)$ and $\alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}\right\}<\frac{1}{2}$.
From $k \in \widehat{B}_{j}^{c} \cap C_{j}$, one finds $\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|>\Upsilon \lambda_{j}$ and $\left|\beta_{j, k}\right| \leq\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|+\left|\widehat{\beta}_{j, k}\right| \leq 2\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|$. On the other hand, $\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}\right\} \subseteq\left\{\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|>\Upsilon \lambda_{j}\right\} \subseteq\left\{\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|>\Upsilon \lambda_{j} / 2\right\}$. Therefore, it follows from the same arguments as $E e_{1}$ that

$$
E e_{3} \lesssim \sum_{j=\tau}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}\right\} \lesssim\left(\frac{\ln n}{n}\right)^{\alpha p}
$$

Next, one estimates $E e_{2}$ and $E e_{4}$. Define

$$
\begin{align*}
& \omega=s r+\left(v+\frac{3}{2}\right) r-\left(v+\frac{3}{2}\right) p, \quad 2^{j \frac{*}{0}} \sim\left(\frac{n}{\ln n}\right)^{\frac{1}{2 s+2(v+1)+1}}  \tag{24}\\
& 2^{j^{*}} \sim\left(\frac{n}{\ln n}\right)^{\frac{1}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}}
\end{align*}
$$

Then, by $s>\frac{1}{r}$ and $2^{j_{1}} \sim\left(\frac{n}{\ln n}\right)^{\frac{1}{2(v+1)+1}}$,

$$
0<\frac{1}{2 s+2(v+1)+1}, \frac{1}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}<\frac{1}{2(v+1)+1} \quad \text { and } \quad \tau<j_{0}^{*}, j_{1}^{*}<j_{1} .
$$

When $\omega \geq 0$, one writes down

$$
\begin{equation*}
e_{2}=\left(\sum_{j=\tau}^{j_{0}^{*}}+\sum_{j=j_{0}^{*}}^{j_{1}}\right) 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j} \cap B_{j}\right\}:=e_{21}+e_{22} \tag{25}
\end{equation*}
$$

According to (22),

$$
\begin{equation*}
E e_{21} \lesssim \sum_{j=\tau}^{j_{0}^{*}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}} E\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p} \lesssim n^{-\frac{p}{2}} 2^{\left(v+1+\frac{1}{2}\right) j_{0}^{*} p} . \tag{26}
\end{equation*}
$$

Note that $\frac{2\left|\beta_{j k}\right|}{r \lambda_{j}} \geq 1, \sum_{k}\left|\beta_{j k}\right|^{r} \lesssim 2^{-j\left(s+\frac{1}{2}-\frac{1}{r}\right) r}$ from $k \in B_{j}, f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)$ and Lemma 2.1; On the other hand, Lemma 4.2 tells $E\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p} \lesssim 2^{(v+1) j p} n^{-\frac{p}{2}}$. These with $\lambda_{j}=2^{(v+1) j} \sqrt{\frac{j}{n}}$ and $\omega=s r+\left(v+\frac{3}{2}\right) r-\left(v+\frac{3}{2}\right) p \geq 0$ lead to

$$
\begin{align*}
E e_{22} & \lesssim \sum_{j=j_{0}^{*}}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}} E\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p}\left(\frac{\left|\beta_{j k}\right|}{\Upsilon \lambda \lambda_{j}}\right)^{r} \\
& \lesssim \sum_{j=j_{0}^{*}}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} 2^{(\nu+1) j p} n^{-\frac{p}{2}} \lambda_{j}^{-r} \sum_{k}\left|\beta_{j k}\right|^{r} \lesssim 2^{-j_{0}^{*} \omega} n^{-\frac{p-r}{2}} . \tag{27}
\end{align*}
$$

Combining (25)-(27) with $2^{j^{*}} \sim\left(\frac{n}{\ln n}\right)^{\frac{1}{2 s+2(\nu+1)+1}}$, one obtains

$$
E e_{2}=E e_{21}+E e_{22} \lesssim n^{-\frac{p}{2}} 2^{\left(v+1+\frac{1}{2}\right) j_{0}^{*} p}+2^{-j j_{0}^{*} \omega} n^{-\frac{p-r}{2}} \lesssim\left(\frac{\ln n}{n}\right)^{\frac{s p}{2 s+2(v+1)+1}}=\left(\frac{\ln n}{n}\right)^{\alpha p}
$$

because of $\omega \geq 0$ and $\alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}\right\}=\frac{s}{2 s+2(v+1)+1}$.
When $\omega=s r+\left(v+\frac{3}{2}\right) r-\left(v+\frac{3}{2}\right) p<0, \alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}\right\}=\frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}$. Define $p_{1}=(1-2 \alpha) p$. Then $r \leq p_{1} \leq p$ follows from

$$
\omega<0 \quad \text { and } \quad r \leq p_{1}=(1-2 \alpha) p=\frac{2(v+1) p+p-2}{2\left(s-\frac{1}{r}\right)+2(v+1)+1} \leq p
$$

