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1 Introduction
In the field of mathematical analysis, Karl Weierstrass established an elegant theorem, the
first Weierstrass approximation theorem, in 1885. This theorem has specially a big role
in polynomial interpolation corresponding to every continuous function f (x) on interval
[a, b]. The proof given by Weierstrass was rigorous and difficult to understand. In 1912,
Bernstein [1] gave a simple proof of this theorem by introducing the Bernstein polynomials
with the aid of the binomial distribution, hence for f ∈ C[0, 1], we have

Bn(f ; x) =
n∑

k=0

Sn,k(x)f
(

k
n

)
, n ∈N, 0 ≤ x ≤ 1, (1.1)

where Sn,k(x) =
(n

k
)
xk(1 – x)n–k . Many mathematicians researched in this direction and

studied various modifications in several functional spaces using different error optimiza-
tion techniques, i.e., Acar et al. [2–7], Acu et al. [8, 9], Barbosu [10], Agrawal et al. [11],
Aral [12], Mursaleen et al. [13–17], Srivastava et al. [18–20]; for more details see also the
references therein and [21–30].

2 Construction of the α-Baskakov–Durrmeyer operators and estimation of
their moments

Recently, Cai, Lian and Zhou [31] presented a new sequence of α-Bernstein operators
with α ∈ [–1, 1]. Later, Ali Aral et al. [32] gave a sequence of α-Bernstein operators as
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follows:

Ln,α(f ; x) =
∞∑

k=0

f
(

k
n

)
S (α)

n,k (x), n ∈ N, x ∈ [0,∞), (2.1)

where f ∈ CB[0,∞) which denotes the set of all continuous and bounded functions
and

S (α)
n,k (x) =

xk–1

(1 + x)n+k–1

{
αx

1 + x

(
n + k – 1

k

)
– (1 – α)(1 + x)

(
n + k – 3

k – 2

)

+ (1 – α)y
(

n + k – 1
k

)}

with

(
n – 3
–2

)
=

(
n – 2
–1

)
= 0.

The operators defined by (2.1) are restricted for continuous functions only. To approxi-
mate the functions in Lebesgue measurable space, we design a new sequence of opera-
tors:

L∗
n,α(f ; x) =

∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
Qn,k(t)f (t) dt, (2.2)

where Qn,k(t) = 1
B(k+1,n)

tk

(1+t)(n+k+1) . Note that, simply in the case of α = 1, the operators re-
duced to Baskakov–Durrmeyer type operators; for details see [33].

For r ∈ {0, 1, 2, 3, 4}, we consider the test functions and central moments,

er = tr and ψ r
y (t; x) = (t – x)r . (2.3)

Lemma 2.1 ([31]) We have

Ln,α(e0; x) = 1,

Ln,α(e1; x) = x +
2
n

(α – 1),

Ln,α(e2; x) = x2 +
4α – 3

n
x +

1
n2 (n + 4α – 4).

Lemma 2.2 Let the test functions er defined by (2.3), then, for all L∗
n,α , we have

L∗
n,α(e0; x) = 1,

L∗
n,α(e1; x) =

(
n

n – 1
+

2(α – 1)
n – 1

)
x +

1
n – 1

,

L∗
n,α(e2; x) =

(
n2

(n – 2)(n – 1)
+

n(4α – 3)
(n – 2)(n – 1)

)
x2 +

(4n + 10α – 10)
(n – 2)(n – 1)

x +
2

(n – 2)(n – 1)
.
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Proof Take f = e0, then from Lemma 2.1, we have

L∗
n,α(e0; x) =

∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
Qn,k(t) dt

=
∞∑

k=0

S (α)
n,k (x)

B(k + 1, n)
B(k + 1, n)

=
∞∑

k=0

S (α)
n,k (x)

= 1.

For r = 1

L∗
n,α(e1; x) =

∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
tQn,k(t) dt

=
∞∑

k=0

S (α)
n,k (x)

B(k + 2, n – 1)
B(k + 1, n)

=
∞∑

k=0

S (α)
n,k (x)

(k + 1)B(k + 1, n)
(n – 1)B(k + 1, n)

=
∞∑

k=0

S (α)
n,k (x)

(k + 1)
(n – 1)

=
(

n
n – 1

+
2(α – 1)

n – 1

)
x +

1
n – 1

.

