(2019) 2019:106

RESEARCH

Open Access

Adaptive wavelet estimations for the derivative of a density in GARCH-type model

Kaikai Cao^{1*} and Jingyi Wei¹

*Correspondence: caokaikai@emails.bjut.edu.cn ¹Department of Applied Mathematics, Beijing University of Technology, Beijing, P.R. China

Abstract

Recently, Rao investigated the estimations for the derivative of a density in GARCH-type model $S = \sigma^2 Z$ over L^2 -risk (Commun. Stat., Theory Methods 46:2396–2410, 2017). This paper extends those estimations to L^p -risk ($1 \le p < \infty$). In addition, we provide a lower bound for this model, which indicates one of our convergence rates to be nearly-optimal.

Keywords: Wavelets; GARCH-type model; Derivative; Besov spaces

1 Introduction

The GARCH-type model

$$S = \sigma^2 Z$$

is considered in this paper, where σ^2 and Z are independent random variables. In practice, we always assume that the density function f_{σ^2} of σ^2 is unknown and $\operatorname{supp} f_{\sigma^2} \subseteq [0,1]$, while the density of Z is known. We want to estimate the first derivative of f_{σ^2} based on n independent and identically distributed (i.i.d.) observed samples S_1, \ldots, S_n of S by wavelet methods, so that we also need suppose the differentiability of f_{σ^2} and $f'_{\sigma^2} \in L^p([0,1])$.

Non-parametric estimations of a density and regression function are widely investigated in the literature [12, 14, 16]. It is well known that the estimations for the derivatives of a density are also important and interesting, which could reflect monotonicity, concavity or convexity properties of density functions. Asymptotic properties of the kernel estimators for a density derivative have been considered earlier in [15], while the wavelet type estimator was discussed in [17].

As usual, we consider the L^p minimax risk (L^p -risk) [13],

$$\inf_{\hat{f}_n} \sup_{f_{\sigma^2} \in \Sigma} E \|\hat{f}_n - f_{\sigma^2}\|_p,$$

where the infimum runs over all possible estimators \hat{f}_n and Σ is a class of functions. Here and after, *EX* stands for the mathematical expectation of a random variable *X* and $||f||_p$ denotes the ordinary L^p norm.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

In 2012, Chesneau and Doosti [9] investigated the wavelet estimation of density for GARCH model under various dependence structures. Next year, Chesneau [8] studied the wavelet estimation of a density in GARCH-type model leading to upper bounds under L^2 -risk. In 2017, Rao [17] considered L^2 -risk for the derivative of a density in GARCH-type model over a Besov ball by wavelets.

In this paper, we address to extend Rao's work [17] to L^p -risk $(1 \le p < \infty)$. Moreover, we show that one of our convergence rates is nearly-optimal. On the other hand, this work can also be seen as a generalization of multiplicative censoring model. Vardi [18, 19] introduced the multiplicative censoring model which unifies several models including nonparametric inference for renewal processes, non-parametric deconvolution problems and estimation of decreasing density functions. Recently, Abbaszadeh et al. [1] considered the wavelet estimation of a density and its derivatives under L^p -risk $(1 \le p < \infty)$ in the multiplicative censoring one. The density estimations for the multiplicative censoring model also can be found in [2, 3] and [6, 7].

This paper is organized as follows. Section 2 briefly describes the Besov ball and wavelet estimators. The theoretical results are given in Sect. 3. Some lemmas are provided in Sect. 4. The proofs are gathered in Sect. 5.

2 Besov ball and estimators

This section describes the Besov ball and wavelet estimators. First, we introduce the Besov ball and its wavelet characterizations.

2.1 Besov ball

Let $W_r^n(\mathbb{R})$ be the Sobolev space with a non-negative integer *n*,

$$W_r^n(\mathbb{R}) := \{ f : f \in L^r(\mathbb{R}), f^{(n)} \in L^r(\mathbb{R}) \},\$$

and $||f||_{W_r^n} := ||f||_r + ||f^{(n)}||_r$. Then $L^r(\mathbb{R})$ can be considered as $W_r^0(\mathbb{R})$. For $1 \le r, q \le \infty$ and $s = n + \alpha$ with $\alpha \in (0, 1]$, a Besov space $B^s_{r,q}(\mathbb{R})$ is defined by

$$B_{r,q}^{s}(\mathbb{R}) := \left\{ f : f \in W_{r}^{n}(\mathbb{R}), \left\| t^{-\alpha} \omega_{r}^{2} (f^{(n)}, t) \right\|_{a}^{*} < \infty \right\}$$

with the norm $||f||_{B^s_{r,q}} := ||f||_{W^n_r} + ||t^{-\alpha}\omega_r^2(f^{(n)},t)||_q^*$. Here, $\omega_r^2(f,t) := \sup_{|h| \le t} ||f(\cdot+2h) - 2f(\cdot+2h)|_q^*$. h) + $f(\cdot) \parallel_r$ denotes the smoothness modulus of f and

$$\|h\|_q^* := \begin{cases} \left(\int_0^{+\infty} |h(t)|^q \frac{dt}{t}\right)^{\frac{1}{q}} & \text{if } 1 \le q < \infty; \\ \text{esssup}_t |h(t)| & \text{if } q = \infty. \end{cases}$$

When *s* > 0 and $1 \le r, q, r' \le \infty$, it is well known that

- (i) $B_{r,q}^s \hookrightarrow B_{r,\infty}^s \hookrightarrow B_{\infty,\infty}^{s-\frac{1}{r}}$ for $s > \frac{1}{r}$; (ii) $B_{r,q}^s \hookrightarrow B_{r',q}^{s'}$ for $r \le r'$ and $s \frac{1}{r} = s' \frac{1}{r'}$;
- (iii) $B^{s}_{\infty,\infty}(\mathbb{R})$ is the classical Hölder space $H^{s}(\mathbb{R})$,

where $A \hookrightarrow B$ stands for a Banach space A continuously embedded in another Banach space *B*. More precisely, $||u||_B \le c_1 ||u||_A$ ($u \in A$) holds for some constant $c_1 > 0$. By (i), $B^s_{r,q}(\mathbb{R}) \hookrightarrow L^{\infty}(\mathbb{R})$ for $s > \frac{1}{r}$. All these notations and claims can be found in [13].

In this paper, a Besov ball

$$B^{s}_{r,q}(M) = \{f \in B^{s}_{r,q}(\mathbb{R}) : ||f||_{B^{s}_{r,q}} \le M\}, \quad M > 0,$$

is considered.

Let ϕ be a scaling function and ψ be the corresponding wavelet function such that

$$\{\phi_{\tau,k}, \psi_{j,k}: j \geq \tau, k \in \mathbb{Z}\}$$

constitutes an orthonormal basis of $L^2(\mathbb{R})$, where τ is a positive integer and $g_{j,k}(x) = 2^{\frac{j}{2}}g(2^jx - k)$ for $g = \phi$ or ψ . Then, for $h \in L^2(\mathbb{R})$,

$$h = \sum_{k \in \Omega_{\tau}} \alpha_{\tau,k} \phi_{\tau,k} + \sum_{j=\tau}^{\infty} \sum_{k \in \Omega_j} \beta_{j,k} \psi_{j,k}$$
(1)

with $\alpha_{j,k} = \langle h, \phi_{j,k} \rangle$, $\beta_{j,k} = \langle h, \psi_{j,k} \rangle$ and

$$\Omega_i = \{k \in \mathbb{Z} : \operatorname{supp} h \cap \operatorname{supp} \phi_{j,k} \neq \emptyset\} \cup \{k \in \mathbb{Z} : \operatorname{supp} h \cap \operatorname{supp} \psi_{j,k} \neq \emptyset\}.$$

In particular, when ϕ , ψ and h have compact supports, the cardinality of Ω_j satisfies $|\Omega_j| \le C2^j$, where C > 0 is a constant depending only on the support lengths of ϕ , ψ and h. As usual, the orthogonal projection operator P_j is given by

$$P_{j}h = \sum_{k \in \Omega_{j}} \alpha_{j,k} \phi_{j,k}.$$
(2)

When $\phi \in C^m$ (so does ψ) is compactly supported, the identity (1) and (2) hold in L^p sense for $p \ge 1$ [13]. Here and throughout, C^m stands for the set consisting of all m times continuously differentiable functions.

The following wavelet characterization theorem of Besov space is needed in Sect. 5.

Lemma 2.1 ([13]) Let a scaling function $\phi \in C^m$ be compactly supported. Then, for $r, q \in [1, +\infty], 0 < s < m$ and $h \in L^r(\mathbb{R})$, the following assertions are equivalent:

- (i) $h \in B^{s}_{r,q}(\mathbb{R});$ (ii) $2^{js} ||P_{j}h h||_{r} \in l_{q};$
- (iii) $\|\alpha_{j_0,\cdot}\|_{l_r} + \|\{2^{j(s+\frac{1}{2}-\frac{1}{r})}\|\beta_{j_0,\cdot}\|_{l_r}\}_{j\geq j_0}\|_{l_q} < \infty.$

In each case,

$$\|h\|_{B^{s}_{r,q}} \sim \|h\|_{s,r,q} := \|\alpha_{j_{0},\cdot}\|_{l_{r}} + \left\|\left\{2^{j(s+\frac{1}{2}-\frac{1}{r})}\|\beta_{j_{0},\cdot}\|_{l_{r}}\right\}_{j\geq j_{0}}\right\|_{l_{q}}.$$

Here and afterwards, $A \leq B$ means $A \leq c_2 B$ for some constant $c_2 > 0$; $A \geq B$ denotes $B \leq A$; we also use $A \sim B$ to stand for both $A \leq B$ and $A \geq B$.

2.2 Estimators

This part introduces our wavelet estimators for the GARCH-type model $S = \sigma^2 Z$ described earlier. Suppose

$$Z=\prod_{i=1}^{\nu}U_i,$$

where ν is a known positive integer and U_1, \ldots, U_{ν} are i.i.d. random variables with standard uniform distribution. Clearly, the density function of *Z* satisfies

$$f_Z(z) = rac{1}{(
u-1)!} (-\ln z)^{
u-1}, \quad 0 \le z \le 1.$$

As in [8, 17], we assume that there exists a known constant C_* such that

$$\sup_{x \in [0,1]} f_s(x) \le C_*, \tag{3}$$

where f_s is the density function of *S*.

