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Abstract
Recently, Rao investigated the estimations for the derivative of a density in
GARCH-type model S = σ 2Z over L2-risk (Commun. Stat., Theory Methods
46:2396–2410, 2017). This paper extends those estimations to Lp-risk (1≤ p < ∞). In
addition, we provide a lower bound for this model, which indicates one of our
convergence rates to be nearly-optimal.
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1 Introduction
The GARCH-type model

S = σ 2Z

is considered in this paper, where σ 2 and Z are independent random variables. In prac-
tice, we always assume that the density function fσ 2 of σ 2 is unknown and supp fσ 2 ⊆
[0, 1], while the density of Z is known. We want to estimate the first derivative of fσ 2

based on n independent and identically distributed (i.i.d.) observed samples S1, . . . , Sn

of S by wavelet methods, so that we also need suppose the differentiability of fσ 2 and
f ′
σ 2 ∈ Lp([0, 1]).

Non-parametric estimations of a density and regression function are widely investigated
in the literature [12, 14, 16]. It is well known that the estimations for the derivatives of a
density are also important and interesting, which could reflect monotonicity, concavity
or convexity properties of density functions. Asymptotic properties of the kernel estima-
tors for a density derivative have been considered earlier in [15], while the wavelet type
estimator was discussed in [17].

As usual, we consider the Lp minimax risk (Lp-risk) [13],

inf
f̂n

sup
f
σ2 ∈Σ

E‖f̂n – fσ 2‖p,

where the infimum runs over all possible estimators f̂n and Σ is a class of functions. Here
and after, EX stands for the mathematical expectation of a random variable X and ‖f ‖p

denotes the ordinary Lp norm.
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In 2012, Chesneau and Doosti [9] investigated the wavelet estimation of density for
GARCH model under various dependence structures. Next year, Chesneau [8] studied
the wavelet estimation of a density in GARCH-type model leading to upper bounds under
L2-risk. In 2017, Rao [17] considered L2-risk for the derivative of a density in GARCH-type
model over a Besov ball by wavelets.

In this paper, we address to extend Rao’s work [17] to Lp-risk (1 ≤ p < ∞). Moreover, we
show that one of our convergence rates is nearly-optimal. On the other hand, this work
can also be seen as a generalization of multiplicative censoring model. Vardi [18, 19] in-
troduced the multiplicative censoring model which unifies several models including non-
parametric inference for renewal processes, non-parametric deconvolution problems and
estimation of decreasing density functions. Recently, Abbaszadeh et al. [1] considered the
wavelet estimation of a density and its derivatives under Lp-risk (1 ≤ p < ∞) in the mul-
tiplicative censoring one. The density estimations for the multiplicative censoring model
also can be found in [2, 3] and [6, 7].

This paper is organized as follows. Section 2 briefly describes the Besov ball and wavelet
estimators. The theoretical results are given in Sect. 3. Some lemmas are provided in
Sect. 4. The proofs are gathered in Sect. 5.

2 Besov ball and estimators
This section describes the Besov ball and wavelet estimators. First, we introduce the Besov
ball and its wavelet characterizations.

2.1 Besov ball
Let W n

r (R) be the Sobolev space with a non-negative integer n,

W n
r (R) :=

{
f : f ∈ Lr(R), f (n) ∈ Lr(R)

}
,

and ‖f ‖W n
r := ‖f ‖r + ‖f (n)‖r . Then Lr(R) can be considered as W 0

r (R). For 1 ≤ r, q ≤ ∞ and
s = n + α with α ∈ (0, 1], a Besov space Bs

r,q(R) is defined by

Bs
r,q(R) :=

{
f : f ∈ W n

r (R),
∥∥t–αω2

r
(
f (n), t

)∥∥∗
q < ∞}

with the norm ‖f ‖Bs
r,q := ‖f ‖W n

r +‖t–αω2
r (f (n), t)‖∗

q . Here, ω2
r (f , t) := sup|h|≤t ‖f (·+2h)–2f (·+

h) + f (·)‖r denotes the smoothness modulus of f and

‖h‖∗
q :=

⎧
⎨

⎩
(
∫ +∞

0 |h(t)|q dt
t )

1
q if 1 ≤ q < ∞;

esssupt |h(t)| if q = ∞.

When s > 0 and 1 ≤ r, q, r′ ≤ ∞, it is well known that
(i) Bs

r,q ↪→ Bs
r,∞ ↪→ Bs– 1

r∞,∞ for s > 1
r ;

(ii) Bs
r,q ↪→ Bs′

r′ ,q for r ≤ r′ and s – 1
r = s′ – 1

r′ ;
(iii) Bs∞,∞(R) is the classical Hölder space Hs(R),

where A ↪→ B stands for a Banach space A continuously embedded in another Banach
space B. More precisely, ‖u‖B ≤ c1‖u‖A (u ∈ A) holds for some constant c1 > 0. By (i),
Bs

r,q(R) ↪→ L∞(R) for s > 1
r . All these notations and claims can be found in [13].
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In this paper, a Besov ball

Bs
r,q(M) =

{
f ∈ Bs

r,q(R) : ‖f ‖Bs
r,q ≤ M

}
, M > 0,

is considered.
Let φ be a scaling function and ψ be the corresponding wavelet function such that

{φτ ,k ,ψj,k : j ≥ τ , k ∈ Z}

constitutes an orthonormal basis of L2(R), where τ is a positive integer and gj,k(x) =
2

j
2 g(2jx – k) for g = φ or ψ . Then, for h ∈ L2(R),

h =
∑

k∈Ωτ

ατ ,kφτ ,k +
∞∑

j=τ

∑

k∈Ωj

βj,kψj,k (1)

with αj,k = 〈h,φj,k〉, βj,k = 〈h,ψj,k〉 and

Ωj = {k ∈ Z : supp h ∩ suppφj,k �= ∅} ∪ {k ∈ Z : supp h ∩ suppψj,k �= ∅}.

In particular, when φ,ψ and h have compact supports, the cardinality of Ωj satisfies |Ωj| ≤
C2j, where C > 0 is a constant depending only on the support lengths of φ,ψ and h.

As usual, the orthogonal projection operator Pj is given by

Pjh =
∑

k∈Ωj

αj,kφj,k . (2)

When φ ∈ Cm (so does ψ ) is compactly supported, the identity (1) and (2) hold in Lp

sense for p ≥ 1 [13]. Here and throughout, Cm stands for the set consisting of all m times
continuously differentiable functions.

The following wavelet characterization theorem of Besov space is needed in Sect. 5.

Lemma 2.1 ([13]) Let a scaling function φ ∈ Cm be compactly supported. Then, for r, q ∈
[1, +∞], 0 < s < m and h ∈ Lr(R), the following assertions are equivalent:

(i) h ∈ Bs
r,q(R); (ii) 2js‖Pjh – h‖r ∈ lq;

(iii) ‖αj0,·‖lr +
∥∥{2j(s+ 1

2 – 1
r )‖βj0,·‖lr

}
j≥j0

∥∥
lq

< ∞.