Moreover, $\sum_{k}\left|\beta_{j k}\right|^{p_{1}} \leq\left(\sum_{k}\left|\beta_{j k}\right|^{r}\right)^{\frac{p_{1}}{r}} \lesssim 2^{-j\left(s+\frac{1}{2}-\frac{1}{r}\right) p_{1}}$ thanks to $r \leq p_{1}, f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)$ and Lemma 2.1. This with (27) and $\lambda_{j}=2^{(v+1) j} \sqrt{\frac{j}{n}}$ shows

$$
\begin{aligned}
E e_{2} & \lesssim \sum_{j=\tau}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}} E\left|\widehat{\beta}_{j, k}-\beta_{j, k}\right|^{p}\left(\frac{\left|\beta_{j k}\right|}{\Upsilon \lambda_{j}}\right)^{p_{1}} \\
& \lesssim \sum_{j=\tau}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} 2^{(\nu+1) j p} n^{-\frac{p}{2}} \lambda_{j}^{-p_{1}} \sum_{k}\left|\beta_{j k}\right|^{p_{1}} \\
& \lesssim n^{-\frac{p-p_{1}}{2}} \sum_{j=\tau}^{j_{1}} 2^{j\left[\frac{p}{2}-1+(v+1)\left(p-p_{1}\right)-\left(s+\frac{1}{2}-\frac{1}{r}\right) p_{1}\right]} \lesssim \ln n\left(\frac{\ln n}{n}\right)^{\alpha p}
\end{aligned}
$$

due to $\frac{p-p_{1}}{2}=\alpha p$ and $\frac{p}{2}-1+(v+1)\left(p-p_{1}\right)-\left(s+\frac{1}{2}-\frac{1}{r}\right) p_{1}=0$.

Finally, one estimates $E e_{4}$. When $\omega=s r+\left(v+\frac{3}{2}\right) r-\left(v+\frac{3}{2}\right) p \geq 0, \alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}\right.$, $\left.\frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}\right\}=\frac{s}{2 s+2(v+1)+1}$. Furthermore,

$$
\begin{equation*}
e_{4}=\left(\sum_{j=\tau}^{j_{0}^{*}}+\sum_{j=j_{0}^{*}+1}^{j_{1}}\right) 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}^{c}\right\}:=e_{41}+e_{42} \tag{28}
\end{equation*}
$$

where $j_{0}^{*}$ is given by (24).
Since $\left|\beta_{j, k}\right| \leq 2 \Upsilon \lambda_{j} \lesssim 2^{(v+1) j}\left(j n^{-1}\right)^{\frac{1}{2}}$ holds by $k \in C_{j}^{c}$ and $\lambda_{j}=2^{(v+1) j} \sqrt{\frac{j}{n}}$, one concludes that

$$
\begin{align*}
E e_{41} & =E \sum_{j=\tau}^{j_{0}^{*}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}^{c}\right\} \\
& \lesssim \sum_{j=\tau}^{j_{0}^{*}} 2^{j\left(\frac{p}{2}-1\right)} 2^{j} 2^{(v+1) j p}\left(j n^{-1}\right)^{\frac{p}{2}} \lesssim 2^{\left(v+1+\frac{1}{2}\right) j_{0}^{*} p}\left(\frac{\ln n}{n}\right)^{\frac{p}{2}} . \tag{29}
\end{align*}
$$

On the other hand,

$$
\begin{aligned}
E e_{42} & =E \sum_{j=j_{0}^{*}+1}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}^{c}\right\} \\
& \lesssim \sum_{j=j_{0}^{*}+1}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\beta_{j, k}\right|^{p}\left(\lambda_{j}\left|\beta_{j, k}\right|^{-1}\right)^{p-r} \\
& \lesssim \sum_{j=j_{0}^{*}+1}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \lambda_{j}^{p-r} \sum_{k}\left|\beta_{j, k}\right|^{r}
\end{aligned}
$$

due to $\left|\beta_{j, k}\right| \leq 2 \Upsilon \lambda_{j}$ and $r \leq p$.
Clearly, $\left\|\beta_{j,}.\right\| l_{r} \lesssim 2^{-j\left(s-\frac{1}{r}+\frac{1}{2}\right)}$ by $f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)$ and Lemma 2.1. This with $\lambda_{j}=2^{(v+1) j} \sqrt{\frac{j}{n}}$ implies that

$$
\begin{equation*}
E e_{42} \lesssim \sum_{j=j_{0}^{*}+1}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} 2^{(v+1)(p-r) j} 2^{-j\left(s r+\frac{r}{2}-1\right)}\left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} \lesssim\left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} 2^{-j_{0}^{*} \omega} \tag{30}
\end{equation*}
$$