For any $x \in [0, 1]$, $h \in C^{k}([0, 1])$, we define

$$T(h)(x) = (xh(x))' = h(x) + xh'(x), \qquad T_k(h)(x) = T(T_{k-1}(h))(x)$$
(4)

and

$$G(h)(x) = -xh'(x), \qquad G_k(h)(x) = G(G_{k-1}(h))(x),$$
(5)

where *k* is a positive integer. Then the following lemma holds.

Lemma 2.2 ([8]) Let G and T be defined as above. Then

- (i) $f_{\sigma^2}(x) = G_{\nu}(f_s)(x), x \in [0, 1];$
- (ii) *For any* $h \in C^{\nu}([0, 1])$,

$$\int_0^1 f_{\sigma^2}(x)h(x)\,dx = \int_0^1 f_s(x)\,T_\nu(h)(x)\,dx.$$

Next, we will introduce wavelet estimators, which can be found in Ref. [17]. Define

$$\widehat{\alpha}_{j_0,k} = -\frac{1}{n} \sum_{i=1}^{n} T_{\nu} \big((\phi_{j,k})' \big) (S_i) \quad \text{and} \quad \widehat{\beta}_{j,k} = -\frac{1}{n} \sum_{i=1}^{n} T_{\nu} \big((\psi_{j,k})' \big) (S_i).$$
(6)

Here and after, let ϕ be Daubechies' scaling function D_{2N} with large N and ψ be the corresponding wavelet function. It is well known that $\phi, \psi \in C^{\nu+1}$ with N large enough. Furthermore, the linear wavelet estimator is given by

$$\widehat{f'_{\sigma^2}}^{\lim} = \sum_{k \in \Omega_{j_0}} \widehat{\alpha}_{j_0,k} \phi_{j_0,k},\tag{7}$$

where j_0 is a positive integer which will be chosen later.

In order to get adaptivity, we need the thresholding method [4, 14, 17]. As in [17], let

$$2^{j_1} \sim \left(\frac{n}{\ln n}\right)^{\frac{1}{2(\nu+1)+1}}, \qquad \lambda_j = 2^{(\nu+1)j} \sqrt{\frac{j}{n}}, \qquad \widetilde{\beta}_{j,k} = \widehat{\beta}_{j,k} I\{|\widehat{\beta}_{j,k}| \ge \Upsilon \lambda_j\}$$

with the constants $\Upsilon = c\gamma$, $c > \max\{8C_{\min}, 1\}$ and $\gamma \ge p(2\nu + 3)$. Here,

$$C_{\min} = (\nu+2)! \sum_{\mu=0}^{\nu} \left[(\nu+1)(\nu+2)! C_* \left\| \psi^{(\mu+1)} \right\|_2^2 + 2 \left\| \psi^{(\mu+1)} \right\|_{\infty} \right]$$
(8)

with C_* given in (3). This special choice c is used in Lemma 4.3, while $\gamma \ge p(2\nu + 3)$ is needed in the estimations of Ee_1 and Ee_3 (see Sect. 5). Here, we replace $\lambda_j = 2^{(\nu+1)j} \sqrt{\frac{\ln n}{n}}$ (see [17]) by $\lambda_j = 2^{(\nu+1)j} \sqrt{\frac{j}{n}}$, which is used in the proof of Lemma 4.3. In fact, the universal threshold of classical adaptive density estimation is $\sqrt{\frac{j}{n}}$ (see [11]) and two forms do not influence the convergence rates of our results.

The nonlinear wavelet estimator is given by

$$\widehat{f_{\sigma^2}^{\prime}}^{\text{non}} = \sum_{k \in \Omega_\tau} \widehat{\alpha}_{\tau,k} \phi_{\tau,k} + \sum_{j=\tau}^{j_1} \sum_{k \in \Omega_j} \widetilde{\beta}_{j,k} \psi_{j,k}$$
(9)

with some positive integer τ .

3 Results

This section describes the results in this paper.

Theorem 3.1 Assume $r \in [1, +\infty)$, $q \in [1, +\infty]$ and $s > \frac{1}{r}$, then, for $p \in [1, +\infty)$, the estimator $\widehat{f'_{\sigma^2}}^{\ln}$ in (7) with $2^{j_0} \sim n^{\frac{1}{2s'+2(\nu+1)+1}}$ satisfies

$$\sup_{f'_{\sigma^2} \in \mathcal{B}^s_{r,q}(M)} E \|\widehat{f'_{\sigma^2}}^{-\ln} - f'_{\sigma^2}\|_p^p \lesssim n^{-\frac{s'p}{2s'+2(\nu+1)+1}},$$

where $s' = s - (\frac{1}{r} - \frac{1}{p})_+$ and $a_+ = \max\{a, 0\}$.

Remark 1 When p = 2 and $r \ge 2$, the above estimation shows

$$\sup_{f'_{\sigma^2} \in B^s_{r,q}(M)} E \|\widehat{f'_{\sigma^2}}^{-\ln} - f'_{\sigma^2}\|_2^2 \lesssim n^{-\frac{2s}{2s+2(\nu+1)+1}},$$

which coincides with Theorem 5.1 of Ref. [17].

Remark 2 The condition $s > \frac{1}{r}$ can be replaced by $s' = s - (\frac{1}{r} - \frac{1}{p})_+ > 0$, because the former condition is only used to conclude $B_{r,q}^s \hookrightarrow B_{p,q}^{s'}$ in the proof of Theorem 3.1.

The next theorem gives an adaptive upper bound estimation by the nonlinear wavelet estimator $\widehat{f_{\sigma^2}^{(n)}}$ in (9).

Theorem 3.2 *Let* $r \in [1, +\infty)$, $q \in [1, +\infty]$ *and* $s > \frac{1}{r}$. *Then, for* $p \in [1, +\infty)$,

$$\sup_{f'_{\sigma^2} \in B^s_{r,q}(M)} E \left\| \widehat{f'_{\sigma^2}}^{\operatorname{non}} - f'_{\sigma^2} \right\|_p^p \lesssim (\ln n)^p (n^{-1} \ln n)^{\alpha p}$$

with $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}\}.$

Remark 3 When $sr + (v + \frac{3}{2})r - (v + \frac{3}{2})p \ge 0$, $\alpha = \frac{s}{2s+2(v+1)+1}$. In particular, the above result with p = 2 coincides with Theorem 5.2 in [17].

Remark 4 The condition $s > \frac{1}{r}$ in Theorem 3.2 can't be replaced by $s' = s - (\frac{1}{r} - \frac{1}{p})_+ > 0$ for $r \le p$, since we need $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}\} \le \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1} \le \frac{s-\frac{1}{r}+\frac{1}{p}}{2(\nu+1)+1}$ for the estimation of A_3 in Sect. 5.

Remark 5 Let *m* be a constant such that m > s, and $2^{j_0} \sim n^{\frac{1}{2m+2(\nu+1)+1}}$. Then the number of calculations can be reduced effectively, when the level $\tau \inf_{\sigma_2}^{\gamma}$ is replaced by j_0 .

The following theorem shows a lower bound estimation.

Theorem 3.3 Assume s > 0 and $r, q \in [1, +\infty]$, then, for any $p \in [1, +\infty)$,

$$\inf_{\widehat{f}'_{\sigma^2} = f'_{\sigma^2} \in B^s_{r,q}(M)} E \|\widehat{f}'_{\sigma^2} - f'_{\sigma^2}\|_p^p \gtrsim n^{-\frac{(s-\frac{1}{r}+\frac{1}{p})p}{2(s-\frac{1}{r})+2(\nu+1)+1}},$$

where \widehat{f}'_{σ^2} runs over all possible estimators of f'_{σ^2} .

Remark 6 Combining Theorem 3.3 with Theorem 3.2, we find that the convergence rate $\frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(v+1)+1}$ is nearly-optimal. As for the other one, we will study it below.

4 Some lemmas

This section is devoted to providing some lemmas, which are needed for the proofs of our theorems.

Lemma 4.1 ([13]) *Let g be a scaling function or a wavelet function with*

$$\sup_{x\in\mathbb{R}}\sum_{k}\left|g(x-k)\right|<+\infty$$

Then there exists C > 0 *such that, for* $\lambda = {\lambda_k} \in l^p(\mathbb{Z})$ *and* $1 \le p \le \infty$ *,*

$$\left\|\sum_{k\in\mathbb{Z}}\lambda_k g_{jk}\right\|_p \leq C 2^{j(\frac{1}{2}-\frac{1}{p})} \|\lambda\|_{l_p}.$$

We need the well-known Rosenthal's inequality [13], in order to prove Lemma 4.2.

Rosenthal's inequality. Let X_1, \ldots, X_n be independent random variables and $EX_i = 0$. Then

$$E\left|\sum_{i=1}^{n} X_{i}\right|^{p} \leq \begin{cases} C_{p}\left[\sum_{i=1}^{n} E|X_{i}|^{p} + \left(\sum_{i=1}^{n} E|X_{i}|^{2}\right)^{\frac{p}{2}}\right], & 2 \leq p < \infty;\\ \left(\sum_{i=1}^{n} E|X_{i}|^{2}\right)^{\frac{p}{2}}, & 0 < p < 2, \end{cases}$$

where $C_p > 0$ is a constant.

Lemma 4.2 Let $\widehat{\alpha}_{j,k}$ and $\widehat{\beta}_{j,k}$ be given by (6). Then, for $p \in (0, +\infty)$, (i) $\widehat{E\alpha}_{j,k} = \alpha_{j,k}, \widehat{E\beta}_{j,k} = \beta_{j,k}$; (ii) $E|\widehat{\alpha}_{j,k} - \alpha_{j,k}|^p \lesssim n^{-\frac{p}{2}} 2^{(\nu+1)jp}, E|\widehat{\beta}_{j,k} - \beta_{j,k}|^p \lesssim n^{-\frac{p}{2}} 2^{(\nu+1)jp}$, where $\alpha_{j,k} = \langle f'_{\alpha^2}, \phi_{j,k} \rangle$ and $\beta_{j,k} = \langle f'_{\alpha^2}, \psi_{j,k} \rangle$.