For r = 2

L∗
n,α(e2; x) =

∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
t2Qn,k(t) dt

=
∞∑

k=0

S (α)
n,k (x)

B(k + 3, n – 2)
B(k + 1, n)

=
∞∑

k=0

S (α)
n,k (x)

(k + 2)(k + 1)B(k + 1, n)
(n – 2)(n – 1)B(k + 1, n)

=
∞∑

k=0

S (α)
n,k (x)

(k + 2)(k + 1)
(n – 2)(n – 1)

=
n2 + n(4α – 3)
(n – 2)(n – 1)

x2 +
(4n + 10α – 10)
(n – 2)(n – 1)

x +
2

(n – 2)(n – 1)
. �

Lemma 2.3 Let the operators given by (2.2). Then we have

L∗
n,α

(
ψ0

x ; x
)

= 1,

L∗
n,α

(
ψ1

x ; x
)

=
2α – 1
n – 1

x +
1

n – 1
,
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L∗
n,α

(
ψ2

x ; x
)

=
2n + 2(4α – 3)
(n – 2)(n – 1)

x2 +
2n + 2(5α – 3)
(n – 2)(n – 1)

x +
2

(n – 2)(n – 1)
.

Proof In view of Lemmas 2.1 and 2.2 we can apply the linearity and easily complete the
proof. �

3 Approximation in Korovkin and weighted Korovkin spaces
Take CB(R+) be the space of all bounded and continuous functions defined on the set R+,
where R

+ = [0,∞) and a normed defined on CB as

‖f ‖CB = sup
x≥0

∣∣f (x)
∣∣.

Let

E :=
{

f : x ∈R
+ and lim

x→∞

(
f (x)

1 + x2

)
< ∞

}
.

Lemma 3.1 For every f ∈ C[0,∞) ∩ E the operators L∗
n,α given in (2.2) are uniformly con-

vergent to f on each compact subset of [0, A], whenever A ∈ (0,∞).

Proof In the view of Korovkin-type property, it is enough to show that

L∗
n,α(es; x) → es(x), for s = 0, 1, 2.

From Lemma 2.2, obviously L∗
n,α(e0; y) → e0(x) as n → ∞ and for s = 1

lim
n→∞ L∗

n,α(e1; x) = lim
n→∞

(
n + 2(α – 1)

n – 1
x +

1
n – 1

)
= e1(x).

Similarly, we can prove for s = 2 that L∗
n,α(e2; x) → e2, which proves Proposition 3.1. �

Suppose C[0,∞) is the set of all continuous functions and f ∈ C[0,∞) with the weight
function σ (x) = 1 + x2,

Pσ (x) =
{

f :
∣∣f (x)

∣∣ ≤Mf σ (x), x ∈ [0,∞)
}

,

Qσ (x) =
{

f : f ∈ C[0,∞) ∩Pσ (x), x ∈ [0,∞)
}

,

Q
m
σ (x) =

{
f : f ∈ Qσ (x), lim

x→∞
f (x)
σ (x)

= m, x ∈ [0,∞)
}

,

where the norm defined on weight function σ such as ‖f ‖σ = supx∈[0,∞)
|f (x)|
σ (x) and the con-

stant Mf depends only on f .

Theorem 3.2 For all f ∈Qm
σ (x) the operators L∗

n,α(· ; ·) defined by (2.2) satisfy

lim
n→∞

∥∥L∗
n,α(f ; x) – f

∥∥
σ

= 0.
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Proof Take f (t) ∈ Qm
σ (x) with x ∈ [0,∞) and f (t) = eν for ν = 0, 1, 2. Then from the well-

known Korovkin theorem L∗
n,α(eν ; x) → xν , satisfying the properties of uniformly behaving

as n → ∞. Since for ν = 0, from Lemma 2.2 L∗
n,α(e0; x) = 1, thus we have

∥∥L∗
n,α(e0; x) – 1

∥∥
σ

= 0. (3.1)

For ν = 1, we have

∥∥L∗
n,α(e1; x) – x

∥∥
σ

= sup
x∈[0,∞)

|L∗
n,α(e1; x) – x|

1 + x2

=
(

n + 2(α – 1)
n – 1

– 1
)

sup
x∈[0,∞)

x
1 + x2 +

1
(n – 1)

sup
x∈[0,∞)

1
1 + x2 .