because $\omega=s r+\left(v+\frac{3}{2}\right) r-\left(v+\frac{3}{2}\right) p \geq 0$.
According to (28)-(30) and $2^{j_{0}^{*}} \sim\left(\frac{n}{\ln n}\right)^{\frac{1}{2 s+2(v+1)+1}}$, one obtains

$$
E e_{4}=E e_{41}+E e_{42} \lesssim 2^{\left.\left(v+1+\frac{1}{2}\right)\right)_{0}^{*} p}\left(\frac{\ln n}{n}\right)^{\frac{p}{2}}+\left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} 2^{-j_{0}^{*} \omega} \lesssim\left(\frac{\ln n}{n}\right)^{\alpha p}
$$

by $\alpha=\frac{s}{2 s+2(v+1)+1}$.
For the case of $\omega=s r+\left(v+\frac{3}{2}\right) r-\left(v+\frac{3}{2}\right) p<0$. Let

$$
\begin{equation*}
e_{4}=\left(\sum_{j=\tau}^{j_{1}^{*}}+\sum_{j=j_{1}^{*}+1}^{j_{1}}\right) 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}^{c}\right\}:=e_{41}^{\prime}+e_{42}^{\prime} \tag{31}
\end{equation*}
$$

where $j_{1}^{*}$ is given by (24). Similar to (30),

$$
\begin{equation*}
E e_{41}^{\prime}=\sum_{j=\tau}^{j_{1}^{*}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}^{c}\right\} \lesssim\left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} 2^{-j_{1}^{*} \omega} \tag{32}
\end{equation*}
$$

thanks to $\omega<0$.
To estimate $E e_{42}^{\prime}$, one observes that $\left\|\beta_{j,} \cdot\right\|_{l_{p}} \lesssim\left\|\beta_{j,} .\right\|_{l_{r}} \lesssim 2^{-j\left(s-\frac{1}{r}+\frac{1}{2}\right)}$ by $r \leq p, f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)$ and Lemma 2.1. Hence,

$$
\begin{align*}
E e_{42}^{\prime} & =\sum_{j=j_{1}^{*}+1}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} \sum_{k \in \Omega_{j}}\left|\beta_{j, k}\right|^{p} I\left\{k \in \widehat{B}_{j}^{c} \cap C_{j}^{c}\right\} \lesssim \sum_{j=j_{1}^{*}+1}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)}\left\|\beta_{j,}\right\|_{l_{r}}^{p} \\
& \lesssim \sum_{j=j_{1}^{*}+1}^{j_{1}} 2^{j\left(\frac{p}{2}-1\right)} 2^{-j\left(s-\frac{1}{r}+\frac{1}{2}\right) p} \lesssim 2^{-j_{1}^{*}\left(s-\frac{1}{r}+\frac{1}{p}\right) p} \tag{33}
\end{align*}
$$

because of $s>\frac{1}{r}$.
Combining (31)-(33) with $2^{j^{*}} \sim\left(\frac{n}{\ln n}\right)^{\frac{1}{2\left(s-\frac{1}{\Gamma}\right)+2(v+1)+1}}$, one knows

$$
E e_{4}=E e_{41}^{\prime}+E e_{42}^{\prime} \lesssim\left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} 2^{-j_{1}^{*} \omega}+2^{-j_{1}^{*}\left(s-\frac{1}{r}+\frac{1}{p}\right) p} \lesssim\left(\frac{\ln n}{n}\right)^{\alpha p}
$$

thanks to $\omega<0$ and $\alpha=\min \left\{\frac{s}{2 s+2(v+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}\right\}=\frac{s-\frac{1}{r}+\frac{1}{p}}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}$. This completes the proof of Theorem 5.2.

### 5.2 Proof of lower bound

Finally, we are in a position to state and prove the lower bound estimation.

Theorem 5.3 Assume $s>0$ and $r, q \in[1,+\infty]$, then, for any $p \in[1,+\infty)$,

$$
\inf _{{\hat{f_{\sigma}^{2}}}_{\prime}^{\prime} \sup _{f_{\sigma^{2}}^{\prime} \in B_{r, q}^{s}(M)} E\left\|{\widehat{f_{\sigma^{2}}}}_{\prime}-f_{\sigma^{2}}^{\prime}\right\|_{p}^{p} \gtrsim n^{-\frac{\left(s-\frac{1}{r}+\frac{1}{p}\right) p}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}},}
$$

where $\widehat{f}_{\sigma^{2}}^{\prime}$ runs over all possible estimators of $f_{\sigma^{2}}^{\prime}$.
Proof It is sufficient to construct density functions $h_{k}$ such that $h_{k}^{\prime} \in B_{r, q}^{s}(M)$ and

$$
\sup _{k} E\left\|\widehat{f}_{\sigma^{2}}^{\prime}-h_{k}^{\prime}\right\|_{p}^{p} \gtrsim n^{-\frac{\left(s-\frac{1}{r}+\frac{1}{p}\right) p}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}} .
$$

Define $g(x)=C m(x)$, where $m \in C_{0}^{\infty}$ with supp $m \subseteq[0,1], \int_{\mathbb{R}} m(x) d x=0$ and $C>0$ is a constant. Let $C_{0}^{\infty}$ stand for the set of all infinitely many times differentiable and compactly supported functions. Furthermore, one chooses a density function $h_{0}$ satisfying $h_{0} \in B_{r, q}^{s+1}\left(\frac{M}{2}\right), \operatorname{supp} h_{0} \subseteq[0,1]$ and $h_{0}(x) \geq M_{1}>0$ for $x \in\left[\frac{1}{2}, \frac{3}{4}\right]$.