Proof (i) One only need prove $E\widehat{\alpha}_{j,k} = \alpha_{j,k}$ and the second one is the same. According to the definition of $\widehat{\alpha}_{j,k}$ in (6), one gets

$$E\widehat{\alpha}_{j,k} = -E\Big[T_{\nu}\big((\phi_{j,k})'\big)(S_1)\Big] = -\int_0^1 T_{\nu}\big((\phi_{j,k})'\big)(x)f_s(x)\,dx$$

thanks to S_1, \ldots, S_n are i.i.d. On the other hand, $f_{\sigma^2}(0) = f_{\sigma^2}(1) = 0$ follows from supp $f_{\sigma^2} \subseteq [0, 1]$ and the continuity of f_{σ^2} . These with Lemma 2.2 imply

$$E\widehat{\alpha}_{j,k} = -\int_0^1 f_{\sigma^2}(x)(\phi_{j,k})'(x)\,dx = -f_{\sigma^2}(x)\phi_{j,k}(x)|_0^1 + \int_0^1 f_{\sigma^2}'(x)\phi_{j,k}(x)\,dx = \alpha_{j,k}.$$

(ii) One also prove the first inequality and the second one is similar. By (6) and the results of (i),

$$\widehat{\alpha}_{j,k} - \alpha_{j,k} = \widehat{\alpha}_{j,k} - E\widehat{\alpha}_{j,k} = \frac{1}{n} \sum_{i=1}^{n} \left\{ E \Big[T_{\nu} \big((\phi_{j,k})' \big) (S_i) \Big] - T_{\nu} \big((\phi_{j,k})' \big) (S_i) \right\}.$$

Let $X_i := E[T_{\nu}((\phi_{j,k})')(S_i)] - T_{\nu}((\phi_{j,k})')(S_i)$. Then X_1, \dots, X_n are i.i.d., $EX_i = 0$ and

$$E|\widehat{\alpha}_{j,k} - \alpha_{j,k}|^{p} = E\left|\frac{1}{n}\sum_{i=1}^{n} X_{i}\right|^{p} = n^{-p}E\left|\sum_{i=1}^{n} X_{i}\right|^{p}.$$
(10)

According to (4),

$$T_{\nu}((\phi_{j,k})')(x) \Big| \le (\nu+2)! \sum_{u=0}^{\nu} \Big| x^{u}(\phi_{j,k})^{(u+1)}(x) \Big|.$$
(11)

Hence,

$$\begin{split} \sup_{x \in [0,1]} \left| T_{\nu} \big((\phi_{j,k})' \big)(x) \right| &\leq (\nu+2)! \sup_{x \in [0,1]} \sum_{u=0}^{\nu} \left| x^{u} (\phi_{j,k})^{(u+1)}(x) \right| \\ &\leq (\nu+2)! \sum_{u=0}^{\nu} \sup_{x \in [0,1]} \left| (\phi_{j,k})^{(u+1)}(x) \right| \end{split}$$

$$\leq (\nu+2)! \sum_{u=0}^{\nu} \|\phi^{(u+1)}\|_{\infty} 2^{(\nu+\frac{3}{2})j}.$$

Clearly,

$$|X_{i}| \leq E \left| T_{\nu} \left((\phi_{j,k})' \right) (S_{i}) \right| + \left| T_{\nu} \left((\phi_{j,k})' \right) (S_{i}) \right| \leq C_{1} 2^{(\nu + \frac{3}{2})j},$$
(12)

where $C_1 = 2(\nu + 2)! \sum_{u=0}^{\nu} \|\phi^{(u+1)}\|_{\infty}$. On the other hand, $\sup_{x \in [0,1]} f_s(x) \le C_*$ in (3) and $S_i \in [0,1]$ show that

$$E|(\phi_{j,k})^{(u+1)}(S_i)|^2 = \int_0^1 |(\phi_{j,k})^{(u+1)}(x)|^2 f_s(x) \, dx \le C_* \left\|\phi^{(u+1)}\right\|_2^2 2^{(2u+2)j}.$$

This with (11) and $S_i \in [0, 1]$ leads to

$$E[T_{\nu}((\phi_{j,k})')(S_{i})]^{2} \leq [(\nu+2)!]^{2}E\left[\sum_{u=0}^{\nu}|S_{i}^{u}(\phi_{j,k})^{(u+1)}(S_{i})|\right]^{2}$$
$$\leq (\nu+1)[(\nu+2)!]^{2}\sum_{u=0}^{\nu}E|(\phi_{j,k})^{(u+1)}(S_{i})|^{2}$$
$$\leq (\nu+1)[(\nu+2)!]^{2}C_{*}\sum_{u=0}^{\nu}\|\phi^{(u+1)}\|_{2}^{2}2^{(2\nu+2)j}.$$

Furthermore,

$$E|X_i|^2 \le E \Big[T_\nu \big((\phi_{j,k})' \big) (S_i) \Big]^2 \le C_2 2^{(2\nu+2)j},$$
(13)

where $C_2 = (\nu + 1)[(\nu + 2)!]^2 C_* \sum_{u=0}^{\nu} \|\phi^{(u+1)}\|_2^2$.

When 0 , by using (10), Jensen's inequality and (13),

$$E|\widehat{\alpha}_{j,k} - \alpha_{j,k}|^p = n^{-p}E\left|\sum_{i=1}^n X_i\right|^p \lesssim n^{-p}\left[\sum_{i=1}^n E|X_i|^2\right]^{\frac{p}{2}} \lesssim n^{-\frac{p}{2}}2^{(\nu+1)jp}.$$

For the case of $2 \le p < \infty$, according to Rosenthal's inequality,

$$E\left|\sum_{i=1}^{n} X_{i}\right|^{p} \lesssim \sum_{i=1}^{n} E|X_{i}|^{p} + \left(\sum_{i=1}^{n} E|X_{i}|^{2}\right)^{\frac{p}{2}}$$
$$\lesssim n2^{(\nu+\frac{3}{2})(p-2)j}2^{(2\nu+2)j} + \left(n2^{(2\nu+2)j}\right)^{\frac{p}{2}}$$
$$\lesssim n^{\frac{p}{2}}2^{(\nu+1)pj}\left[n^{1-\frac{p}{2}}2^{(\frac{p}{2}-1)j} + 1\right]$$

because of (12) and (13). Moreover, $n^{1-\frac{p}{2}}2^{(\frac{p}{2}-1)j} \le 1$ follows from $2^j \le n$ and $p \ge 2$. Then

$$E|\widehat{\alpha}_{j,k}-\alpha_{j,k}|^p=n^{-p}E\left|\sum_{i=1}^n X_i\right|^p\lesssim n^{-\frac{p}{2}}2^{(\nu+1)pj}$$

due to (10). This completes the proof.

Bernstein's inequality [13] is necessary in the proof of Lemma 4.3.

Bernstein's inequality. Let X_1, \ldots, X_n be i.i.d. random variables, $EX_i = 0$ and $|X_i| \le ||X||_{\infty}$ $(i = 1, \ldots, n)$. Then, for each $\gamma > 0$,

$$P\left\{\left|\frac{1}{n}\sum_{i=1}^{n}\right| > \gamma\right\} \le 2\exp\left(-\frac{n\gamma^2}{2(EX_i^2 + \|X\|_{\infty}\gamma/3)}\right).$$

Lemma 4.3 Let $\beta_{j,k}$ be the wavelet coefficient of f'_{σ^2} , $\widehat{\beta}_{j,k}$ be defined in (6) and $\Upsilon = c\gamma$. Then, for any j > 0, $j2^j \le n$ and $\gamma \ge 1$, there exists a constant $c \ge \max\{8C_{\min}, 1\}$ such that

$$P\left\{|\widehat{\beta}_{j,k}-\beta_{j,k}|>\Upsilon\lambda_j/2\right\}\lesssim 2^{-\gamma j},$$

where C_{\min} is given by (8).

Proof According to the definition of $\widehat{\beta}_{j,k}$ in (6), one obtains

$$\widehat{\beta}_{j,k} - \beta_{j,k} = \frac{1}{n} \sum_{i=1}^{n} \left\{ E \Big[T_{\nu} \big((\psi_{j,k})' \big) (S_i) \Big] - T_{\nu} \big((\psi_{j,k})' \big) (S_i) \right\} = \frac{1}{n} \sum_{i=1}^{n} Y_i,$$

where $Y_i := E[T_v((\psi_{j,k})')(S_i)] - T_v((\psi_{j,k})')(S_i).$

Similar to (12) and (13),

$$|Y_i| \le C_1' 2^{(\nu + \frac{3}{2})j} := M \quad \text{and} \quad EY_i^2 \le C_2' 2^{(2\nu + 2)j},$$
(14)

where

$$C_{1}' = 2(\nu+2)! \sum_{u=0}^{\nu} \left\| \psi^{(u+1)} \right\|_{\infty} \quad \text{and} \quad C_{2}' = (\nu+1) \left[(\nu+2)! \right]^{2} C_{*} \sum_{u=0}^{\nu} \left\| \psi^{(u+1)} \right\|_{2}^{2}.$$
(15)

Then Bernstein's inequality tells that

$$P\left\{|\widehat{\beta}_{j,k} - \beta_{j,k}| > \Upsilon\lambda_j/2\right\} = P\left\{\left|\frac{1}{n}\sum_{i=1}^n Y_i\right| > \Upsilon\lambda_j/2\right\} \le 2\exp\left\{-\frac{n(\Upsilon\lambda_j/2)^2}{2(EY_i^2 + M\Upsilon\lambda_j/6)}\right\}.$$
 (16)

On the other hand, combining with (14), $\lambda_j = 2^{(\nu+1)j} \sqrt{\frac{j}{n}}$ and $j2^j \le n$, one shows

$$\begin{split} EY_i^2 + M\Upsilon\lambda_j/6 &\leq C_2' 2^{(2\nu+2)j} + \frac{C_1'\Upsilon}{6} 2^{(\nu+\frac{3}{2})j} 2^{(\nu+1)j} \sqrt{\frac{j}{n}} \\ &= 2^{(2\nu+2)j} \left(C_2' + \frac{C_1'\Upsilon}{6} \sqrt{\frac{j2^j}{n}} \right) \leq \left(C_2' + C_1'\Upsilon \right) 2^{(2\nu+2)j}. \end{split}$$

This with (15), $c \ge \max\{8C_{\min}, 1\}$ implies that

$$\frac{n(\Upsilon\lambda_j/2)^2}{2(EY_i^2 + M\Upsilon\lambda_j/6)} \ge \frac{\Upsilon^2 j}{8(C_2' + C_1'\Upsilon)} = \frac{(c\gamma)^2 j}{8(C_2' + C_1'c\gamma)} \ge \gamma j \ln 2$$
(17)

thanks to j > 0 and $\gamma > 1$.