In each case,

‖h‖Bs
r,q ∼ ‖h‖s,r,q := ‖αj0,·‖lr +

∥∥{2j(s+ 1
2 – 1

r )‖βj0,·‖lr
}

j≥j0

∥∥
lq

.

Here and afterwards, A � B means A ≤ c2B for some constant c2 > 0; A � B denotes
B � A; we also use A ∼ B to stand for both A � B and A � B.



Cao and Wei Journal of Inequalities and Applications        (2019) 2019:106 Page 4 of 21

2.2 Estimators
This part introduces our wavelet estimators for the GARCH-type model S = σ 2Z de-
scribed earlier. Suppose

Z =
v∏

i=1

Ui,

where v is a known positive integer and U1, . . . , Uv are i.i.d. random variables with standard
uniform distribution. Clearly, the density function of Z satisfies

fZ(z) =
1

(v – 1)!
(– ln z)v–1, 0 ≤ z ≤ 1.

As in [8, 17], we assume that there exists a known constant C∗ such that

sup
x∈[0,1]

fs(x) ≤ C∗, (3)

where fs is the density function of S.
For any x ∈ [0, 1], h ∈ Ck([0, 1]), we define

T(h)(x) =
(
xh(x)

)′ = h(x) + xh′(x), Tk(h)(x) = T
(
Tk–1(h)

)
(x) (4)

and

G(h)(x) = –xh′(x), Gk(h)(x) = G
(
Gk–1(h)

)
(x), (5)

where k is a positive integer. Then the following lemma holds.

Lemma 2.2 ([8]) Let G and T be defined as above. Then
(i) fσ 2 (x) = Gv(fs)(x), x ∈ [0, 1];

(ii) For any h ∈ Cv([0, 1]),

∫ 1

0
fσ 2 (x)h(x) dx =

∫ 1

0
fs(x)Tv(h)(x) dx.

Next, we will introduce wavelet estimators, which can be found in Ref. [17]. Define

α̂j0,k = –
1
n

n∑

i=1

Tv
(
(φj,k)′

)
(Si) and β̂j,k = –

1
n

n∑

i=1

Tv
(
(ψj,k)′

)
(Si). (6)

Here and after, let φ be Daubechies’ scaling function D2N with large N and ψ be the cor-
responding wavelet function. It is well known that φ,ψ ∈ Cv+1 with N large enough. Fur-
thermore, the linear wavelet estimator is given by

f̂ ′
σ 2

lin
=
∑

k∈Ωj0

α̂j0,kφj0,k , (7)

where j0 is a positive integer which will be chosen later.
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In order to get adaptivity, we need the thresholding method [4, 14, 17]. As in [17], let

2j1 ∼

(
n

ln n

) 1
2(v+1)+1

, λj = 2(v+1)j
√

j
n

, β̃j,k = β̂j,kI
{|β̂j,k| ≥ Υ λj

}

with the constants Υ = cγ , c > max{8Cmin, 1} and γ ≥ p(2v + 3). Here,

Cmin = (v + 2)!
v∑

u=0

[
(v + 1)(v + 2)!C∗

∥∥ψ (u+1)∥∥2
2 + 2

∥∥ψ (u+1)∥∥∞
]

(8)

with C∗ given in (3). This special choice c is used in Lemma 4.3, while γ ≥ p(2v + 3) is
needed in the estimations of Ee1 and Ee3 (see Sect. 5). Here, we replace λj = 2(v+1)j

√
ln n
n

(see [17]) by λj = 2(v+1)j
√

j
n , which is used in the proof of Lemma 4.3. In fact, the universal

threshold of classical adaptive density estimation is
√

j
n (see [11]) and two forms do not

influence the convergence rates of our results.
The nonlinear wavelet estimator is given by

f̂ ′
σ 2

non
=
∑

k∈Ωτ

α̂τ ,kφτ ,k +
j1∑

j=τ

∑

k∈Ωj

β̃j,kψj,k (9)

with some positive integer τ .

3 Results
This section describes the results in this paper.

Theorem 3.1 Assume r ∈ [1, +∞), q ∈ [1, +∞] and s > 1
r , then, for p ∈ [1, +∞), the estima-

tor f̂ ′
σ 2

lin
in (7) with 2j0 ∼ n

1
2s′+2(v+1)+1 satisfies

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥
∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥p
p � n– s′p

2s′+2(v+1)+1 ,

where s′ = s – ( 1
r – 1

p )+ and a+ = max{a, 0}.

Remark 1 When p = 2 and r ≥ 2, the above estimation shows

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥2
2 � n– 2s

2s+2(v+1)+1 ,

which coincides with Theorem 5.1 of Ref. [17].

Remark 2 The condition s > 1
r can be replaced by s′ = s – ( 1

r – 1
p )+ > 0, because the former

condition is only used to conclude Bs
r,q ↪→ Bs′

p,q in the proof of Theorem 3.1.

The next theorem gives an adaptive upper bound estimation by the nonlinear wavelet
estimator f̂ ′

σ 2
non

in (9).
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Theorem 3.2 Let r ∈ [1, +∞), q ∈ [1, +∞] and s > 1
r . Then, for p ∈ [1, +∞),

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥f̂ ′

σ 2
non

– f ′
σ 2

∥∥p
p � (ln n)p(n–1 ln n

)αp

with α = min{ s
2s+2(v+1)+1 ,

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
}.

Remark 3 When sr + (v + 3
2 )r – (v + 3

2 )p ≥ 0, α = s
2s+2(v+1)+1 . In particular, the above result

with p = 2 coincides with Theorem 5.2 in [17].

Remark 4 The condition s > 1
r in Theorem 3.2 can’t be replaced by s′ = s – ( 1

r – 1
p )+ > 0 for

r ≤ p, since we need α = min{ s
2s+2(v+1)+1 ,

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
} ≤ s– 1

r + 1
p

2(s– 1
r )+2(v+1)+1

≤ s– 1
r + 1

p
2(v+1)+1 for the

estimation of A3 in Sect. 5.

Remark 5 Let m be a constant such that m > s, and 2j0 ∼ n
1

2m+2(v+1)+1 . Then the number of
calculations can be reduced effectively, when the level τ in f̂ ′

σ 2
non

is replaced by j0.

The following theorem shows a lower bound estimation.

Theorem 3.3 Assume s > 0 and r, q ∈ [1, +∞], then, for any p ∈ [1, +∞),

inf
f̂ ′
σ2

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥̂f ′

σ 2 – f ′
σ 2

∥∥p
p � n

–
(s– 1

r + 1
p )p

2(s– 1
r )+2(v+1)+1 ,

where f̂ ′
σ 2 runs over all possible estimators of f ′

σ 2 .

Remark 6 Combining Theorem 3.3 with Theorem 3.2, we find that the convergence rate
s– 1

r + 1
p

2(s– 1
r )+2(v+1)+1

is nearly-optimal. As for the other one, we will study it below.