Take $a_{j}=2^{-j\left(s-\frac{1}{r}+\frac{1}{2}+\nu+1\right)}$ and

$$
\begin{equation*}
h_{1}(x)=h_{0}(x)+a_{j} G_{v}\left(g_{j, l}\right)(x), \tag{34}
\end{equation*}
$$

where $G$ is given by (5) and $g_{j, l}(x)=2^{\frac{j}{2}} g\left(2^{j} x-l\right)$ with $l=2^{j-1}$.
First, one checks that $h_{1}$ is a density function. Since $\operatorname{supp} g_{j, l} \subseteq\left[\frac{1}{2}, \frac{3}{4}\right]$ by $\operatorname{supp} m \subseteq[0,1]$ and $j$ large enough, one finds $h_{1}(x) \geq 0$ for $x \notin\left[\frac{1}{2}, \frac{3}{4}\right]$. It is easy to calculate that

$$
\begin{equation*}
G_{v}\left(g_{j, l}\right)(x)=(-1)^{v} \sum_{u=1}^{v} C_{u} x^{u}\left(g_{j, l}\right)^{(u)}(x), \tag{35}
\end{equation*}
$$

where $C_{u}>0$ is a constant. Then, for $x \in\left[\frac{1}{2}, \frac{3}{4}\right]$ and large $j$,

$$
\begin{align*}
h_{1}(x) & \geq M_{1}-\left|a_{j} \sum_{u=1}^{v} C_{u} x^{u}\left(g_{j, l}\right)^{(u)}(x)\right| \\
& \geq M_{1}-a_{j} 2^{\frac{j}{2}} \sum_{u=1}^{v} C_{u} 2^{u j}\left\|g^{(u)}\left(2^{j} \cdot-l\right)\right\|_{\infty} \\
& \geq M_{1}-2^{-j\left(s-\frac{1}{r}+1\right)} \sum_{u=1}^{v} C_{u}\left\|g^{(u)}\right\|_{\infty} \geq 0 \tag{36}
\end{align*}
$$

thanks to $\left.h_{0}(x)\right|_{\left[\frac{1}{2}, \frac{3}{4}\right]} \geq M_{1}$ and $a_{j}=2^{-j\left(s-\frac{1}{r}+\frac{1}{2}+v+1\right)}$. On the other hand, $\int_{\mathbb{R}} g(x) d x=$ $\int_{\mathbb{R}} C m(x) d x=0$ and supp $g_{j, l} \subseteq\left[\frac{1}{2}, \frac{1}{2}+2^{-j}\right]$ by supp $m \subseteq[0,1]$ and $l=2^{j-1}$. This with $m \in C_{0}^{\infty}$ and $g(x)=C m(x)$ shows

$$
\begin{aligned}
\int x^{u}\left(g_{j, l}\right)^{(u)}(x) d x & =\left.x^{u}\left(g_{j, l}\right)^{(u-1)}(x)\right|_{\frac{1}{2}} ^{\frac{1}{2}+2^{-j}}-u \int x^{u-1}\left(g_{j, l}\right)^{(u-1)}(x) d x \\
& =\cdots=(-1)^{m} \frac{u!}{(u-m)!} \int x^{u-m}\left(g_{j, l}\right)^{(u-m)}(x) d x \\
& =(-1)^{u} u!\int g_{j, l}(x) d x=0
\end{aligned}
$$

for any $u \in\{1, \ldots, v\}$. Therefore,

$$
\int h_{1}(x) d x=\int h_{0}(x) d x+(-1)^{v} a_{j} \sum_{u=1}^{v} C_{u} \int x^{u}\left(g_{j, l}\right)^{(u)}(x) d x=1 .
$$

From this with (36) one concludes that $h_{1}$ is a density function.
Next, one shows $h_{0}^{\prime}, h_{1}^{\prime} \in B_{r, q}^{s}(M)$. Clearly, $h_{0}^{\prime} \in B_{r, q}^{s}(M)$ by $h_{0} \in B_{r, q}^{s+1}\left(\frac{M}{2}\right)$. Hence, one only needs prove $h_{1}^{\prime} \in B_{r, q}^{s}(M)$.