Hence, it follows from (16)-(17) that

$$P\left\{|\widehat{\beta}_{j,k}-\beta_{j,k}|>\Upsilon\lambda_j/2\right\}\leq 2\exp\left\{-\frac{(c\gamma)^2j}{8(C_2'+C_1'c\gamma)}\right\}\lesssim 2^{-\gamma j},$$

which is the conclusion of Lemma 4.3.

At the end of this section, we list two more lemmas which will play key roles in the proof of Theorem 3.3.

Lemma 4.4 ([5]) *Let* $g \in B^{s}_{r,q}(\mathbb{R})$ *and* f(x) = g(bx) ($b \ge 1$). *Then*

$$||f||_{B^s_{r,q}} \leq b^{s-\frac{1}{r}} ||g||_{B^s_{r,q}}.$$

To state the last lemma, we need a concept: Let *P* and *Q* be two probability measures on (Ω, \aleph) and *P* be absolutely continuous with respect to *Q* (denoted by $P \ll Q$), the Kullback–Leibler divergence is defined by

$$K(P,Q) \coloneqq \int_{p \cdot q > 0} p(x) \ln \frac{p(x)}{q(x)} \, dx,$$

where *p* and *q* are density functions of *P*, *Q*, respectively.

Lemma 4.5 (Fano's lemma, [10]) Let (Ω, \aleph, P_k) be probability measurable spaces and $A_k \in \aleph, k = 0, 1, ..., m$. If $A_k \cap A_v = \emptyset$ for $k \neq v$, then

$$\sup_{0\leq k\leq m} P_k(A_k^c) \geq \min\left\{\frac{1}{2}, \sqrt{m}\exp\left(-3e^{-1}-\kappa_m\right)\right\},\,$$

where A^c stands for the complement of A and $\kappa_m = \inf_{0 \le \nu \le m} \frac{1}{m} \sum_{k \ne \nu} K(P_k, P_{\nu})$.

5 Proofs of results

In this section, we will prove our main results.

5.1 Proofs of upper bounds

We rewrite Theorem 3.1 as follows before giving its proof.

Theorem 5.1 Assume $r \in [1, +\infty)$, $q \in [1, +\infty]$ and $s > \frac{1}{r}$, then, for $p \in [1, +\infty)$, the estimator $\widehat{f'_{\sigma^2}}^{\ln}$ in (7) with $2^{j_0} \sim n^{\frac{1}{2s'+2(\nu+1)+1}}$ satisfies

$$\sup_{f'_{\sigma^2} \in B^s_{r,q}(M)} E \|\widehat{f'_{\sigma^2}}^{\text{lin}} - f'_{\sigma^2}\|_p^p \lesssim n^{-\frac{s'p}{2s'+2(\nu+1)+1}},$$

where $s' = s - (\frac{1}{r} - \frac{1}{p})_+$ and $a_+ = \max\{a, 0\}$.

Proof When r > p, $s' = s - (\frac{1}{r} - \frac{1}{p})_+ = s$. Denote $\Omega = \operatorname{supp}(\widehat{f'_{\sigma^2}}^{-\lim} - f'_{\sigma^2})$. Then

$$E\left\|\widehat{f_{\sigma^{2}}^{'}} - f_{\sigma^{2}}^{'}\right\|_{p}^{p} = E\int \left|\widehat{f_{\sigma^{2}}^{'}} - f_{\sigma^{2}}^{'}\right|^{p} dx$$

$$\leq E \bigg[\int_{\Omega} \left(\left| \widehat{f_{\sigma^2}}^{\ln} - f_{\sigma^2}^{\prime} \right|^p \right)^{\frac{p}{p}} dx \bigg]^{\frac{p}{r}} \left(\int_{\Omega} 1 \, dx \right)^{1 - \frac{p}{r}} \lesssim E \left(\left\| \widehat{f_{\sigma^2}}^{\ln} - f_{\sigma^2}^{\prime} \right\|_r^r \right)^{\frac{p}{r}}$$

due to the Hölder inequality. Furthermore, according to Jensen's inequality and $\frac{p}{r} < 1$,

$$\sup_{f'_{\sigma^2} \in B^{s}_{r,q}(M)} E \|\widehat{f'_{\sigma^2}}^{\ln} - f'_{\sigma^2}\|_{p}^{p} \lesssim \sup_{f'_{\sigma^2} \in B^{s}_{r,q}(M)} \left(E \|\widehat{f'_{\sigma^2}}^{\ln} - f'_{\sigma^2}\|_{r}^{r}\right)^{\frac{p}{r}}.$$
(18)

By $s' = s - \frac{1}{r} + \frac{1}{p} \le s$ and $r \le p$, one finds $B_{r,q}^s \hookrightarrow B_{p,q}^{s'}$. Hence,

$$\sup_{f'_{\sigma^2} \in B^{\mathfrak{s}}_{p,q}(M)} E \| \widehat{f'_{\sigma^2}}^{\ln} - f'_{\sigma^2} \|_p^p \lesssim \sup_{f'_{\sigma^2} \in B^{\mathfrak{s}}_{p,q}(M)} E \| \widehat{f'_{\sigma^2}}^{\ln} - f'_{\sigma^2} \|_p^p.$$
(19)

Next, one only need estimate $\sup_{f'_{\sigma^2} \in B^{s'}_{p,q}(M)} E \|\widehat{f'_{\sigma^2}}^{\ln} - f'_{\sigma^2}\|_p^p$ by (18) and (19). Note that

$$E \| \widehat{f'_{\sigma^2}}^{\text{lin}} - f'_{\sigma^2} \|_p^p \le E [\| \widehat{f'_{\sigma^2}}^{\text{lin}} - P_{j_0} f'_{\sigma^2} \|_p + \| P_{j_0} f'_{\sigma^2} - f'_{\sigma^2} \|_p]^p \lesssim E \| \widehat{f'_{\sigma^2}}^{\text{lin}} - P_{j_0} f'_{\sigma^2} \|_p^p + \| P_{j_0} f'_{\sigma^2} - f'_{\sigma^2} \|_p^p.$$

$$(20)$$

Combining $2^{j_0} \sim n^{\frac{1}{2s'+2(v+1)+1}}$, $f'_{\sigma^2} \in B^{s'}_{p,q}(M)$ with Lemma 2.1, one concludes

$$\|P_{j_0}f'_{\sigma^2} - f'_{\sigma^2}\|_p^p \lesssim 2^{-j_0s'p} \lesssim n^{-\frac{s'p}{2s'+2(\nu+1)+1}}.$$
(21)

On the other hand,

$$E\|\widehat{f_{\sigma^2}}^{\lim} - P_{j_0}f_{\sigma^2}^{\prime}\|_p^p \lesssim 2^{j_0(\frac{p}{2}-1)} \sum_{k \in \Omega_{j_0}} E|\widehat{\alpha}_{j_0,k} - \alpha_{j_0,k}|^p \lesssim n^{-\frac{p}{2}} 2^{(\nu+1+\frac{1}{2})j_0p}$$
(22)

thanks to Lemma 4.1 and Lemma 4.2. Then it follows

$$E\|\widehat{f_{\sigma^2}'}^{\ln} - P_{j_0}f_{\sigma^2}'\|_p^p \lesssim n^{-\frac{s'p}{2s'+2(\nu+1)+1}}$$

from $2^{j_0} \sim n^{rac{1}{2s'+2(\nu+1)+1}}$. This with (20) and (21) leads to

$$\sup_{\substack{f'_{\sigma^2} \in B_{p,q}^{s'}(M)}} E \|\widehat{f'_{\sigma^2}}^{\lim} - f'_{\sigma^2}\|_p^p \lesssim n^{-\frac{s'p}{2s' + 2(\nu+1)+1}}.$$
(23)

Combining (23) with (18) and (19), one finds that

$$\sup_{\substack{f'_{\sigma^2} \in B^s_{r,q}(M)}} E\left\|\widehat{f'_{\sigma^2}}^{-\ln} - f'_{\sigma^2}\right\|_p^p \lesssim n^{-\frac{s_p}{2s'+2(\nu+1)+1}}.$$

The proof is done.

Now, the upper bound of nonlinear wavelet estimator (Theorem 3.2) is restated below.

$$\sup_{f'_{\sigma^2} \in B^s_{r,q}(M)} E \left\| \widehat{f'_{\sigma^2}}^{\operatorname{non}} - f'_{\sigma^2} \right\|_p^p \lesssim (\ln n)^p (n^{-1} \ln n)^{\alpha p},$$

where $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}\}.$

Proof When r > p, similar to (18),

$$\sup_{f'_{\sigma^2} \in B^{\mathfrak{s}}_{r,q}(M)} E \|\widehat{f'_{\sigma^2}}^{\operatorname{non}} - f'_{\sigma^2}\|_p^p \lesssim \sup_{f'_{\sigma^2} \in B^{\mathfrak{s}}_{r,q}(M)} \left(E \|\widehat{f'_{\sigma^2}}^{\operatorname{non}} - f'_{\sigma^2}\|_r^r\right)^{\frac{p}{r}}.$$

Hence, it suffices to establish the result for $r \le p$. According to (1), (2) and (9), $E \| \widehat{f_{\sigma^2}}^{non} - f_{\sigma^2}' \|_p^p \le A_1 + A_2 + A_3$, where

$$A_{1} = E \left\| \sum_{k \in \Omega_{\tau}} (\widehat{\alpha}_{j,k} - \alpha_{j,k}) \phi_{j,k} \right\|_{p}^{p}; \qquad A_{2} = E \left\| \sum_{j=\tau}^{j_{1}} \sum_{k \in \Omega_{j}} (\widetilde{\beta}_{j,k} - \beta_{j,k}) \psi_{j,k} \right\|_{p}^{p} \text{ and}$$
$$A_{3} = \left\| P_{j_{1}+j} f_{\sigma^{2}}^{\prime} - f_{\sigma^{2}}^{\prime} \right\|_{p}^{p}.$$