4 Some lemmas
This section is devoted to providing some lemmas, which are needed for the proofs of our
theorems.

Lemma 4.1 ([13]) Let g be a scaling function or a wavelet function with

sup
x∈R

∑

k

∣∣g(x – k)
∣∣ < +∞.

Then there exists C > 0 such that, for λ = {λk} ∈ lp(Z) and 1 ≤ p ≤ ∞,

∥
∥∥∥
∑

k∈Z
λkgjk

∥∥∥
∥

p
≤ C2j( 1

2 – 1
p )‖λ‖lp .

We need the well-known Rosenthal’s inequality [13], in order to prove Lemma 4.2.
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Rosenthal’s inequality. Let X1, . . . , Xn be independent random variables and EXi = 0.
Then

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

≤
⎧
⎨

⎩
Cp[

∑n
i=1 E|Xi|p + (

∑n
i=1 E|Xi|2)

p
2 ], 2 ≤ p < ∞;

(
∑n

i=1 E|Xi|2)
p
2 , 0 < p < 2,

where Cp > 0 is a constant.

Lemma 4.2 Let α̂j,k and β̂j,k be given by (6). Then, for p ∈ (0, +∞),
(i) Eα̂j,k = αj,k , Eβ̂j,k = βj,k ;

(ii) E|̂αj,k – αj,k|p � n– p
2 2(v+1)jp, E|β̂j,k – βj,k|p � n– p

2 2(v+1)jp,
where αj,k = 〈f ′

σ 2 ,φj,k〉 and βj,k = 〈f ′
σ 2 ,ψj,k〉.

Proof (i) One only need prove Eα̂j,k = αj,k and the second one is the same. According to
the definition of α̂j,k in (6), one gets

Eα̂j,k = –E
[
Tv
(
(φj,k)′

)
(S1)

]
= –

∫ 1

0
Tv
(
(φj,k)′

)
(x)fs(x) dx

thanks to S1, . . . , Sn are i.i.d. On the other hand, fσ 2 (0) = fσ 2 (1) = 0 follows from supp fσ 2 ⊆
[0, 1] and the continuity of fσ 2 . These with Lemma 2.2 imply

Eα̂j,k = –
∫ 1

0
fσ 2 (x)(φj,k)′(x) dx = –fσ 2 (x)φj,k(x)|10 +

∫ 1

0
f ′
σ 2 (x)φj,k(x) dx = αj,k .

(ii) One also prove the first inequality and the second one is similar. By (6) and the results
of (i),

α̂j,k – αj,k = α̂j,k – Eα̂j,k =
1
n

n∑

i=1

{
E
[
Tv
(
(φj,k)′

)
(Si)

]
– Tv

(
(φj,k)′

)
(Si)

}
.

Let Xi := E[Tv((φj,k)′)(Si)] – Tv((φj,k)′)(Si). Then X1, . . . , Xn are i.i.d., EXi = 0 and

E|̂αj,k – αj,k|p = E

∣∣∣∣∣
1
n

n∑

i=1

Xi

∣∣∣∣∣

p

= n–pE

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

. (10)

According to (4),

∣∣Tv
(
(φj,k)′

)
(x)
∣∣≤ (v + 2)!

v∑

u=0

∣∣xu(φj,k)(u+1)(x)
∣∣. (11)

Hence,

sup
x∈[0,1]

∣∣Tv
(
(φj,k)′

)
(x)
∣
∣≤ (v + 2)! sup

x∈[0,1]

v∑

u=0

∣∣xu(φj,k)(u+1)(x)
∣∣

≤ (v + 2)!
v∑

u=0

sup
x∈[0,1]

∣∣(φj,k)(u+1)(x)
∣∣
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≤ (v + 2)!
v∑

u=0

∥∥φ(u+1)∥∥∞2(v+ 3
2 )j.

Clearly,

|Xi| ≤ E
∣∣Tv

(
(φj,k)′

)
(Si)

∣∣ +
∣∣Tv

(
(φj,k)′

)
(Si)

∣∣≤ C12(v+ 3
2 )j, (12)

where C1 = 2(v + 2)!
∑v

u=0 ‖φ(u+1)‖∞. On the other hand, supx∈[0,1] fs(x) ≤ C∗ in (3) and
Si ∈ [0, 1] show that

E
∣∣(φj,k)(u+1)(Si)

∣∣2 =
∫ 1

0

∣∣(φj,k)(u+1)(x)
∣∣2fs(x) dx ≤ C∗

∥∥φ(u+1)∥∥2
22(2u+2)j.

This with (11) and Si ∈ [0, 1] leads to

E
[
Tv
(
(φj,k)′

)
(Si)

]2 ≤ [
(v + 2)!

]2E

[ v∑

u=0

∣∣Su
i (φj,k)(u+1)(Si)

∣∣
]2

≤ (v + 1)
[
(v + 2)!

]2
v∑

u=0

E
∣∣(φj,k)(u+1)(Si)

∣∣2

≤ (v + 1)
[
(v + 2)!

]2C∗
v∑

u=0

∥∥φ(u+1)∥∥2
22(2v+2)j.

Furthermore,

E|Xi|2 ≤ E
[
Tv
(
(φj,k)′

)
(Si)

]2 ≤ C22(2v+2)j, (13)

where C2 = (v + 1)[(v + 2)!]2C∗
∑v

u=0 ‖φ(u+1)‖2
2.

When 0 < p < 2, by using (10), Jensen’s inequality and (13),

E|̂αj,k – αj,k|p = n–pE

∣∣∣
∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

� n–p

[ n∑

i=1

E|Xi|2
] p

2

� n– p
2 2(v+1)jp.

For the case of 2 ≤ p < ∞, according to Rosenthal’s inequality,

E

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

�
n∑

i=1

E|Xi|p +

( n∑

i=1

E|Xi|2
) p

2

� n2(v+ 3
2 )(p–2)j2(2v+2)j +

(
n2(2v+2)j) p

2

� n
p
2 2(v+1)pj[n1– p

2 2( p
2 –1)j + 1

]

because of (12) and (13). Moreover, n1– p
2 2( p

2 –1)j ≤ 1 follows from 2j ≤ n and p ≥ 2. Then

E|̂αj,k – αj,k|p = n–pE

∣∣∣∣∣

n∑

i=1

Xi

∣∣∣∣∣

p

� n– p
2 2(v+1)pj

due to (10). This completes the proof. �
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Bernstein’s inequality [13] is necessary in the proof of Lemma 4.3.
Bernstein’s inequality. Let X1, . . . , Xn be i.i.d. random variables, EXi = 0 and |Xi| ≤ ‖X‖∞

(i = 1, . . . , n). Then, for each γ > 0,

P

{∣∣∣∣∣
1
n

n∑

i=1

∣∣∣∣∣
> γ

}

≤ 2 exp

(
–

nγ 2

2(EX2
i + ‖X‖∞γ /3)

)
.

Lemma 4.3 Let βj,k be the wavelet coefficient of f ′
σ 2 , β̂j,k be defined in (6) and Υ = cγ . Then,

for any j > 0, j2j ≤ n and γ ≥ 1, there exists a constant c ≥ max{8Cmin, 1} such that

P
{|β̂j,k – βj,k| > Υ λj/2

}
� 2–γ j,

where Cmin is given by (8).