As n → ∞,

∥∥L∗
n,α(e1; x) – x

∥∥
σ

= 0. (3.2)

In a similar way for ν = 2,

∥∥L∗
n,α(e2; x) – x2∥∥

σ

= sup
y∈[0,∞)

|L∗
n,α(e2; x) – x2|

1 + x2

=
(

n2 + n(4α – 3)
(n – 2)(n – 1)

– 1
)

sup
x∈[0,∞)

x2

1 + x2

+
(

4n + 10α – 10
(n – 2)(n – 1)

)
sup

x∈[0,∞)

x
1 + x2 +

2
(n – 2)(n – 1)

sup
x∈[0,∞)

1
1 + x2 ,

∥∥L∗
n,α(e2; x) – x2∥∥

σ
= 0 when n → ∞. (3.3)

This completes the proof. �

4 Pointwise approximation properties by L∗
n,α

Here, we study the order of approximation of a function f with the aid of positive linear
operators L∗

n,α(f ; x) defined by (2.2) in terms of the classical modulus of continuity, the
second-order modulus of continuity, Peetres K-functional and the Lipschitz class. A well-
known property is the modulus of continuity of order one and of order two defined as
follows. For δ > 0 and f ∈ C[a, b] the classical modulus of continuity of order one is given
by

ω(f ; δ) = sup
x1,x2∈[a,b],|x1–x2|≤δ

∣∣f (x1) – f (x2)
∣∣,

and of order two it is given by

ω2
(
f ; δ

1
2
)

= sup
0<h<δ

1
2

sup
x∈R+

∣∣f (x) – 2f (x + h) + f (x + 2h)
∣∣. (4.1)
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Let CB[0,∞) denote the space of all bounded and continuous functions on [0,∞) and

C2
B[0,∞) =

{
ψ ∈ CB[0,∞) : ψ ′,ψ ′′ ∈ CB[0,∞)

}
, (4.2)

with the norm

‖ψ‖C2
B[0,∞) = ‖ψ‖CB[0,∞) +

∥∥ψ ′∥∥
CB[0,∞) +

∥∥ψ ′′∥∥
CB[0,∞), (4.3)

also

‖ψ‖CB[0,∞) = sup
x∈[0,∞)

∣∣ψ(x)
∣∣. (4.4)

Lemma 4.1 ([31]) Let {Pn}n≥1 be the sequence for the positive integer n with Pn(1; x) = 1.
Then for every ψ ∈ C2

B[0,∞)

∣∣Pn(ψ ; x) – ψ(x)
∣∣ ≤ ∥∥g ′∥∥

√
Pn

(
(s – x)2; x

)
+

1
2
∥∥ψ ′′∥∥Pn

(
(s – x)2; x

)
.

Lemma 4.2 ([31]) For all f ∈ C[a, b] and h ∈ (0, b–a
2 ), we have the following inequalities:

(i) ‖fh – f ‖ ≤ 3
4
ω2(f , h),

(ii)
∥∥f ′′

h
∥∥ ≤ 3

2h2 ω2(f , h),

where fh denotes the second-order Steklov function.

Theorem 4.3 For all f ∈ CB[0,∞) and x ∈ [0, a], a > 0 we have

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤ 2ω
(
f ;

√
Θn(x)

)
,

where Θn(x) = L∗
n,α(ψ2

x ; x) and L∗
n,α(ψ2

x ; x) is defined by Lemma 2.3.

Proof In view of the classical modulus of continuity, we have

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤
∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
Qn,k(t)

∣∣f (t) – f (x)
∣∣dt

≤
{

1 +
1
δ

∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
Qn,k(t)|t – x|dt

}
ω(f ; δ).

In the light of the Cauchy–Schwartz inequality, we get

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤
{

1 +
1
δ

( ∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
Qn,k(t)(t – x)2 dt

) 1
2
}

ω(f ; δ)

=
{

1 +
1
δ

√
L∗

n,α
(
ψ2

x ; x
)}

ω(f ; δ).

Choosing δ = (Θn(x)) 1
2 =

√
L∗

n,α(ψ2
x ; x), we arrive at the desired result. �
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Theorem 4.4 For every f ∈ C[0, a], a > 0 the operators L∗
n,α(· ; ·) defined by (2.2) satisfy

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤ 2
a
‖f ‖δ2 +

3
4
(
a + 2 + h2)ω2(f ; δ),

where δ = (Θn(x)) 1
2 is defined by Theorem 4.3 and ω2(f ; δ) is by (4.1) equipped with the

norm ‖f ‖ = maxx∈[a,b] |f (x)|.

Proof Consider fh is the Steklov function define in Lemma 4.2. Using Lemma 2.2, we ob-
tain

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤ ∣∣L∗
n,α(f – fh; x)

∣∣ +
∣∣fh – f (x)

∣∣ +
∣∣L∗

n,α(fh; x) – fh(x)
∣∣

≤ 2‖fh – f ‖ +
∣∣L∗

n,α(fh; x) – fh(x)
∣∣.