Next, one proves $A_1 + A_2 + A_3 \lesssim (\ln n)^p (n^{-1} \ln n)^{\alpha p}$ for $f'_{\sigma^2} \in B^s_{r,q}(M)$ and $r \le p$. By the same arguments as (22),

$$A_1 \lesssim 2^{\tau(\frac{p}{2}-1)} \sum_{k \in \Omega_{\tau}} E|\widehat{\alpha}_{\tau,k} - \alpha_{\tau,k}|^p \lesssim n^{-\frac{p}{2}} 2^{(\nu+1+\frac{1}{2})\tau p} \sim n^{-\frac{p}{2}} \lesssim (n^{-1}\ln n)^{\alpha p}$$

thanks to $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}\} < \frac{1}{2}.$

Note that $f'_{\sigma^2} \in B^s_{r,q} \hookrightarrow B^{s-\frac{1}{r}+\frac{1}{p}'}_{p,q}$ for $r \leq p$. This with Lemma 2.1 and $2^{j_1} \sim (\frac{n}{\ln n})^{\frac{1}{2(\nu+1)+1}}$ shows

$$A_{3} = \left\| P_{j_{1}+1}f_{\sigma^{2}}' - f_{\sigma^{2}}' \right\|_{p}^{p} \lesssim 2^{-j_{1}(s-\frac{1}{r}+\frac{1}{p})p} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{(s-\frac{1}{r}+\frac{1}{p})p}{2(\nu+1)+1}} \lesssim (n^{-1}\ln n)^{\alpha p},$$

because $s > \frac{1}{r}$ and $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}\} \le \frac{s-\frac{1}{r}+\frac{1}{p}}{2(\nu+1)+1}$. To estimate A_2 , define

$$\widehat{B}_j = \left\{k : |\widehat{\beta}_{j,k}| \ge \Upsilon \lambda_j\right\}; \qquad B_j = \left\{k : |\beta_{j,k}| \ge \frac{1}{2}\Upsilon \lambda_j\right\} \text{ and } C_j = \left\{k : |\beta_{j,k}| \ge 2\Upsilon \lambda_j\right\}.$$

Then $E \| \sum_{j=\tau}^{j_1} \sum_{k \in \Omega_j} (\widetilde{\beta}_{j,k} - \beta_{j,k}) \psi_{j,k} \|_p^p \lesssim (\ln n)^{p-1} \sum_{i=1}^4 Ee_i$ by Lemma 4.1, where

$$e_1 = \sum_{j=\tau}^{j_1} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} |\widehat{\beta}_{j,k} - \beta_{j,k}|^p I\{k \in \widehat{B}_j \cap B_j^c\};$$

$$e_{2} = \sum_{j=\tau}^{j_{1}} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_{j}} |\widehat{\beta}_{j,k} - \beta_{j,k}|^{p} I\{k \in \widehat{B}_{j} \cap B_{j}\};$$

$$e_{3} = \sum_{j=\tau}^{j_{1}} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_{j}} |\beta_{j,k}|^{p} I\{k \in \widehat{B}_{j}^{c} \cap C_{j}\};$$

$$e_{4} = \sum_{j=\tau}^{j_{1}} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_{j}} |\beta_{j,k}|^{p} I\{k \in \widehat{B}_{j}^{c} \cap C_{j}^{c}\}.$$

By the Hölder inequality and $\{k \in \widehat{B}_j \cap B_j^c\} \subseteq \{|\widehat{\beta}_{j,k} - \beta_{j,k}| > \Upsilon \lambda_j/2\},\$

$$E|\widehat{\beta}_{j,k}-\beta_{j,k}|^{p}I\{k\in\widehat{B}_{j}\cap B_{j}^{c}\}\leq \left(E|\widehat{\beta}_{j,k}-\beta_{j,k}|^{2p}\right)^{\frac{1}{2}}P^{\frac{1}{2}}\{|\widehat{\beta}_{j,k}-\beta_{j,k}|>\Upsilon\lambda_{j}/2\}.$$

This with Lemma 4.2 and Lemma 4.3 shows that

$$Ee_1 \lesssim \sum_{j=\tau}^{j_1} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} n^{-\frac{p}{2}} 2^{j[(\nu+1)p-\frac{\gamma}{2}]} \lesssim n^{-\frac{p}{2}} 2^{\tau(\nu p+\frac{3}{2}p-\frac{\gamma}{2})} \lesssim \left(\frac{\ln n}{n}\right)^{\alpha p},$$

where one uses $\gamma > p(2\nu + 3)$ and $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}\} < \frac{1}{2}$. From $k \in \widehat{B}_{j}^{c} \cap C_{j}$, one finds $|\widehat{\beta}_{j,k} - \beta_{j,k}| > \gamma \lambda_{j}$ and $|\beta_{j,k}| \le |\widehat{\beta}_{j,k} - \beta_{j,k}| + |\widehat{\beta}_{j,k}| \le 2|\widehat{\beta}_{j,k} - \beta_{j,k}|$. On the other hand, $\{k \in \widehat{B}_{j}^{c} \cap C_{j}\} \subseteq \{|\widehat{\beta}_{j,k} - \beta_{j,k}| > \gamma \lambda_{j}\} \subseteq \{|\widehat{\beta}_{j,k} - \beta_{j,k}| > \gamma \lambda_{j}/2\}$. Therefore, it follows from the same arguments as Ee_1 that

$$Ee_3 \lesssim \sum_{j=\tau}^{j_1} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} |\widehat{\beta}_{j,k} - \beta_{j,k}|^p I\{k \in \widehat{B}_j^c \cap C_j\} \lesssim \left(\frac{\ln n}{n}\right)^{\alpha p}.$$

Next, one estimates Ee_2 and Ee_4 . Define

$$\omega = sr + \left(\nu + \frac{3}{2}\right)r - \left(\nu + \frac{3}{2}\right)p, \qquad 2^{j_0^*} \sim \left(\frac{n}{\ln n}\right)^{\frac{1}{2s + 2(\nu+1) + 1}},$$

$$2^{j_1^*} \sim \left(\frac{n}{\ln n}\right)^{\frac{1}{2(s - \frac{1}{r}) + 2(\nu+1) + 1}}.$$
(24)

Then, by $s > \frac{1}{r}$ and $2^{j_1} \sim (\frac{n}{\ln n})^{\frac{1}{2(\nu+1)+1}}$,

$$0 < \frac{1}{2s + 2(\nu + 1) + 1}, \ \frac{1}{2(s - \frac{1}{r}) + 2(\nu + 1) + 1} < \frac{1}{2(\nu + 1) + 1} \quad \text{and} \quad \tau < j_0^*, j_1^* < j_1.$$

When $\omega \ge 0$, one writes down

$$e_{2} = \left(\sum_{j=\tau}^{j_{0}^{*}} + \sum_{j=j_{0}^{*}}^{j_{1}}\right) 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_{j}} |\widehat{\beta}_{j,k} - \beta_{j,k}|^{p} I\{k \in \widehat{B}_{j} \cap B_{j}\} := e_{21} + e_{22}.$$
(25)

According to (22),

$$Ee_{21} \lesssim \sum_{j=\tau}^{j_0^*} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} E|\widehat{\beta}_{j,k} - \beta_{j,k}|^p \lesssim n^{-\frac{p}{2}} 2^{(\nu+1+\frac{1}{2})j_0^*p}.$$
(26)

Note that $\frac{2|\beta_{jk}|}{\gamma_{\lambda_j}} \ge 1$, $\sum_k |\beta_{jk}|^r \lesssim 2^{-j(s+\frac{1}{2}-\frac{1}{r})r}$ from $k \in B_j, f'_{\sigma^2} \in B^s_{r,q}(M)$ and Lemma 2.1; On the other hand, Lemma 4.2 tells $E|\widehat{\beta}_{j,k} - \beta_{j,k}|^p \lesssim 2^{(\nu+1)jp} n^{-\frac{p}{2}}$. These with $\lambda_j = 2^{(\nu+1)j} \sqrt{\frac{j}{n}}$ and $\omega = sr + (v + \frac{3}{2})r - (v + \frac{3}{2})p \ge 0$ lead to

$$Ee_{22} \lesssim \sum_{j=j_0^*}^{j_1} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} E|\widehat{\beta}_{j,k} - \beta_{j,k}|^p \left(\frac{|\beta_{jk}|}{\Upsilon \lambda_j}\right)^r$$

$$\lesssim \sum_{j=j_0^*}^{j_1} 2^{j(\frac{p}{2}-1)} 2^{(\nu+1)jp} n^{-\frac{p}{2}} \lambda_j^{-r} \sum_k |\beta_{jk}|^r \lesssim 2^{-j_0^*\omega} n^{-\frac{p-r}{2}}.$$
 (27)

Combining (25)–(27) with $2^{j_0^*} \sim (\frac{n}{\ln n})^{\frac{1}{2s+2(\nu+1)+1}}$, one obtains

$$Ee_{2} = Ee_{21} + Ee_{22} \lesssim n^{-\frac{p}{2}} 2^{(\nu+1+\frac{1}{2})j_{0}^{*}p} + 2^{-j_{0}^{*}\omega} n^{-\frac{p-r}{2}} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{sp}{2s+2(\nu+1)+1}} = \left(\frac{\ln n}{n}\right)^{\alpha p}$$

because of $\omega \ge 0$ and $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}\} = \frac{s}{2s+2(\nu+1)+1}$. When $\omega = sr + (\nu + \frac{3}{2})r - (\nu + \frac{3}{2})p < 0$, $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}\} = \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}$. Define $p_1 = (1 - 2\alpha)p$. Then $r \le p_1 \le p$ follows from

$$\omega < 0$$
 and $r \le p_1 = (1 - 2\alpha)p = \frac{2(\nu + 1)p + p - 2}{2(s - \frac{1}{r}) + 2(\nu + 1) + 1} \le p.$

Moreover, $\sum_{k} |\beta_{jk}|^{p_1} \leq (\sum_{k} |\beta_{jk}|^r)^{\frac{p_1}{r}} \lesssim 2^{-j(s+\frac{1}{2}-\frac{1}{r})p_1}$ thanks to $r \leq p_1$, $f'_{\sigma^2} \in B^s_{r,q}(M)$ and Lemma 2.1. This with (27) and $\lambda_j = 2^{(\nu+1)j} \sqrt{\frac{j}{n}}$ shows

$$Ee_{2} \lesssim \sum_{j=\tau}^{j_{1}} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_{j}} E|\widehat{\beta}_{j,k} - \beta_{j,k}|^{p} \left(\frac{|\beta_{jk}|}{\Upsilon \lambda_{j}}\right)^{p_{1}}$$
$$\lesssim \sum_{j=\tau}^{j_{1}} 2^{j(\frac{p}{2}-1)} 2^{(\nu+1)jp} n^{-\frac{p}{2}} \lambda_{j}^{-p_{1}} \sum_{k} |\beta_{jk}|^{p_{1}}$$
$$\lesssim n^{-\frac{p-p_{1}}{2}} \sum_{j=\tau}^{j_{1}} 2^{j[\frac{p}{2}-1+(\nu+1)(p-p_{1})-(s+\frac{1}{2}-\frac{1}{r})p_{1}]} \lesssim \ln n \left(\frac{\ln n}{n}\right)^{\alpha p}$$

due to $\frac{p-p_1}{2} = \alpha p$ and $\frac{p}{2} - 1 + (\nu + 1)(p - p_1) - (s + \frac{1}{2} - \frac{1}{r})p_1 = 0$.