Proof According to the definition of β̂j,k in (6), one obtains

β̂j,k – βj,k =
1
n

n∑

i=1

{
E
[
Tv
(
(ψj,k)′

)
(Si)

]
– Tv

(
(ψj,k)′

)
(Si)

}
=

1
n

n∑

i=1

Yi,

where Yi := E[Tv((ψj,k)′)(Si)] – Tv((ψj,k)′)(Si).
Similar to (12) and (13),

|Yi| ≤ C′
12(v+ 3

2 )j := M and EY 2
i ≤ C′

22(2v+2)j, (14)

where

C′
1 = 2(v + 2)!

v∑

u=0

∥∥ψ (u+1)∥∥∞ and C′
2 = (v + 1)

[
(v + 2)!

]2C∗
v∑

u=0

∥∥ψ (u+1)∥∥2
2. (15)

Then Bernstein’s inequality tells that

P
{|β̂j,k – βj,k| > Υ λj/2

}
= P

{∣∣∣∣∣
1
n

n∑

i=1

Yi

∣∣∣∣∣
> Υ λj/2

}

≤ 2 exp

{
–

n(Υ λj/2)2

2(EY 2
i + MΥ λj/6)

}
. (16)

On the other hand, combining with (14), λj = 2(v+1)j
√

j
n and j2j ≤ n, one shows

EY 2
i + MΥ λj/6 ≤ C′

22(2v+2)j +
C′

1Υ

6
2(v+ 3

2 )j2(v+1)j
√

j
n

= 2(2v+2)j
(

C′
2 +

C′
1Υ

6

√
j2j

n

)
≤ (

C′
2 + C′

1Υ
)
2(2v+2)j.

This with (15), c ≥ max{8Cmin, 1} implies that

n(Υ λj/2)2

2(EY 2
i + MΥ λj/6)

≥ Υ 2j
8(C′

2 + C′
1Υ )

=
(cγ )2j

8(C′
2 + C′

1cγ )
≥ γ j ln 2 (17)

thanks to j > 0 and γ > 1.
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Hence, it follows from (16)–(17) that

P
{|β̂j,k – βj,k| > Υ λj/2

}≤ 2 exp

{
–

(cγ )2j
8(C′

2 + C′
1cγ )

}
� 2–γ j,

which is the conclusion of Lemma 4.3. �

At the end of this section, we list two more lemmas which will play key roles in the proof
of Theorem 3.3.

Lemma 4.4 ([5]) Let g ∈ Bs
r,q(R) and f (x) = g(bx) (b ≥ 1). Then

‖f ‖Bs
r,q ≤ bs– 1

r ‖g‖Bs
r,q .

To state the last lemma, we need a concept: Let P and Q be two probability measures
on (Ω ,ℵ) and P be absolutely continuous with respect to Q (denoted by P � Q), the
Kullback–Leibler divergence is defined by

K(P, Q) :=
∫

p·q>0
p(x) ln

p(x)
q(x)

dx,

where p and q are density functions of P, Q, respectively.

Lemma 4.5 (Fano’s lemma, [10]) Let (Ω ,ℵ, Pk) be probability measurable spaces and Ak ∈
ℵ, k = 0, 1, . . . , m. If Ak ∩ Av = ∅ for k �= v, then

sup
0≤k≤m

Pk
(
Ac

k
)≥ min

{
1
2

,
√

m exp
(
–3e–1 – κm

)}
,

where Ac stands for the complement of A and κm = inf0≤v≤m
1
m
∑

k �=v K(Pk , Pv).

5 Proofs of results
In this section, we will prove our main results.

5.1 Proofs of upper bounds
We rewrite Theorem 3.1 as follows before giving its proof.

Theorem 5.1 Assume r ∈ [1, +∞), q ∈ [1, +∞] and s > 1
r , then, for p ∈ [1, +∞), the estima-

tor f̂ ′
σ 2

lin
in (7) with 2j0 ∼ n

1
2s′+2(v+1)+1 satisfies

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥p
p � n– s′p

2s′+2(v+1)+1 ,

where s′ = s – ( 1
r – 1

p )+ and a+ = max{a, 0}.

Proof When r > p, s′ = s – ( 1
r – 1

p )+ = s. Denote Ω = supp(f̂ ′
σ 2

lin
– f ′

σ 2 ). Then

E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥p
p = E

∫ ∣∣f̂ ′
σ 2

lin
– f ′

σ 2

∣∣p dx
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≤ E
[∫

Ω

(∣∣f̂ ′
σ 2

lin
– f ′

σ 2

∣∣p)
r
p dx

] p
r
(∫

Ω

1 dx
)1– p

r
� E

(∥∥f̂ ′
σ 2

lin
– f ′

σ 2

∥∥r
r

) p
r

due to the Hölder inequality. Furthermore, according to Jensen’s inequality and p
r < 1,

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥p
p � sup

f ′
σ2 ∈Bs

r,q(M)

(
E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥r
r

) p
r . (18)

By s′ = s – 1
r + 1

p ≤ s and r ≤ p, one finds Bs
r,q ↪→ Bs′

p,q. Hence,

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥p
p � sup

f ′
σ2 ∈Bs′

p,q(M)
E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥p
p. (19)

Next, one only need estimate supf ′
σ2 ∈Bs′

p,q(M) E‖f̂ ′
σ 2

lin
– f ′

σ 2‖p
p by (18) and (19). Note that

E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥p
p ≤ E

[∥∥f̂ ′
σ 2

lin
– Pj0 f ′

σ 2

∥∥
p +

∥∥Pj0 f ′
σ 2 – f ′

σ 2

∥∥
p

]p

� E
∥∥f̂ ′

σ 2
lin

– Pj0 f ′
σ 2

∥∥p
p +

∥∥Pj0 f ′
σ 2 – f ′

σ 2

∥∥p
p. (20)

Combining 2j0 ∼ n
1

2s′+2(v+1)+1 , f ′
σ 2 ∈ Bs′

p,q(M) with Lemma 2.1, one concludes

∥∥Pj0 f ′
σ 2 – f ′

σ 2

∥∥p
p � 2–j0s′p � n– s′p

2s′+2(v+1)+1 . (21)

On the other hand,

E
∥∥f̂ ′

σ 2
lin

– Pj0 f ′
σ 2

∥∥p
p � 2j0( p

2 –1)
∑

k∈Ωj0

E|̂αj0,k – αj0,k|p � n– p
2 2(v+1+ 1

2 )j0p (22)

thanks to Lemma 4.1 and Lemma 4.2. Then it follows

E
∥∥f̂ ′

σ 2
lin

– Pj0 f ′
σ 2

∥∥p
p � n– s′p

2s′+2(v+1)+1

from 2j0 ∼ n
1

2s′+2(v+1)+1 . This with (20) and (21) leads to

sup
f ′
σ2 ∈Bs′

p,q(M)
E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥p
p � n– s′p

2s′+2(v+1)+1 . (23)

Combining (23) with (18) and (19), one finds that

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥f̂ ′

σ 2
lin

– f ′
σ 2

∥∥p
p � n– s′p

2s′+2(v+1)+1 .