By (34) and (35),

$$
\begin{equation*}
\left\|h_{1}\right\|_{B_{r, q}^{s+1}} \leq\left\|h_{0}\right\|_{B_{r, q}^{s+1}}+a_{j} \sum_{u=1}^{v} C_{u}\left\|x^{u}\left(g_{j, l}\right)^{(u)}(x)\right\|_{B_{r, q}^{s+1}} \tag{37}
\end{equation*}
$$

On the other hand, for each $\tau \in\{0, \ldots, u\}$,

$$
\left\|\left[2^{j}\left(x-\frac{1}{2}\right)\right]^{u-\tau} g^{(u)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{B_{r, q}^{s+1}} \leq 2^{j\left(s+1-\frac{1}{r}\right)}\left\|x^{u-\tau} g^{(u)}(x)\right\|_{B_{r, q}^{s+1}}
$$

because of Lemma 4.4. Combining this with $l=2^{j-1}$ and $\left[2^{j}\left(x-\frac{1}{2}+\frac{1}{2}\right)\right]^{u}=\sum_{\tau=0}^{u} C_{u}^{\tau}\left[2^{j}(x-\right.$ $\left.\left.\frac{1}{2}\right)\right]^{u-\tau} 2^{-\tau} 2^{\tau j}$, one obtains

$$
\begin{align*}
\left\|x^{u}\left(g_{j, l}\right)^{(u)}(x)\right\|_{B_{r, q}^{s+1}} & =2^{\frac{j}{2}}\left\|\left[2^{j}\left(x-\frac{1}{2}+\frac{1}{2}\right)\right]^{u} g^{(u)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{B_{r, q}^{s+1}} \\
& \leq 2^{\left(u+\frac{1}{2}\right) j} \sum_{\tau=0}^{u} C_{u}^{\tau}\left\|\left[2^{j}\left(x-\frac{1}{2}\right)\right]^{u-\tau} g^{(u)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{B_{r, q}^{s+1}} \\
& \leq 2^{j\left(s-\frac{1}{r}+\frac{1}{2}+u+1\right)} \sum_{\tau=0}^{u} C_{u}^{\tau}\left\|x^{u-\tau} g^{(u)}(x)\right\|_{B_{r, q}^{s+1}} \tag{38}
\end{align*}
$$

Denote $M^{\prime}=\max \left\{C_{u}, C_{u}^{\tau}: \tau=0, \ldots, u ; u=1, \ldots, v\right\}$. Then there exists a constant $C>0$ such that

$$
x^{u-\tau} g^{(u)} \in B_{r, q}^{s+1}\left(\frac{M}{2 \nu^{2} M^{\prime 2}}\right)
$$

thanks to $g(x)=C m(x)$ and $m \in C_{0}^{\infty} \subseteq B_{r, q}^{s+1}$. This with (37) and (38) leads to

$$
\left\|h_{1}\right\|_{B_{r, q}^{s+1}} \leq\left\|h_{0}\right\|_{B_{r, q}^{s+1}}+a_{j} \sum_{u=1}^{v} u M^{\prime 2} 2^{j\left(s-\frac{1}{r}+\frac{1}{2}+u+1\right)} \frac{M}{2 v^{2} M^{\prime 2}} \leq \frac{M}{2}+\frac{M}{2}=M
$$

because $h_{0} \in B_{r, q}^{s+1}\left(\frac{M}{2}\right)$ and $a_{j}=2^{-j\left(s-\frac{1}{r}+\frac{1}{2}+v+1\right)}$. Therefore, $h_{1} \in B_{r, q}^{s+1}(M)$ and $h_{1}^{\prime} \in B_{r, q}^{s}(M)$.
According to (35),

$$
\left[G_{v}\left(g_{j, l}\right)(x)\right]^{\prime}=(-1)^{v} \sum_{u=0}^{v} C_{u}^{\prime} x^{u}\left(g_{j, l}\right)^{(u+1)}(x),
$$

where $C_{u}^{\prime}>0$ is a constant and $l=2^{j-1}$. Hence,

$$
\begin{align*}
\left\|h_{1}^{\prime}-h_{0}^{\prime}\right\|_{p} & =a_{j}\left\|\left[G_{v}\left(g_{j, l}\right)\right]^{\prime}\right\|_{p} \\
& =a_{j} 2^{\frac{3 j}{2}}\left\|\sum_{u=0}^{v} C_{u}^{\prime}\left[2^{j}\left(x-\frac{1}{2}+\frac{1}{2}\right)\right]^{u} g^{(u+1)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{p} . \tag{39}
\end{align*}
$$