Finally, one estimates Ee_4 . When $\omega = sr + (\nu + \frac{3}{2})r - (\nu + \frac{3}{2})p \ge 0$, $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s}{2s+2(\nu+1)+1}\}$ $\frac{s - \frac{1}{r} + \frac{1}{p}}{2(s - \frac{1}{r}) + 2(v + 1) + 1}\} = \frac{s}{2s + 2(v + 1) + 1}.$ Furthermore,

$$e_4 = \left(\sum_{j=\tau}^{j_0^*} + \sum_{j=j_0^*+1}^{j_1}\right) 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} |\beta_{j,k}|^p I\left\{k \in \widehat{B}_j^c \cap C_j^c\right\} := e_{41} + e_{42},$$
(28)

where j_0^* is given by (24).

Since $|\beta_{j,k}| \leq 2\Upsilon \lambda_j \lesssim 2^{(\nu+1)j} (jn^{-1})^{\frac{1}{2}}$ holds by $k \in C_j^c$ and $\lambda_j = 2^{(\nu+1)j} \sqrt{\frac{j}{n}}$, one concludes that

$$Ee_{41} = E \sum_{j=\tau}^{j_0^*} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} |\beta_{j,k}|^p I\{k \in \widehat{B}_j^c \cap C_j^c\}$$
$$\lesssim \sum_{j=\tau}^{j_0^*} 2^{j(\frac{p}{2}-1)} 2^j 2^{(\nu+1)jp} (jn^{-1})^{\frac{p}{2}} \lesssim 2^{(\nu+1+\frac{1}{2})j_0^*p} \left(\frac{\ln n}{n}\right)^{\frac{p}{2}}.$$
(29)

On the other hand,

$$\begin{split} Ee_{42} &= E\sum_{j=j_0^*+1}^{j_1} 2^{j(\frac{p}{2}-1)} \sum_{k\in\Omega_j} |\beta_{j,k}|^p I\left\{k\in\widehat{B}_j^c\cap C_j^c\right\}\\ &\lesssim \sum_{j=j_0^*+1}^{j_1} 2^{j(\frac{p}{2}-1)} \sum_{k\in\Omega_j} |\beta_{j,k}|^p (\lambda_j|\beta_{j,k}|^{-1})^{p-r}\\ &\lesssim \sum_{j=j_0^*+1}^{j_1} 2^{j(\frac{p}{2}-1)} \lambda_j^{p-r} \sum_k |\beta_{j,k}|^r \end{split}$$

due to $|\beta_{j,k}| \leq 2\Upsilon \lambda_j$ and $r \leq p$.

Clearly, $\|\beta_{j,\cdot}\|_{l_r} \lesssim 2^{-j(s-\frac{1}{r}+\frac{1}{2})}$ by $f'_{\sigma^2} \in B^s_{r,q}(M)$ and Lemma 2.1. This with $\lambda_j = 2^{(\nu+1)j}\sqrt{\frac{j}{n}}$ implies that

$$Ee_{42} \lesssim \sum_{j=j_0^*+1}^{j_1} 2^{j(\frac{p}{2}-1)} 2^{(\nu+1)(p-r)j} 2^{-j(sr+\frac{r}{2}-1)} \left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} 2^{-j_0^*\omega},\tag{30}$$

because $\omega = sr + (v + \frac{3}{2})r - (v + \frac{3}{2})p \ge 0$.

According to (28)–(30) and $2^{j_0} \sim (\frac{n}{\ln n})^{\frac{1}{2s+2(\nu+1)+1}}$, one obtains

$$Ee_4 = Ee_{41} + Ee_{42} \lesssim 2^{(\nu+1+\frac{1}{2})j_0^*p} \left(\frac{\ln n}{n}\right)^{\frac{p}{2}} + \left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} 2^{-j_0^*\omega} \lesssim \left(\frac{\ln n}{n}\right)^{\alpha p}$$

by $\alpha = \frac{s}{2s+2(\nu+1)+1}$. For the case of $\omega = sr + (\nu + \frac{3}{2})r - (\nu + \frac{3}{2})p < 0$. Let

$$e_4 = \left(\sum_{j=\tau}^{j_1^*} + \sum_{j=j_1^*+1}^{j_1}\right) 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} |\beta_{j,k}|^p I\left\{k \in \widehat{B}_j^c \cap C_j^c\right\} := e_{41}' + e_{42}', \tag{31}$$

where j_1^* is given by (24). Similar to (30),

$$Ee'_{41} = \sum_{j=\tau}^{j_1^*} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} |\beta_{j,k}|^p I\{k \in \widehat{B}_j^c \cap C_j^c\} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} 2^{-j_1^*\omega}$$
(32)

thanks to $\omega < 0$.

To estimate Ee'_{42} , one observes that $\|\beta_{j,\cdot}\|_{l_p} \lesssim \|\beta_{j,\cdot}\|_{l_r} \lesssim 2^{-j(s-\frac{1}{r}+\frac{1}{2})}$ by $r \leq p, f'_{\sigma^2} \in B^s_{r,q}(M)$ and Lemma 2.1. Hence,

$$Ee'_{42} = \sum_{j=j_1^{s+1}}^{j_1} 2^{j(\frac{p}{2}-1)} \sum_{k \in \Omega_j} |\beta_{j,k}|^p I\{k \in \widehat{B}_j^c \cap C_j^c\} \lesssim \sum_{j=j_1^{s+1}}^{j_1} 2^{j(\frac{p}{2}-1)} \|\beta_{j,\cdot}\|_{l_r}^p$$

$$\lesssim \sum_{j=j_1^{s+1}}^{j_1} 2^{j(\frac{p}{2}-1)} 2^{-j(s-\frac{1}{r}+\frac{1}{2})p} \lesssim 2^{-j_1^{s}(s-\frac{1}{r}+\frac{1}{p})p}$$
(33)

because of $s > \frac{1}{r}$.

Combining (31)–(33) with $2^{j_1^*} \sim (\frac{n}{\ln n})^{\frac{1}{2(s-\frac{1}{r})+2(v+1)+1}}$, one knows

$$Ee_4 = Ee'_{41} + Ee'_{42} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{p-r}{2}} 2^{-j_1^*\omega} + 2^{-j_1^*(s-\frac{1}{r}+\frac{1}{p})p} \lesssim \left(\frac{\ln n}{n}\right)^{\alpha p}$$

thanks to $\omega < 0$ and $\alpha = \min\{\frac{s}{2s+2(\nu+1)+1}, \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}\} = \frac{s-\frac{1}{r}+\frac{1}{p}}{2(s-\frac{1}{r})+2(\nu+1)+1}$. This completes the proof of Theorem 5.2.

5.2 Proof of lower bound

Finally, we are in a position to state and prove the lower bound estimation.

Theorem 5.3 Assume s > 0 and $r, q \in [1, +\infty]$, then, for any $p \in [1, +\infty)$,

$$\inf_{\widehat{f}'_{\sigma^2}} \sup_{f'_{\sigma^2} \in B^{\mathfrak{s}}_{r,q}(M)} E \| \widehat{f}'_{\sigma^2} - f'_{\sigma^2} \|_p^p \gtrsim n^{-\frac{(s-\frac{1}{r}+\frac{1}{p})p}{2(s-\frac{1}{r})+2(\nu+1)+1}},$$

where \widehat{f}_{σ^2} runs over all possible estimators of f_{σ^2} .

Proof It is sufficient to construct density functions h_k such that $h'_k \in B^s_{r,q}(M)$ and

$$\sup_{k} E \| \widehat{f}_{\sigma^{2}}' - h_{k}' \|_{p}^{p} \gtrsim n^{-\frac{(s-\frac{1}{p}+\frac{1}{p})p}{2(s-\frac{1}{p})+2(\nu+1)+1}}.$$

Define g(x) = Cm(x), where $m \in C_0^{\infty}$ with supp $m \subseteq [0, 1]$, $\int_{\mathbb{R}} m(x) dx = 0$ and C > 0 is a constant. Let C_0^{∞} stand for the set of all infinitely many times differentiable and compactly supported functions. Furthermore, one chooses a density function h_0 satisfying $h_0 \in B^{s+1}_{r,q}(\frac{M}{2})$, supp $h_0 \subseteq [0, 1]$ and $h_0(x) \ge M_1 > 0$ for $x \in [\frac{1}{2}, \frac{3}{4}]$.

Page 17 of 21

Take
$$a_j = 2^{-j(s - \frac{1}{r} + \frac{1}{2} + \nu + 1)}$$
 and

$$h_1(x) = h_0(x) + a_j G_{\nu}(g_{j,l})(x), \tag{34}$$

where *G* is given by (5) and $g_{j,l}(x) = 2^{\frac{j}{2}}g(2^{j}x - l)$ with $l = 2^{j-1}$.