The proof is done. �

Now, the upper bound of nonlinear wavelet estimator (Theorem 3.2) is restated below.
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Theorem 5.2 Let r ∈ [1, +∞), q ∈ [1, +∞] and s > 1
r . Then, for any p ∈ [1, +∞), the esti-

mator f̂ ′
σ 2

non
in (9) satisfies

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥f̂ ′

σ 2
non

– f ′
σ 2

∥∥p
p � (ln n)p(n–1 ln n

)αp,

where α = min{ s
2s+2(v+1)+1 ,

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
}.

Proof When r > p, similar to (18),

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥f̂ ′

σ 2
non

– f ′
σ 2

∥∥p
p � sup

f ′
σ2 ∈Bs

r,q(M)

(
E
∥∥f̂ ′

σ 2
non

– f ′
σ 2

∥∥r
r

) p
r .

Hence, it suffices to establish the result for r ≤ p. According to (1), (2) and (9), E‖f̂ ′
σ 2

non
–

f ′
σ 2‖p

p � A1 + A2 + A3, where

A1 = E
∥∥∥∥
∑

k∈Ωτ

(̂αj,k – αj,k)φj,k

∥∥∥∥

p

p
; A2 = E

∥∥∥∥∥

j1∑

j=τ

∑

k∈Ωj

(β̃j,k – βj,k)ψj,k

∥∥∥∥∥

p

p

and

A3 =
∥∥Pj1+1f ′

σ 2 – f ′
σ 2

∥∥p
p.

Next, one proves A1 + A2 + A3 � (ln n)p(n–1 ln n)αp for f ′
σ 2 ∈ Bs

r,q(M) and r ≤ p.
By the same arguments as (22),

A1 � 2τ ( p
2 –1)

∑

k∈Ωτ

E|̂ατ ,k – ατ ,k|p � n– p
2 2(v+1+ 1

2 )τp
∼ n– p

2 �
(
n–1 ln n

)αp

thanks to α = min{ s
2s+2(v+1)+1 ,

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
} < 1

2 .

Note that f ′
σ 2 ∈ Bs

r,q ↪→ B
s– 1

r + 1
p

p,q for r ≤ p. This with Lemma 2.1 and 2j1 ∼ ( n
ln n )

1
2(v+1)+1

shows

A3 =
∥∥Pj1+1f ′

σ 2 – f ′
σ 2

∥∥p
p � 2–j1(s– 1

r + 1
p )p �

(
ln n
n

) (s– 1
r + 1

p )p
2(v+1)+1

�
(
n–1 ln n

)αp,

because s > 1
r and α = min{ s

2s+2(v+1)+1 ,
s– 1

r + 1
p

2(s– 1
r )+2(v+1)+1

} ≤ s– 1
r + 1

p
2(v+1)+1 .

To estimate A2, define

B̂j =
{

k : |β̂j,k| ≥ Υ λj
}

; Bj =
{

k : |βj,k| ≥ 1
2
Υ λj

}
and Cj =

{
k : |βj,k| ≥ 2Υ λj

}
.

Then E‖∑j1
j=τ

∑
k∈Ωj

(β̃j,k – βj,k)ψj,k‖p
p � (ln n)p–1∑4

i=1 Eei by Lemma 4.1, where

e1 =
j1∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

|β̂j,k – βj,k|pI
{

k ∈ B̂j ∩ Bc
j
}

;



Cao and Wei Journal of Inequalities and Applications        (2019) 2019:106 Page 13 of 21

e2 =
j1∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

|β̂j,k – βj,k|pI{k ∈ B̂j ∩ Bj};

e3 =
j1∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

|βj,k|pI
{

k ∈ B̂c
j ∩ Cj

}
;

e4 =
j1∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

|βj,k|pI
{

k ∈ B̂c
j ∩ Cc

j
}

.

By the Hölder inequality and {k ∈ B̂j ∩ Bc
j } ⊆ {|β̂j,k – βj,k| > Υ λj/2},

E|β̂j,k – βj,k|pI
{

k ∈ B̂j ∩ Bc
j
}≤ (

E|β̂j,k – βj,k|2p) 1
2 P

1
2
{|β̂j,k – βj,k| > Υ λj/2

}
.

This with Lemma 4.2 and Lemma 4.3 shows that

Ee1 �
j1∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

n– p
2 2j[(v+1)p– γ

2 ] � n– p
2 2τ (vp+ 3

2 p– γ
2 ) �

(
ln n
n

)αp

,

where one uses γ > p(2v + 3) and α = min{ s
2s+2(v+1)+1 ,

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
} < 1

2 .

From k ∈ B̂c
j ∩ Cj, one finds |β̂j,k – βj,k| > Υ λj and |βj,k| ≤ |β̂j,k – βj,k| + |β̂j,k| ≤ 2|β̂j,k – βj,k|.

On the other hand, {k ∈ B̂c
j ∩ Cj} ⊆ {|β̂j,k – βj,k| > Υ λj} ⊆ {|β̂j,k – βj,k| > Υ λj/2}. Therefore,

it follows from the same arguments as Ee1 that

Ee3 �
j1∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

|β̂j,k – βj,k|pI
{

k ∈ B̂c
j ∩ Cj

}
�
(

ln n
n

)αp

.

Next, one estimates Ee2 and Ee4. Define

ω = sr +
(

v +
3
2

)
r –

(
v +

3
2

)
p, 2j∗0 ∼

(
n

ln n

) 1
2s+2(v+1)+1

,

2j∗1 ∼
(

n
ln n

) 1
2(s– 1

r )+2(v+1)+1
.

(24)

Then, by s > 1
r and 2j1 ∼ ( n

ln n )
1

2(v+1)+1 ,

0 <
1

2s + 2(v + 1) + 1
,

1
2(s – 1

r ) + 2(v + 1) + 1
<

1
2(v + 1) + 1

and τ < j∗0, j∗1 < j1.