In view of the fact that fh ∈ C2[0, a] and using Lemma 4.1, we obtain

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤ ∥∥f ′
h
∥∥
√

L∗
n,α

(
(e1 – x)2; x

)
+

1
2
∥∥f ′′

h
∥∥L∗

n,α
(
(e1 – x)2; x

)
. (4.5)

From the Landau inequality and Lemma 4.2, we have

‖fh‖ ≤ 2
a
‖fh‖ +

a
2
∥∥f ′′

h
∥∥

≤ 2
a
‖fh‖ +

3a
4

1
h2 ω2(f ; h).

On choosing δ = (Θn(x)) 1
4 , one has

∣∣L∗
n,α(fh; x) – fh(x)

∣∣ ≤ 2
a
‖f ‖h2 +

3a
4

ω2(f ; h) +
3
4

h2ω2(f ; h). (4.6)

Combining (4.6), (4.5) and Lemma 4.2, we obtain the required result. �

Theorem 4.5 Let L∗
n,α(· ; ·) be the operators defined by (2.2). Then, for every f ∈ C2

B[0,∞),

lim
n→∞(n – 1)

(
L∗

n,α(f ; x) – f (x)
)

=
(
1 + 2αx – x2)f ′(x) + 2

(
x + x2)f ′′(x),

uniformly for 0 ≤ x ≤ a, a > 0.

Proof Let x0 ∈ [0,∞) be a fixed number; all x ∈ [0,∞). Then using Taylor’s series, we have

f (x) – f (x0) = (x – x0)f ′(x0) +
1
2

(x – x0)2f ′′(x0) + ϕ(x, x0)(x – x0)2, (4.7)

where ϕ(x, x0) ∈ CB[0,∞) and limx→x0 ϕ(x, x0) = 0.
By applying the operators L∗

n,α on (4.7), we deduce

L∗
n,α(f ; x0) – f (x0) = f ′(x0)L∗

n,α(e1 – x0; x0) +
1
2

L∗
n,α

(
(x – x0)2; x0

)
f ′′(x0)

+ L∗
n,α

(
ϕ(x, x0)(x – x0)2). (4.8)
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In view of the Cauchy–Schwartz inequality for the last term of Eq. (4.8), we get

(n – 1)L∗
n,α

(
ϕ(x, x0)(t – x0)2) ≤ (n – 1)2

√
L∗

n,α
(
(e1 – x0)2

)
L∗

n,α
(
ϕ2(x, x0)

)
. (4.9)

We have

lim
n→∞(n – 1)

(
L∗

n,α(e0 – x0; x)
)

=
(
1 + 2αx – x2)f ′(x),

lim
n→∞(n – 1)

(
L∗

n,α
(
(e0 – x0)2; x

))
= 2

(
x + x2)f ′′(x),

lim
n→∞

(
L∗

n,α
(
(e0 – x0)4; x

))
= 0.

This completes the proof. �

Now here we estimate the rate of convergence in terms of the usual Lipschitz class
LipM(ν). Let f ∈ C[0, a), a > 0 and M be a positive constant, and, for any ν ∈ (0, 1], the
Lipschitz class LipM(ν) is as follows:

LipM(ν) =
{

f :
∣∣f (ς1) – f (ς2)

∣∣ ≤ M|ς1 – ς2|ν
(
ς1,ς2 ∈ [0,∞)

)}
. (4.10)

Theorem 4.6 Let f ∈ LipM(ν) with M > 0 and 0 < ν ≤ 1. Then the operators L∗
n,α(· ; ·) satisfy

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤ M
(
Θn(x)

) ν
2 ,

where n > 2 and Θn(x) defined by Theorem 4.3.

Proof From the Hölder inequality and (4.10), we conclude

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤ ∣∣L∗
n,α

(
f (t) – f (x); x

)∣∣

≤ L∗
n,α

(∣∣f (t) – f (x)
∣∣; x

)

≤ ML∗
n,α

(|t – x|ν ; x
)
.

Hence

∣∣L∗
n,α(f ; x) – f (x)

∣∣

≤ M
∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
Qn,k(t)|t – x|ν dt

≤ M
∞∑

k=0

(
S (α)

n,k (x)
) 2–ν

2

× (
S (α)

n,k (x)
) ν

2

∫ ∞

0
Qn,k(t)|t – x|ν dt

≤ M

( ∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
Qn,k(t) dt

) 2–ν
2
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×
( ∞∑

k=0

S (α)
n,k (x)

∫ ∞

0
Qn,k(t)|t – x|2 dt

) ν
2

= M
(
L∗

n,α
(
ψ2

x ; x
)) ν

2 .