On the other hand, by using $\left[2^{j}\left(x-\frac{1}{2}+\frac{1}{2}\right)\right]^{u}=\sum_{\tau=0}^{u} C_{u}^{\tau}\left[2^{j}\left(x-\frac{1}{2}\right)\right]^{u-\tau} 2^{-\tau} 2^{\tau j}$, one concludes that

$$
\begin{aligned}
& \left\|\sum_{u=0}^{v} C_{u}^{\prime}\left[2^{j}\left(x-\frac{1}{2}+\frac{1}{2}\right)\right]^{u} g^{(u+1)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{p} \\
& \quad \geq\left\|\sum_{u=0}^{v} C_{u}^{\prime} 2^{-u} 2^{u j} g^{(u+1)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{p}
\end{aligned}
$$

$$
\begin{equation*}
-\left\|\sum_{u=0}^{v} C_{u}^{\prime}\left\{\sum_{\tau=0}^{u-1} C_{u}^{\tau}\left[2^{j}\left(x-\frac{1}{2}\right)\right]^{u-\tau} 2^{-\tau} 2^{\tau j}\right\} g^{(u+1)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{p} \tag{40}
\end{equation*}
$$

and

$$
\begin{align*}
& \left\|\sum_{u=0}^{v} C_{u}^{\prime} 2^{-u} 2^{u j} g^{(u+1)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{p} \\
& \geq\left\|C_{v}^{\prime} 2^{-v} 2^{v j} g^{(v+1)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{p} \\
& \quad-\left\|\sum_{u=0}^{v-1} C_{u}^{\prime} 2^{-u} 2^{u j} g^{(u+1)}\left[2^{j}\left(x-\frac{1}{2}\right)\right]\right\|_{p} . \tag{41}
\end{align*}
$$

Let $x^{\prime}=2^{j}\left(x-\frac{1}{2}\right)$. Then there exists a constant $C^{\prime}>0$ such that

$$
\begin{aligned}
\left\|h_{1}^{\prime}-h_{0}^{\prime}\right\|_{p} \geq & a_{j} 2^{\frac{3}{2} j} 2^{-\frac{j}{p}}\left\{C_{v}^{\prime} 2^{-v} 2^{v j}\left\|g^{(\nu+1)}\right\|_{p}-2^{(v-1) j} \sum_{u=0}^{v-1} C_{u}^{\prime} 2^{-u}\left\|g^{(u+1)}\right\|_{p}\right. \\
& \left.\quad-2^{(v-1) j} \sum_{u=0}^{v} C_{u}^{\prime} \sum_{\tau=0}^{u-1} C_{u}^{\tau} 2^{-\tau}\left\|\left(x^{\prime}\right)^{u-\tau} g^{(u+1)}\right\|_{p}\right\} \\
\geq & C^{\prime} a_{j} 2^{\frac{3}{2} j} 2^{-\frac{j}{p}} 2^{j v}=C^{\prime} 2^{-j\left(s-\frac{1}{r}+\frac{1}{p}\right)}:=\delta_{j}
\end{aligned}
$$

thanks to (39)-(41), $g \in C_{0}^{\infty}$ and $a_{j}=2^{-j\left(s-\frac{1}{r}+\frac{1}{2}+v+1\right)}$.
Define $A_{k}=\left\{\left\|\widehat{f_{\sigma^{2}}^{\prime}}-h_{k}^{\prime}\right\|_{p}<\frac{\delta_{j}}{2}\right\}(k \in\{0,1\})$. Then $A_{0} \cap A_{1}=\emptyset$. According to Lemma 4.5,

$$
\begin{equation*}
\sup _{k \in\{0,1\}} P_{f_{s_{k}}}^{n}\left(A_{k}^{c}\right) \geq \min \left\{\frac{1}{2}, \exp \left(-3 e^{-1}-\kappa_{1}\right)\right\} \tag{42}
\end{equation*}
$$

where $P_{f}^{n}$ stands for the probability measure corresponding to the density function $f^{n}(x):=$ $f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right)$. Hence,

$$
E\left\|\widehat{f}_{\sigma^{2}}^{\prime}-h_{k}^{\prime}\right\|_{p}^{p} \geq\left(\frac{\delta_{j}}{2}\right)^{p} P_{f_{s_{k}}}^{n}\left(\left\|\widehat{f}_{\sigma^{2}}^{\prime}-h_{k}^{\prime}\right\|_{p} \geq \frac{\delta_{j}}{2}\right)=\left(\frac{\delta_{j}}{2}\right)^{p} P_{f_{s_{k}}}^{n}\left(A_{k}^{c}\right)
$$

This with (42) implies

$$
\begin{equation*}
\sup _{k \in\{0,1\}} E\left\|\widehat{f}_{\sigma^{2}}^{\prime}-h_{k}^{\prime}\right\|_{p}^{p} \geq \sup _{k \in\{0,1\}}\left(\frac{\delta_{j}}{2}\right)^{p} P_{f_{s_{k}}}^{n}\left(A_{k}^{c}\right) \geq\left(\frac{\delta_{j}}{2}\right)^{p} \min \left\{\frac{1}{2}, \exp \left(-3 e^{-1}-\kappa_{1}\right)\right\} . \tag{43}
\end{equation*}
$$

Next, one shows $\kappa_{1} \leq C_{0} n a_{j}^{2}$. Recall that

$$
\begin{equation*}
\kappa_{1}=\inf _{0 \leq u \leq 1} \sum_{k \neq u} K\left(P_{f_{s_{k}}}^{n}, P_{f_{s_{u}}}^{n}\right) \leq K\left(P_{f_{s_{1}}}^{n}, P_{f_{s_{0}}}^{n}\right) . \tag{44}
\end{equation*}
$$