When ω ≥ 0, one writes down

e2 =

( j∗0∑

j=τ

+
j1∑

j=j∗0

)

2j( p
2 –1)

∑

k∈Ωj

|β̂j,k – βj,k|pI{k ∈ B̂j ∩ Bj} := e21 + e22. (25)
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According to (22),

Ee21 �
j∗0∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

E|β̂j,k – βj,k|p � n– p
2 2(v+1+ 1

2 )j∗0p. (26)

Note that 2|βjk |
Υ λj

≥ 1,
∑

k |βjk|r � 2–j(s+ 1
2 – 1

r )r from k ∈ Bj, f ′
σ 2 ∈ Bs

r,q(M) and Lemma 2.1; On

the other hand, Lemma 4.2 tells E|β̂j,k – βj,k|p � 2(v+1)jpn– p
2 . These with λj = 2(v+1)j

√
j
n and

ω = sr + (v + 3
2 )r – (v + 3

2 )p ≥ 0 lead to

Ee22 �
j1∑

j=j∗0

2j( p
2 –1)

∑

k∈Ωj

E|β̂j,k – βj,k|p
( |βjk|

Υ λj

)r

�
j1∑

j=j∗0

2j( p
2 –1)2(v+1)jpn– p

2 λ–r
j

∑

k

|βjk|r � 2–j∗0ωn– p–r
2 . (27)

Combining (25)–(27) with 2j∗0 ∼ ( n
ln n )

1
2s+2(v+1)+1 , one obtains

Ee2 = Ee21 + Ee22 � n– p
2 2(v+1+ 1

2 )j∗0p + 2–j∗0ωn– p–r
2 �

(
ln n
n

) sp
2s+2(v+1)+1

=
(

ln n
n

)αp

because of ω ≥ 0 and α = min{ s
2s+2(v+1)+1 ,

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
} = s

2s+2(v+1)+1 .

When ω = sr + (v + 3
2 )r – (v + 3

2 )p < 0, α = min{ s
2s+2(v+1)+1 ,

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
} =

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
.

Define p1 = (1 – 2α)p. Then r ≤ p1 ≤ p follows from

ω < 0 and r ≤ p1 = (1 – 2α)p =
2(v + 1)p + p – 2

2(s – 1
r ) + 2(v + 1) + 1

≤ p.

Moreover,
∑

k |βjk|p1 ≤ (
∑

k |βjk|r)
p1
r � 2–j(s+ 1

2 – 1
r )p1 thanks to r ≤ p1, f ′

σ 2 ∈ Bs
r,q(M) and

Lemma 2.1. This with (27) and λj = 2(v+1)j
√

j
n shows

Ee2 �
j1∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

E|β̂j,k – βj,k|p
( |βjk|

Υ λj

)p1

�
j1∑

j=τ

2j( p
2 –1)2(v+1)jpn– p

2 λ
–p1
j

∑

k

|βjk|p1

� n– p–p1
2

j1∑

j=τ

2j[ p
2 –1+(v+1)(p–p1)–(s+ 1

2 – 1
r )p1] � ln n

(
ln n
n

)αp

due to p–p1
2 = αp and p

2 – 1 + (v + 1)(p – p1) – (s + 1
2 – 1

r )p1 = 0.
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Finally, one estimates Ee4. When ω = sr + (v + 3
2 )r – (v + 3

2 )p ≥ 0, α = min{ s
2s+2(v+1)+1 ,

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
} = s

2s+2(v+1)+1 . Furthermore,

e4 =

( j∗0∑

j=τ

+
j1∑

j=j∗0+1

)

2j( p
2 –1)

∑

k∈Ωj

|βj,k|pI
{

k ∈ B̂c
j ∩ Cc

j
}

:= e41 + e42, (28)

where j∗0 is given by (24).
Since |βj,k| ≤ 2Υ λj � 2(v+1)j(jn–1) 1

2 holds by k ∈ Cc
j and λj = 2(v+1)j

√
j
n , one concludes that

Ee41 = E
j∗0∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

|βj,k|pI
{

k ∈ B̂c
j ∩ Cc

j
}

�
j∗0∑

j=τ

2j( p
2 –1)2j2(v+1)jp(jn–1) p

2 � 2(v+1+ 1
2 )j∗0p

(
ln n
n

) p
2

. (29)

On the other hand,

Ee42 = E
j1∑

j=j∗0+1

2j( p
2 –1)

∑

k∈Ωj

|βj,k|pI
{

k ∈ B̂c
j ∩ Cc

j
}

�
j1∑

j=j∗0+1

2j( p
2 –1)

∑

k∈Ωj

|βj,k|p
(
λj|βj,k|–1)p–r

�
j1∑

j=j∗0+1

2j( p
2 –1)λ

p–r
j

∑

k

|βj,k|r

due to |βj,k| ≤ 2Υ λj and r ≤ p.

Clearly, ‖βj,·‖lr � 2–j(s– 1
r + 1

2 ) by f ′
σ 2 ∈ Bs

r,q(M) and Lemma 2.1. This with λj = 2(v+1)j
√

j
n

implies that

Ee42 �
j1∑

j=j∗0+1

2j( p
2 –1)2(v+1)(p–r)j2–j(sr+ r

2 –1)
(

ln n
n

) p–r
2

�
(

ln n
n

) p–r
2

2–j∗0ω, (30)

because ω = sr + (v + 3
2 )r – (v + 3

2 )p ≥ 0.
According to (28)–(30) and 2j∗0 ∼ ( n

ln n )
1

2s+2(v+1)+1 , one obtains

Ee4 = Ee41 + Ee42 � 2(v+1+ 1
2 )j∗0p

(
ln n
n

) p
2

+
(

ln n
n

) p–r
2

2–j∗0ω �
(

ln n
n

)αp

by α = s
2s+2(v+1)+1 .

For the case of ω = sr + (v + 3
2 )r – (v + 3

2 )p < 0. Let

e4 =

( j∗1∑

j=τ

+
j1∑

j=j∗1+1

)

2j( p
2 –1)

∑

k∈Ωj

|βj,k|pI
{

k ∈ B̂c
j ∩ Cc

j
}

:= e′
41 + e′

42, (31)
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where j∗1 is given by (24). Similar to (30),

Ee′
41 =

j∗1∑

j=τ

2j( p
2 –1)

∑

k∈Ωj

|βj,k|pI
{

k ∈ B̂c
j ∩ Cc

j
}

�
(

ln n
n

) p–r
2

2–j∗1ω (32)

thanks to ω < 0.
To estimate Ee′

42, one observes that ‖βj,·‖lp � ‖βj,·‖lr � 2–j(s– 1
r + 1

2 ) by r ≤ p, f ′
σ 2 ∈ Bs

r,q(M)
and Lemma 2.1. Hence,

Ee′
42 =

j1∑

j=j∗1+1

2j( p
2 –1)

∑

k∈Ωj

|βj,k|pI
{

k ∈ B̂c
j ∩ Cc

j
}

�
j1∑

j=j∗1+1

2j( p
2 –1)‖βj,·‖p

lr

�
j1∑

j=j∗1+1

2j( p
2 –1)2–j(s– 1

r + 1
2 )p � 2–j∗1(s– 1

r + 1
p )p (33)

because of s > 1
r .

Combining (31)–(33) with 2j∗1 ∼ ( n
ln n )

1
2(s– 1

r )+2(v+1)+1 , one knows

Ee4 = Ee′
41 + Ee′

42 �
(

ln n
n

) p–r
2

2–j∗1ω + 2–j∗1(s– 1
r + 1

p )p �
(

ln n
n

)αp

thanks to ω < 0 and α = min{ s
2s+2(v+1)+1 ,

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
} =

s– 1
r + 1

p
2(s– 1

r )+2(v+1)+1
. This completes the

proof of Theorem 5.2. �

5.2 Proof of lower bound
Finally, we are in a position to state and prove the lower bound estimation.

Theorem 5.3 Assume s > 0 and r, q ∈ [1, +∞], then, for any p ∈ [1, +∞),

inf
f̂ ′
σ2

sup
f ′
σ2 ∈Bs

r,q(M)
E
∥∥̂f ′

σ 2 – f ′
σ 2

∥∥p
p � n

–
(s– 1

r + 1
p )p

2(s– 1
r )+2(v+1)+1 ,

where f̂ ′
σ 2 runs over all possible estimators of f ′

σ 2 .