This completes the proof. �

Theorem 4.7 For all ψ ∈ C2
B[0,∞) and n > 2,

∣∣L∗
n,α(ψ ; x) – ψ(x)

∣∣ ≤
(

�n(x) +
Θn(x)

2

)
‖ψ‖C2

B[0,∞),

where �n(x) = ( 2α–1
n–1 x + 1

n–1 ) and Θn(x) is defined by Theorem 4.3.

Proof Let ψ ∈ C2
B(R+); for all ϕ ∈ (x, t) a Taylor series expansion is

ψ(t) =
(t – x)2

2
ψ ′′(ϕ) + (t – x)ψ ′(x) + ψ(x).

On applying L∗
n,α , using linearity,

L∗
n,α(ψ ; x) – ψ(x) = ψ ′(x)L∗

n,α
(
(t – x); x

)
+

ψ ′′(ϕ)
2

L∗
n,α

(
(t – x)2; x

)
,

which implies that

∣∣L∗
n,α(ψ ; x) – ψ(x)

∣∣

≤
(

2α – 1
n – 1

x +
1

n – 1

)∥∥ψ ′∥∥
CB[0,∞)

+
{

2n + 2(4α – 3)
(n – 2)(n – 1)

x2 +
2n + 2(5α – 3)
(n – 2)(n – 1)

x +
2

(n – 2)(n – 1)

}‖ψ ′′‖CB[0,∞)

2
.

From (4.3) we have ‖ψ ′‖CB[0,∞) ≤ ‖ψ‖C2
B[0,∞), ‖ψ ′′‖CB[0,∞) ≤ ‖ψ‖C2

B[0,∞).

∣∣L∗
n,α(ψ ; x) – ψ(x)

∣∣

≤
(

2α – 1
n – 1

x +
1

n – 1

)
‖ψ‖C2

B[0,∞)

+
{

2n + 2(4α – 3)
(n – 2)(n – 1)

x2 +
2n + 2(5α – 3)
(n – 2)(n – 1)

x +
2

(n – 2)(n – 1)

}‖ψ‖[0,∞)

2
.

This completes the proof. �

In 1968 [34] for investigating the interpolation between two Banach spaces Peetre in-
troduced the K-functional by

K2(f ; δ) = inf
C2

B[0,∞)

{(‖f – ψ‖CB[0,∞) + δ‖ψ‖C2
B[0,∞)

)
: ψ ∈ C2

B[0,∞)
}

(4.11)

and a positive constant D exists such that K2(f ; δ) ≤ Dω2(f ; δ 1
2 ) with δ > 0 and ω2(f ; δ) is

the second-order modulus of continuity.
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Theorem 4.8 Suppose CB[0,∞) is the set of all bounded and continuous functions on
[0,∞). Then for every f ∈ CB[0,∞)

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤ 2D
{
ω2

(
f ;

√
Kn(x)

)
+ min

(
1,Kn(x)

)‖f ‖CB[0,∞)
}

,

where Kn(x) = 2�n(x)+Θn(x)
4 is defined by Theorem 4.7.

Proof In the light of results obtained by Theorem 4.7, we prove the desired theorem; hence

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤ ∣∣L∗
n,α(f – ψ ; x)

∣∣ +
∣∣f (x) – ψ(x)

∣∣ +
∣∣L∗

n,α(ψ ; x) – ψ(x)
∣∣

≤ 2‖f – ψ‖CB[0,∞) +
(

Θn(x)
2

+ �n(x)
)

‖ψ‖C2
B[0,∞)

= 2
(

‖f – ψ‖CB[0,∞) +
(

Θn(x)
4

+
�n(x)

2

)
‖ψ‖C2

B[0,∞)

)
.

If we take the infimum over all ψ ∈ C2
B[0,∞) and we use (4.11), we get

∣∣L∗
n,α(f ; x) – f (x)

∣∣ ≤ 2K2

(
f ;

(
Θn(x)

4
+

�n(x)
2

))
.

Now from [35] we use the relation for an absolute constant D > 0

K2(f ; δ) ≤ D
{
ω2(f ;

√
δ) + min(1, δ)‖f ‖}.

This completes the proof. �

5 Conclusion and observations
The manuscript parametric variant of Baskakov–Durrmeyer operators is a new extension
of Baskakov Durrmeyer type operators. In the present investigation in our manuscript
in order to get uniform convergence for the operators of the α-type extended version
we study the order of approximation, the rate of convergence, the Korovkin-type, the
weighted Korovkin-type approximation theorems, Peetres K-functional, Lipschitz func-
tions and a set of direct theorems. It must be noted that we have more modeling flexibility
when adding the parameter α to the Baskakov–Durrmeyer operators.
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