Then

$$
K\left(P_{f_{s_{1}}}^{n}, P_{f_{s_{0}}}^{n}\right) \leq \sum_{i=1}^{n} \int f_{s_{1}}\left(x_{i}\right) \ln \frac{f_{s_{1}}\left(x_{i}\right)}{f_{s_{0}}\left(x_{i}\right)} d x_{i}=n \int f_{s_{1}}(x) \ln \frac{f_{s_{1}}(x)}{f_{s_{0}}(x)} d x
$$

due to $f_{s_{0}}^{n}(x)=\prod_{j=1}^{n} f_{s_{0}}\left(x_{j}\right)$ and $f_{s_{1}}^{n}(x)=\prod_{j=1}^{n} f_{s_{1}}\left(x_{j}\right)$. Since $\ln u \leq u-1$ holds for $u>0$, one knows

$$
\begin{align*}
K\left(P_{f_{s_{1}}}^{n}, P_{f_{s_{0}}}^{n}\right) & \leq n \int f_{s_{1}}(x)\left(\frac{f_{s_{1}}(x)}{f_{s_{0}}(x)}-1\right) d x \\
& =n \int f_{s_{0}}^{-1}(x)\left|f_{s_{1}}(x)-f_{s_{0}}(x)\right|^{2} d x \tag{45}
\end{align*}
$$

According to Chesneau's work in Ref. [8], $f_{s_{k}}(x)=\frac{1}{(\nu-1)!} \int_{x}^{1}(\ln y-\ln x)^{\nu-1} h_{k}(y) \frac{1}{y} d y$. Then

$$
\begin{aligned}
f_{s_{1}}(x)-f_{s_{0}}(x) & =\frac{a_{j}}{(v-1)!} \int_{x}^{\frac{1}{2}+2^{-j}}(\ln y-\ln x)^{v-1} G_{v}\left(g_{j, l}\right)(y) \frac{1}{y} d y \\
& =-\frac{a_{j}}{(v-1)!} \int_{x}^{\frac{1}{2}+2^{-j}}(\ln y-\ln x)^{\nu-1}\left[G_{v-1}\left(g_{j, l}\right)(y)\right]^{\prime} d y
\end{aligned}
$$

because of (34) and $G_{v}\left(g_{j, l}\right)(x)=-x\left[G_{v-1}\left(g_{j, l}\right)(x)\right]^{\prime}$.
By the formula of integration by parts,

$$
\begin{align*}
f_{s_{1}}(x)-f_{s_{0}}(x) & =-\frac{a_{j}}{(v-2)!} \int_{x}^{\frac{1}{2}+2^{-j}}(\ln y-\ln x)^{v-2}\left[G_{v-2}\left(g_{j, l}\right)(y)\right]^{\prime} d y=\cdots \\
& =-\frac{a_{j}}{(v-m)!} \int_{x}^{\frac{1}{2}+2^{-j}}(\ln y-\ln x)^{v-m}\left[G_{v-m}\left(g_{j, l}\right)(y)\right]^{\prime} d y=\cdots \\
& =-a_{j} \int_{x}^{\frac{1}{2}+2^{-j}}\left(g_{j, l}\right)^{\prime}(y) d y=a_{j} g_{j, l}(x) \tag{46}
\end{align*}
$$

because $l=2^{j-1}$ and $\left.(\ln y-\ln x)^{v-m} G_{v-m}\left(g_{j, l}\right)(y)\right|_{x} ^{\frac{1}{2}+2^{-j}}=0$ for any $m \in\{1, \ldots, v-1\}$. On the other hand, for each $x \in\left[\frac{1}{2}, \frac{1}{2}+2^{-j}\right]$ and large $j$,

$$
\begin{align*}
f_{s_{0}}(x) & \geq \frac{M_{1}}{(v-1)!} \int_{x}^{\frac{3}{4}}(\ln y-\ln x)^{v-1} \frac{1}{y} d y=\frac{M_{1}}{v!}\left(\ln \frac{3}{4}-\ln x\right)^{v} \\
& \geq \frac{M_{1}}{v!}\left[\ln \frac{3}{4}-\ln \left(\frac{1}{2}+2^{-j}\right)\right]^{v} \geq M_{2}>0 \tag{47}
\end{align*}
$$

thanks to $f_{s_{0}}(x)=\frac{1}{(\nu-1)!} \int_{x}^{1}(\ln y-\ln x)^{\nu-1} h_{0}(y) \frac{1}{y} d y$ and $\left.h_{0}(x)\right|_{\left[\frac{1}{2}, \frac{3}{4}\right]} \geq M_{1}$. Combining with (44)-(47), one obtains

$$
\kappa_{1} \leq M_{2}^{-1} n \int\left|a_{j} g_{j, l}(x)\right|^{2} d x \leq C_{0} n a_{j}^{2}
$$

where $C_{0}>0$ is a constant.
Choose $2^{j} \sim n^{\frac{1}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}}$ and recall $a_{j}=2^{-j\left(s-\frac{1}{r}+\frac{1}{2}+\nu+1\right)}$. Then

$$
\kappa_{1} \lesssim n a_{j}^{2}=n 2^{-j\left[2\left(s-\frac{1}{r}\right)+2(v+1)+1\right]} \sim 1 \quad \text { and } \quad e^{-\kappa_{1}} \gtrsim 1
$$