Proof It is sufficient to construct density functions hk such that h′
k ∈ Bs

r,q(M) and

sup
k

E
∥∥̂f ′

σ 2 – h′
k
∥∥p

p � n
–

(s– 1
r + 1

p )p

2(s– 1
r )+2(v+1)+1 .

Define g(x) = Cm(x), where m ∈ C∞
0 with supp m ⊆ [0, 1],

∫
R

m(x) dx = 0 and C > 0 is a
constant. Let C∞

0 stand for the set of all infinitely many times differentiable and com-
pactly supported functions. Furthermore, one chooses a density function h0 satisfying
h0 ∈ Bs+1

r,q ( M
2 ), supp h0 ⊆ [0, 1] and h0(x) ≥ M1 > 0 for x ∈ [ 1

2 , 3
4 ].
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Take aj = 2–j(s– 1
r + 1

2 +v+1) and

h1(x) = h0(x) + ajGv(gj,l)(x), (34)

where G is given by (5) and gj,l(x) = 2
j
2 g(2jx – l) with l = 2j–1.

First, one checks that h1 is a density function. Since supp gj,l ⊆ [ 1
2 , 3

4 ] by supp m ⊆ [0, 1]
and j large enough, one finds h1(x) ≥ 0 for x /∈ [ 1

2 , 3
4 ]. It is easy to calculate that

Gv(gj,l)(x) = (–1)v
v∑

u=1

Cuxu(gj,l)(u)(x), (35)

where Cu > 0 is a constant. Then, for x ∈ [ 1
2 , 3

4 ] and large j,

h1(x) ≥ M1 –

∣∣∣∣∣
aj

v∑

u=1

Cuxu(gj,l)(u)(x)

∣∣∣∣∣

≥ M1 – aj2
j
2

v∑

u=1

Cu2uj∥∥g(u)(2j · –l
)∥∥∞

≥ M1 – 2–j(s– 1
r +1)

v∑

u=1

Cu
∥∥g(u)∥∥∞ ≥ 0 (36)

thanks to h0(x)|[ 1
2 , 3

4 ] ≥ M1 and aj = 2–j(s– 1
r + 1

2 +v+1). On the other hand,
∫
R

g(x) dx =
∫
R

Cm(x) dx = 0 and supp gj,l ⊆ [ 1
2 , 1

2 +2–j] by supp m ⊆ [0, 1] and l = 2j–1. This with m ∈ C∞
0

and g(x) = Cm(x) shows

∫
xu(gj,l)(u)(x) dx = xu(gj,l)(u–1)(x)| 1

2 +2–j

1
2

– u
∫

xu–1(gj,l)(u–1)(x) dx

= · · · = (–1)m u!
(u – m)!

∫
xu–m(gj,l)(u–m)(x) dx

= (–1)uu!
∫

gj,l(x) dx = 0

for any u ∈ {1, . . . , v}. Therefore,

∫
h1(x) dx =

∫
h0(x) dx + (–1)vaj

v∑

u=1

Cu

∫
xu(gj,l)(u)(x) dx = 1.

From this with (36) one concludes that h1 is a density function.
Next, one shows h′

0, h′
1 ∈ Bs

r,q(M). Clearly, h′
0 ∈ Bs

r,q(M) by h0 ∈ Bs+1
r,q ( M

2 ). Hence, one only
needs prove h′

1 ∈ Bs
r,q(M).

By (34) and (35),

‖h1‖Bs+1
r,q

≤ ‖h0‖Bs+1
r,q

+ aj

v∑

u=1

Cu
∥∥xu(gj,l)(u)(x)

∥∥
Bs+1

r,q
. (37)
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On the other hand, for each τ ∈ {0, . . . , u},

∥∥∥∥

[
2j
(

x –
1
2

)]u–τ

g(u)
[

2j
(

x –
1
2

)]∥∥∥∥
Bs+1

r,q

≤ 2j(s+1– 1
r )∥∥xu–τ g(u)(x)

∥∥
Bs+1

r,q

because of Lemma 4.4. Combining this with l = 2j–1 and [2j(x – 1
2 + 1

2 )]u =
∑u

τ=0 Cτ
u[2j(x –

1
2 )]u–τ 2–τ 2τ j, one obtains

∥∥xu(gj,l)(u)(x)
∥∥

Bs+1
r,q

= 2
j
2

∥∥∥∥

[
2j
(

x –
1
2

+
1
2

)]u

g(u)
[

2j
(

x –
1
2

)]∥∥∥∥
Bs+1

r,q

≤ 2(u+ 1
2 )j

u∑

τ=0

Cτ
u

∥∥∥∥

[
2j
(

x –
1
2

)]u–τ

g(u)
[

2j
(

x –
1
2

)]∥∥∥∥
Bs+1

r,q

≤ 2j(s– 1
r + 1

2 +u+1)
u∑

τ=0

Cτ
u
∥∥xu–τ g(u)(x)

∥∥
Bs+1

r,q
. (38)

Denote M′ = max{Cu, Cτ
u : τ = 0, . . . , u; u = 1, . . . , v}. Then there exists a constant C > 0

such that

xu–τ g(u) ∈ Bs+1
r,q

(
M

2v2M′2

)

thanks to g(x) = Cm(x) and m ∈ C∞
0 ⊆ Bs+1

r,q . This with (37) and (38) leads to

‖h1‖Bs+1
r,q

≤ ‖h0‖Bs+1
r,q

+ aj

v∑

u=1

uM′22j(s– 1
r + 1

2 +u+1) M
2v2M′2 ≤ M

2
+

M
2

= M,

because h0 ∈ Bs+1
r,q ( M

2 ) and aj = 2–j(s– 1
r + 1

2 +v+1). Therefore, h1 ∈ Bs+1
r,q (M) and h′

1 ∈ Bs
r,q(M).