First, one checks that h_1 is a density function. Since $\operatorname{supp} g_{j,l} \subseteq [\frac{1}{2}, \frac{3}{4}]$ by $\operatorname{supp} m \subseteq [0, 1]$ and *j* large enough, one finds $h_1(x) \ge 0$ for $x \notin [\frac{1}{2}, \frac{3}{4}]$. It is easy to calculate that

$$G_{\nu}(g_{j,l})(x) = (-1)^{\nu} \sum_{u=1}^{\nu} C_{u} x^{u} (g_{j,l})^{(u)}(x),$$
(35)

where $C_u > 0$ is a constant. Then, for $x \in [\frac{1}{2}, \frac{3}{4}]$ and large *j*,

$$h_{1}(x) \geq M_{1} - \left| a_{j} \sum_{u=1}^{\nu} C_{u} x^{u} (g_{j,l})^{(u)} (x) \right|$$

$$\geq M_{1} - a_{j} 2^{\frac{j}{2}} \sum_{u=1}^{\nu} C_{u} 2^{uj} \| g^{(u)} (2^{j} \cdot -l) \|_{\infty}$$

$$\geq M_{1} - 2^{-j(s - \frac{1}{r} + 1)} \sum_{u=1}^{\nu} C_{u} \| g^{(u)} \|_{\infty} \geq 0$$
(36)

thanks to $h_0(x)|_{[\frac{1}{2},\frac{3}{4}]} \ge M_1$ and $a_j = 2^{-j(s-\frac{1}{r}+\frac{1}{2}+\nu+1)}$. On the other hand, $\int_{\mathbb{R}} g(x) dx = \int_{\mathbb{R}} Cm(x) dx = 0$ and $\operatorname{supp} g_{j,l} \subseteq [\frac{1}{2}, \frac{1}{2}+2^{-j}]$ by $\operatorname{supp} m \subseteq [0,1]$ and $l = 2^{j-1}$. This with $m \in C_0^{\infty}$ and g(x) = Cm(x) shows

$$\int x^{u}(g_{j,l})^{(u)}(x) \, dx = x^{u}(g_{j,l})^{(u-1)}(x) |_{\frac{1}{2}}^{\frac{1}{2}+2^{-j}} - u \int x^{u-1}(g_{j,l})^{(u-1)}(x) \, dx$$
$$= \dots = (-1)^{m} \frac{u!}{(u-m)!} \int x^{u-m}(g_{j,l})^{(u-m)}(x) \, dx$$
$$= (-1)^{u} u! \int g_{j,l}(x) \, dx = 0$$

for any $u \in \{1, ..., v\}$. Therefore,

$$\int h_1(x) \, dx = \int h_0(x) \, dx + (-1)^{\nu} a_j \sum_{u=1}^{\nu} C_u \int x^u (g_{j,l})^{(u)}(x) \, dx = 1.$$

From this with (36) one concludes that h_1 is a density function.

Next, one shows $h'_0, h'_1 \in B^s_{r,q}(M)$. Clearly, $h'_0 \in B^s_{r,q}(M)$ by $h_0 \in B^{s+1}_{r,q}(\frac{M}{2})$. Hence, one only needs prove $h'_1 \in B^s_{r,q}(M)$.

By (34) and (35),

$$\|h_1\|_{B^{s+1}_{r,q}} \le \|h_0\|_{B^{s+1}_{r,q}} + a_j \sum_{u=1}^{\nu} C_u \|x^u(g_{j,l})^{(u)}(x)\|_{B^{s+1}_{r,q}}.$$
(37)

On the other hand, for each $\tau \in \{0, \ldots, u\}$,

$$\left\| \left[2^{j} \left(x - \frac{1}{2} \right) \right]^{u-\tau} g^{(u)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{B^{s+1}_{r,q}} \le 2^{j(s+1-\frac{1}{r})} \left\| x^{u-\tau} g^{(u)}(x) \right\|_{B^{s+1}_{r,q}}$$

because of Lemma 4.4. Combining this with $l = 2^{j-1}$ and $[2^{j}(x - \frac{1}{2} + \frac{1}{2})]^{u} = \sum_{\tau=0}^{u} C_{u}^{\tau} [2^{j}(x - \frac{1}{2})]^{u-\tau} 2^{-\tau} 2^{\tau j}$, one obtains

$$\begin{aligned} \left\| x^{u}(g_{j,l})^{(u)}(x) \right\|_{B^{s+1}_{r,q}} &= 2^{\frac{j}{2}} \left\| \left[2^{j} \left(x - \frac{1}{2} + \frac{1}{2} \right) \right]^{u} g^{(u)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{B^{s+1}_{r,q}} \\ &\leq 2^{(u+\frac{1}{2})j} \sum_{\tau=0}^{u} C^{\tau}_{u} \left\| \left[2^{j} \left(x - \frac{1}{2} \right) \right]^{u-\tau} g^{(u)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{B^{s+1}_{r,q}} \\ &\leq 2^{j(s-\frac{1}{r}+\frac{1}{2}+u+1)} \sum_{\tau=0}^{u} C^{\tau}_{u} \left\| x^{u-\tau} g^{(u)}(x) \right\|_{B^{s+1}_{r,q}}. \end{aligned}$$
(38)

Denote $M' = \max\{C_u, C_u^{\tau} : \tau = 0, ..., u; u = 1, ..., v\}$. Then there exists a constant C > 0 such that

$$x^{u-\tau}g^{(u)} \in B^{s+1}_{r,q}\left(\frac{M}{2\nu^2 M'^2}\right)$$

thanks to g(x) = Cm(x) and $m \in C_0^{\infty} \subseteq B^{s+1}_{r,q}$. This with (37) and (38) leads to

$$\|h_1\|_{B^{s+1}_{r,q}} \le \|h_0\|_{B^{s+1}_{r,q}} + a_j \sum_{u=1}^{\nu} uM'^2 2^{j(s-\frac{1}{r}+\frac{1}{2}+u+1)} \frac{M}{2\nu^2 M'^2} \le \frac{M}{2} + \frac{M}{2} = M,$$

because $h_0 \in B^{s+1}_{r,q}(\frac{M}{2})$ and $a_j = 2^{-j(s-\frac{1}{r}+\frac{1}{2}+\nu+1)}$. Therefore, $h_1 \in B^{s+1}_{r,q}(M)$ and $h'_1 \in B^s_{r,q}(M)$. According to (35),

$$\left[G_{\nu}(g_{j,l})(x)\right]' = (-1)^{\nu} \sum_{u=0}^{\nu} C'_{u} x^{u}(g_{j,l})^{(u+1)}(x),$$

where $C'_{u} > 0$ is a constant and $l = 2^{j-1}$. Hence,

$$\begin{aligned} \left| h_{1}^{\prime} - h_{0}^{\prime} \right|_{p} &= a_{j} \left\| \left[G_{\nu}(g_{j,l}) \right]^{\prime} \right\|_{p} \\ &= a_{j} 2^{\frac{3j}{2}} \left\| \sum_{u=0}^{\nu} C_{u}^{\prime} \left[2^{j} \left(x - \frac{1}{2} + \frac{1}{2} \right) \right]^{u} g^{(u+1)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{p}. \end{aligned}$$

$$(39)$$

On the other hand, by using $[2^{j}(x-\frac{1}{2}+\frac{1}{2})]^{u} = \sum_{\tau=0}^{u} C_{u}^{\tau} [2^{j}(x-\frac{1}{2})]^{u-\tau} 2^{-\tau} 2^{\tau j}$, one concludes that

$$\left\| \sum_{u=0}^{\nu} C'_{u} \left[2^{j} \left(x - \frac{1}{2} + \frac{1}{2} \right) \right]^{u} g^{(u+1)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{p}$$

$$\geq \left\| \sum_{u=0}^{\nu} C'_{u} 2^{-u} 2^{uj} g^{(u+1)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{p}$$

$$- \left\| \sum_{u=0}^{\nu} C'_{u} \left\{ \sum_{\tau=0}^{u-1} C^{\tau}_{u} \left[2^{j} \left(x - \frac{1}{2} \right) \right]^{u-\tau} 2^{-\tau} 2^{\tau j} \right\} g^{(u+1)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{p}$$
(40)

and

$$\begin{split} \left\| \sum_{u=0}^{\nu} C'_{u} 2^{-u} 2^{uj} g^{(u+1)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{p} \\ &\geq \left\| C'_{\nu} 2^{-\nu} 2^{\nu j} g^{(\nu+1)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{p} \\ &- \left\| \sum_{u=0}^{\nu-1} C'_{u} 2^{-u} 2^{uj} g^{(u+1)} \left[2^{j} \left(x - \frac{1}{2} \right) \right] \right\|_{p}. \end{split}$$

$$(41)$$

Let $x' = 2^{j}(x - \frac{1}{2})$. Then there exists a constant C' > 0 such that

$$\begin{split} \left\| h_{1}^{\prime} - h_{0}^{\prime} \right\|_{p} &\geq a_{j} 2^{\frac{3}{2}j} 2^{-\frac{j}{p}} \left\{ C_{\nu}^{\prime} 2^{-\nu} 2^{\nu j} \left\| g^{(\nu+1)} \right\|_{p} - 2^{(\nu-1)j} \sum_{u=0}^{\nu-1} C_{u}^{\prime} 2^{-u} \left\| g^{(u+1)} \right\|_{p} \right. \\ &\left. - 2^{(\nu-1)j} \sum_{u=0}^{\nu} C_{u}^{\prime} \sum_{\tau=0}^{u-1} C_{u}^{\tau} 2^{-\tau} \left\| \left(x^{\prime} \right)^{u-\tau} g^{(u+1)} \right\|_{p} \right\} \\ &\geq C^{\prime} a_{j} 2^{\frac{3}{2}j} 2^{-\frac{j}{p}} 2^{j\nu} = C^{\prime} 2^{-j(s-\frac{1}{r}+\frac{1}{p})} := \delta_{j} \end{split}$$

thanks to (39)–(41), $g \in C_0^{\infty}$ and $a_j = 2^{-j(s-\frac{1}{r}+\frac{1}{2}+\nu+1)}$. Define $A_k = \{\|\widehat{f}'_{\sigma^2} - h'_k\|_p < \frac{\delta_j}{2}\}$ ($k \in \{0, 1\}$). Then $A_0 \cap A_1 = \emptyset$. According to Lemma 4.5,

$$\sup_{k \in \{0,1\}} P_{f_{s_k}}^n \left(A_k^c \right) \ge \min\left\{ \frac{1}{2}, \exp\left(-3e^{-1} - \kappa_1 \right) \right\},\tag{42}$$

where P_f^n stands for the probability measure corresponding to the density function $f^n(x) :=$ $f(x_1)f(x_2)\cdots f(x_n)$. Hence,

$$E\left\|\widehat{f}_{\sigma^{2}}^{\prime}-h_{k}^{\prime}\right\|_{p}^{p}\geq\left(\frac{\delta_{j}}{2}\right)^{p}P_{f_{s_{k}}}^{n}\left(\left\|\widehat{f}_{\sigma^{2}}^{\prime}-h_{k}^{\prime}\right\|_{p}\geq\frac{\delta_{j}}{2}\right)=\left(\frac{\delta_{j}}{2}\right)^{p}P_{f_{s_{k}}}^{n}\left(A_{k}^{c}\right)$$