Substituting $\delta_{j} \sim 2^{-j\left(s-\frac{1}{r}+\frac{1}{p}\right)}, 2^{j} \sim n^{\frac{1}{2\left(s-\frac{1}{r}\right)+2(v+1)+1}}$ into (43), one obtains

$$
\sup _{k \in\{0,1\}} E\left\|{\widehat{f_{\sigma}}}_{\prime}^{\prime}-h_{k}^{\prime}\right\|_{p}^{p} \gtrsim \delta_{j}^{p} \gtrsim n^{-\frac{\left(s-\frac{1}{r}+\frac{1}{p}\right) p}{2\left(s-\frac{1}{r}+2(v+1)+1\right.}},
$$

## which is the desired conclusion.

## Acknowledgements

The authors would like to thank Professor Youming Liu for his important comments and suggestions.

## Funding

This paper is supported by the National Natural Science Foundation of China (No. 11771030) and the Beijing Natural Science Foundation (No. 1172001).

## Availability of data and materials

Not applicable.

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

## Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

## Received: 6 December 2018 Accepted: 8 April 2019 Published online: 18 April 2019

## References

1. Abbaszadeh, M., Chesneau, C., Doosti, H.: Multiplicative censoring: estimation of a density and its derivatives under the Lp-risk. REVSTAT 11(3), 255-276 (2013)
2. Andersen, K., Hansen, M.: Multiplicative censoring: density estimation by a series expansion approach. J. Stat. Plan. Inference 98, 137-155 (2001)
3. Asgharian, M., Carone, M., Fakoor, V.: Large-sample study of the kernel density estimators under multiplicative censoring. Ann. Stat. 40, 159-187 (2012)
4. Blumensath, T., Davies, M.. Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27, 265-274 (2009)
5. Cai, T.T.: Rates of convergence and adaption over Besov spaces under pointwise risk. Stat. Sin. 13, 881-902 (2003)
6. Chaubey, Y.P., Chesneau, C., Doosti, H.: On linear wavelet density estimation: some recent developments. J. Indian Soc. Agric. Stat. 65, 169-179 (2011)
7. Chaubey, Y.P., Chesneau, C., Doosti, H.: Adaptive wavelet estimation of a density from mixtures under multiplicative censoring. Statistics 49(3), 638-659 (2015)
8. Chesneau, C.: Wavelet estimation of a density in a GARCH-type model. Commun. Stat., Theory Methods 42, 98-117 (2013)
9. Chesneau, C., Doosti, H.: Wavelet linear density estimation for a GARCH model under various dependence structures. J. Iran. Stat. Soc. 11, 1-21 (2012)
10. Devore, R., Kerkyacharian, G., Picard, D., Temlyakov, V.: On mathematical methods of learning. In: Found. Comput. Math., vol. 6, pp. 3-58 (2006). Special Issue for D. Smale
11. Donoho, D.L., Johnstone, M.I., Kerkyacharian, G., Picard, D.: Density estimation by wavelet thresholding. Ann. Stat. 24(2), 508-539 (1996)
12. Guo, H.J., Liu, Y.M.: Convergence rates of multivariate regression estimators with errors-in-variables. Numer. Funct. Anal. Optim. 38(12), 1564-1588 (2017)
13. Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelet, Approximation and Statistical Applications. Springer, New York (1998)
14. Li, R., Liu, Y.M.: Wavelet optimal estimations for a density with some additive noises. Appl. Comput. Harmon. Anal. 36, 416-433 (2014)
15. Prakasa Rao, B.L.S.: Nonparametric Functional Estimation. Academic Press, Orlando (1983)
16. Prakasa Rao, B.L.S.: Nonparametric function estimation: an overview. In: Ghosh, S. (ed.) Asymptotics, Nonparametrics and Time Series, pp. 461-509. Marcel Dekker, New York (1999)
17. Prakasa Rao, B.L.S.: Wavelet estimation for derivative of a density in a GARCH-type model. Commun. Stat., Theory Methods 46, 2396-2410 (2017)
18. Vardi, Y.: Multiplicative censoring, renewal process, deconvolution and decreasing density: nonparametric estimation. Biometrika 76, 751-761 (1989)
19. Vardi, Y., Zhang, C.H.: Large sample study of empirical distributions in a random multiplicative censoring model. Ann. Stat. 20, 1022-1039 (1992)