According to (35),

[
Gv(gj,l)(x)

]′ = (–1)v
v∑

u=0

C′
uxu(gj,l)(u+1)(x),

where C′
u > 0 is a constant and l = 2j–1. Hence,

∥∥h′
1 – h′

0
∥∥

p = aj
∥∥[Gv(gj,l)

]′∥∥
p

= aj2
3j
2

∥∥∥∥∥

v∑

u=0

C′
u

[
2j
(

x –
1
2

+
1
2

)]u

g(u+1)
[

2j
(

x –
1
2

)]∥∥∥∥∥
p

. (39)

On the other hand, by using [2j(x – 1
2 + 1

2 )]u =
∑u

τ=0 Cτ
u[2j(x – 1

2 )]u–τ 2–τ 2τ j, one concludes
that

∥∥∥∥∥

v∑

u=0

C′
u

[
2j
(

x –
1
2

+
1
2

)]u

g(u+1)
[

2j
(

x –
1
2

)]∥∥∥∥∥
p

≥
∥∥∥∥∥

v∑

u=0

C′
u2–u2ujg(u+1)

[
2j
(

x –
1
2

)]∥∥∥∥∥
p
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–

∥∥∥∥∥

v∑

u=0

C′
u

{ u–1∑

τ=0

Cτ
u

[
2j
(

x –
1
2

)]u–τ

2–τ 2τ j

}

g(u+1)
[

2j
(

x –
1
2

)]∥∥∥∥∥
p

(40)

and
∥∥∥∥∥

v∑

u=0

C′
u2–u2ujg(u+1)

[
2j
(

x –
1
2

)]∥∥∥∥∥
p

≥
∥∥∥∥C′

v2–v2vjg(v+1)
[

2j
(

x –
1
2

)]∥∥∥∥
p

–

∥∥∥∥∥

v–1∑

u=0

C′
u2–u2ujg(u+1)

[
2j
(

x –
1
2

)]∥∥∥∥∥
p

. (41)

Let x′ = 2j(x – 1
2 ). Then there exists a constant C′ > 0 such that

∥∥h′
1 – h′

0
∥∥

p ≥ aj2
3
2 j2– j

p

{

C′
v2–v2vj∥∥g(v+1)∥∥

p – 2(v–1)j
v–1∑

u=0

C′
u2–u∥∥g(u+1)∥∥

p

– 2(v–1)j
v∑

u=0

C′
u

u–1∑

τ=0

Cτ
u2–τ

∥∥(x′)u–τ g(u+1)∥∥
p

}

≥ C′aj2
3
2 j2– j

p 2jv = C′2–j(s– 1
r + 1

p ) := δj

thanks to (39)–(41), g ∈ C∞
0 and aj = 2–j(s– 1

r + 1
2 +v+1).

Define Ak = {‖̂f ′
σ 2 – h′

k‖p < δj
2 } (k ∈ {0, 1}). Then A0 ∩ A1 = ∅. According to Lemma 4.5,

sup
k∈{0,1}

Pn
fsk

(
Ac

k
)≥ min

{
1
2

, exp
(
–3e–1 – κ1

)}
, (42)

where Pn
f stands for the probability measure corresponding to the density function f n(x) :=

f (x1)f (x2) · · · f (xn). Hence,

E
∥∥̂f ′

σ 2 – h′
k
∥∥p

p ≥
(

δj

2

)p

Pn
fsk

(∥∥̂f ′
σ 2 – h′

k
∥∥

p ≥ δj

2

)
=
(

δj

2

)p

Pn
fsk

(
Ac

k
)
.

This with (42) implies

sup
k∈{0,1}

E
∥∥̂f ′

σ 2 – h′
k
∥∥p

p ≥ sup
k∈{0,1}

(
δj

2

)p

Pn
fsk

(
Ac

k
)≥

(
δj

2

)p

min

{
1
2

, exp
(
–3e–1 – κ1

)}
. (43)

Next, one shows κ1 ≤ C0na2
j . Recall that

κ1 = inf
0≤u≤1

∑

k �=u

K
(
Pn

fsk
, Pn

fsu

)≤ K
(
Pn

fs1
, Pn

fs0

)
. (44)

Then

K
(
Pn

fs1
, Pn

fs0

)≤
n∑

i=1

∫
fs1 (xi) ln

fs1 (xi)
fs0 (xi)

dxi = n
∫

fs1 (x) ln
fs1 (x)
fs0 (x)

dx
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due to f n
s0 (x) =

∏n
j=1 fs0 (xj) and f n

s1 (x) =
∏n

j=1 fs1 (xj). Since ln u ≤ u – 1 holds for u > 0, one
knows

K
(
Pn

fs1
, Pn

fs0

)≤ n
∫

fs1 (x)
(

fs1 (x)
fs0 (x)

– 1
)

dx

= n
∫

f –1
s0 (x)

∣∣fs1 (x) – fs0 (x)
∣∣2 dx. (45)

According to Chesneau’s work in Ref. [8], fsk (x) = 1
(v–1)!

∫ 1
x (ln y – ln x)v–1hk(y) 1

y dy. Then

fs1 (x) – fs0 (x) =
aj

(v – 1)!

∫ 1
2 +2–j

x
(ln y – ln x)v–1Gv(gj,l)(y)

1
y

dy

= –
aj

(v – 1)!

∫ 1
2 +2–j

x
(ln y – ln x)v–1[Gv–1(gj,l)(y)

]′ dy

because of (34) and Gv(gj,l)(x) = –x[Gv–1(gj,l)(x)]′.
By the formula of integration by parts,

fs1 (x) – fs0 (x) = –
aj

(v – 2)!

∫ 1
2 +2–j

x
(ln y – ln x)v–2[Gv–2(gj,l)(y)

]′ dy = · · ·

= –
aj

(v – m)!

∫ 1
2 +2–j

x
(ln y – ln x)v–m[Gv–m(gj,l)(y)

]′ dy = · · ·

= –aj

∫ 1
2 +2–j

x
(gj,l)′(y) dy = ajgj,l(x), (46)

because l = 2j–1 and (ln y – ln x)v–mGv–m(gj,l)(y)| 1
2 +2–j

x = 0 for any m ∈ {1, . . . , v – 1}. On the
other hand, for each x ∈ [ 1

2 , 1
2 + 2–j] and large j,

fs0 (x) ≥ M1

(v – 1)!

∫ 3
4

x
(ln y – ln x)v–1 1

y
dy =

M1

v!

(
ln

3
4

– ln x
)v

≥ M1

v!

[
ln

3
4

– ln

(
1
2

+ 2–j
)]v

≥ M2 > 0 (47)

thanks to fs0 (x) = 1
(v–1)!

∫ 1
x (ln y – ln x)v–1h0(y) 1

y dy and h0(x)|[ 1
2 , 3

4 ] ≥ M1. Combining with
(44)–(47), one obtains

κ1 ≤ M–1
2 n

∫ ∣∣ajgj,l(x)
∣∣2 dx ≤ C0na2

j ,

where C0 > 0 is a constant.

Choose 2j
∼ n

1
2(s– 1

r )+2(v+1)+1 and recall aj = 2–j(s– 1
r + 1

2 +v+1). Then

κ1 � na2
j = n2–j[2(s– 1

r )+2(v+1)+1]
∼ 1 and e–κ1 � 1.
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Substituting δj ∼ 2–j(s– 1
r + 1

p ), 2j
∼ n

1
2(s– 1

r )+2(v+1)+1 into (43), one obtains

sup
k∈{0,1}

E
∥∥̂f ′

σ 2 – h′
k
∥∥p

p � δ
p
j � n

–
(s– 1

r + 1
p )p

2(s– 1
r )+2(v+1)+1 ,

which is the desired conclusion. �
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