This with (42) implies

$$\sup_{k \in \{0,1\}} E \|\widehat{f}_{\sigma^2}' - h_k'\|_p^p \ge \sup_{k \in \{0,1\}} \left(\frac{\delta_j}{2}\right)^p P_{f_{s_k}}^n \left(A_k^c\right) \ge \left(\frac{\delta_j}{2}\right)^p \min\left\{\frac{1}{2}, \exp\left(-3e^{-1} - \kappa_1\right)\right\}.$$
(43)

Next, one shows $\kappa_1 \leq C_0 n a_j^2$. Recall that

$$\kappa_1 = \inf_{0 \le u \le 1} \sum_{k \ne u} K(P_{f_{s_k}}^n, P_{f_{s_u}}^n) \le K(P_{f_{s_1}}^n, P_{f_{s_0}}^n).$$
(44)

Then

$$K(P_{f_{s_1}}^n, P_{f_{s_0}}^n) \le \sum_{i=1}^n \int f_{s_1}(x_i) \ln \frac{f_{s_1}(x_i)}{f_{s_0}(x_i)} \, dx_i = n \int f_{s_1}(x) \ln \frac{f_{s_1}(x)}{f_{s_0}(x)} \, dx$$

due to $f_{s_0}^n(x) = \prod_{j=1}^n f_{s_0}(x_j)$ and $f_{s_1}^n(x) = \prod_{j=1}^n f_{s_1}(x_j)$. Since $\ln u \le u - 1$ holds for u > 0, one knows

$$K(P_{f_{s_1}}^n, P_{f_{s_0}}^n) \le n \int f_{s_1}(x) \left(\frac{f_{s_1}(x)}{f_{s_0}(x)} - 1\right) dx$$

= $n \int f_{s_0}^{-1}(x) \left| f_{s_1}(x) - f_{s_0}(x) \right|^2 dx.$ (45)

According to Chesneau's work in Ref. [8], $f_{s_k}(x) = \frac{1}{(v-1)!} \int_x^1 (\ln y - \ln x)^{v-1} h_k(y) \frac{1}{y} dy$. Then

$$f_{s_1}(x) - f_{s_0}(x) = \frac{a_j}{(\nu - 1)!} \int_x^{\frac{1}{2} + 2^{-j}} (\ln y - \ln x)^{\nu - 1} G_{\nu}(g_{j,l})(y) \frac{1}{y} dy$$
$$= -\frac{a_j}{(\nu - 1)!} \int_x^{\frac{1}{2} + 2^{-j}} (\ln y - \ln x)^{\nu - 1} [G_{\nu - 1}(g_{j,l})(y)]' dy$$

because of (34) and $G_{\nu}(g_{j,l})(x) = -x[G_{\nu-1}(g_{j,l})(x)]'$.

By the formula of integration by parts,

$$f_{s_1}(x) - f_{s_0}(x) = -\frac{a_j}{(\nu - 2)!} \int_x^{\frac{1}{2} + 2^{-j}} (\ln y - \ln x)^{\nu - 2} \Big[G_{\nu - 2}(g_{j,l})(y) \Big]' \, dy = \cdots$$
$$= -\frac{a_j}{(\nu - m)!} \int_x^{\frac{1}{2} + 2^{-j}} (\ln y - \ln x)^{\nu - m} \Big[G_{\nu - m}(g_{j,l})(y) \Big]' \, dy = \cdots$$
$$= -a_j \int_x^{\frac{1}{2} + 2^{-j}} (g_{j,l})'(y) \, dy = a_j g_{j,l}(x), \tag{46}$$

because $l = 2^{j-1}$ and $(\ln y - \ln x)^{\nu-m} G_{\nu-m}(g_{j,l})(y)|_x^{\frac{1}{2}+2^{-j}} = 0$ for any $m \in \{1, \dots, \nu-1\}$. On the other hand, for each $x \in [\frac{1}{2}, \frac{1}{2} + 2^{-j}]$ and large *j*,

$$f_{s_0}(x) \ge \frac{M_1}{(\nu-1)!} \int_x^{\frac{3}{4}} (\ln y - \ln x)^{\nu-1} \frac{1}{y} \, dy = \frac{M_1}{\nu!} \left(\ln \frac{3}{4} - \ln x \right)^{\nu}$$
$$\ge \frac{M_1}{\nu!} \left[\ln \frac{3}{4} - \ln \left(\frac{1}{2} + 2^{-j} \right) \right]^{\nu} \ge M_2 > 0$$
(47)

thanks to $f_{s_0}(x) = \frac{1}{(\nu-1)!} \int_x^1 (\ln y - \ln x)^{\nu-1} h_0(y) \frac{1}{y} dy$ and $h_0(x)|_{[\frac{1}{2}, \frac{3}{4}]} \ge M_1$. Combining with (44)-(47), one obtains

$$\kappa_1 \leq M_2^{-1} n \int |a_j g_{j,l}(x)|^2 dx \leq C_0 n a_j^2,$$

where $C_0 > 0$ is a constant. Choose $2^j \sim n^{\frac{1}{2(s-\frac{1}{r})+2(\nu+1)+1}}$ and recall $a_j = 2^{-j(s-\frac{1}{r}+\frac{1}{2}+\nu+1)}$. Then

$$\kappa_1 \lesssim na_j^2 = n2^{-j[2(s-\frac{1}{r})+2(\nu+1)+1]} \sim 1 \text{ and } e^{-\kappa_1} \gtrsim 1.$$

Substituting
$$\delta_j \sim 2^{-j(s-\frac{1}{r}+\frac{1}{p})}$$
, $2^j \sim n^{\frac{1}{2(s-\frac{1}{r})+2(\nu+1)+1}}$ into (43), one obtains

. .

$$\sup_{k \in \{0,1\}} E \| \widehat{f}'_{\sigma^2} - h'_k \|_p^p \gtrsim \delta_j^p \gtrsim n^{-\frac{(s - \frac{1}{r} + \frac{1}{p})p}{2(s - \frac{1}{r}) + 2(\nu+1) + 1}},$$

which is the desired conclusion.

Acknowledgements

The authors would like to thank Professor Youming Liu for his important comments and suggestions.

Fundina

This paper is supported by the National Natural Science Foundation of China (No. 11771030) and the Beijing Natural Science Foundation (No. 1172001).

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 December 2018 Accepted: 8 April 2019 Published online: 18 April 2019

References

- 1. Abbaszadeh, M., Chesneau, C., Doosti, H.: Multiplicative censoring: estimation of a density and its derivatives under the *L*^p-risk. REVSTAT 11(3), 255–276 (2013)
- Andersen, K., Hansen, M.: Multiplicative censoring: density estimation by a series expansion approach. J. Stat. Plan. Inference 98, 137–155 (2001)
- Asgharian, M., Carone, M., Fakoor, V.: Large-sample study of the kernel density estimators under multiplicative censoring. Ann. Stat. 40, 159–187 (2012)
- 4. Blumensath, T., Davies, M.: Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27, 265–274 (2009)
- 5. Cai, T.T.: Rates of convergence and adaption over Besov spaces under pointwise risk. Stat. Sin. 13, 881–902 (2003)
- Chaubey, Y.P., Chesneau, C., Doosti, H.: On linear wavelet density estimation: some recent developments. J. Indian Soc. Agric. Stat. 65, 169–179 (2011)
- Chaubey, Y.P., Chesneau, C., Doosti, H.: Adaptive wavelet estimation of a density from mixtures under multiplicative censoring. Statistics 49(3), 638–659 (2015)
- Chesneau, C.: Wavelet estimation of a density in a GARCH-type model. Commun. Stat., Theory Methods 42, 98–117 (2013)
- 9. Chesneau, C., Doosti, H.: Wavelet linear density estimation for a GARCH model under various dependence structures. J. Iran. Stat. Soc. **11**, 1–21 (2012)
- Devore, R., Kerkyacharian, G., Picard, D., Temlyakov, V.: On mathematical methods of learning. In: Found. Comput. Math., vol. 6, pp. 3–58 (2006). Special Issue for D. Smale
- Donoho, D.L., Johnstone, M.I., Kerkyacharian, G., Picard, D.: Density estimation by wavelet thresholding. Ann. Stat. 24(2), 508–539 (1996)
- Guo, H.J., Liu, Y.M.: Convergence rates of multivariate regression estimators with errors-in-variables. Numer. Funct. Anal. Optim. 38(12), 1564–1588 (2017)
- 13. Härdle, W., Kerkyacharian, G., Picard, D., Tsybakov, A.: Wavelet, Approximation and Statistical Applications. Springer, New York (1998)
- 14. Li, R., Liu, Y.M.: Wavelet optimal estimations for a density with some additive noises. Appl. Comput. Harmon. Anal. 36, 416–433 (2014)
- 15. Prakasa Rao, B.L.S.: Nonparametric Functional Estimation. Academic Press, Orlando (1983)
- 16. Prakasa Rao, B.L.S.: Nonparametric function estimation: an overview. In: Ghosh, S. (ed.) Asymptotics, Nonparametrics and Time Series, pp. 461–509. Marcel Dekker, New York (1999)
- 17. Prakasa Rao, B.L.S.: Wavelet estimation for derivative of a density in a GARCH-type model. Commun. Stat., Theory Methods 46, 2396–2410 (2017)
- Vardi, Y.: Multiplicative censoring, renewal process, deconvolution and decreasing density: nonparametric estimation. Biometrika 76, 751–761 (1989)
- Vardi, Y., Zhang, C.H.: Large sample study of empirical distributions in a random multiplicative censoring model. Ann. Stat. 20, 1022–1039 (1992)