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1 Introduction
A function g : I ⊂R →R is called convex in the classical sense, if the inequality

g
(
ωx + (1 – ω)y

) ≤ ωg(x) + (1 – ω)g(y)

holds for all x, y ∈ I and ω ∈ [0, 1]. In fact a large number of articles have been written
on inequalities using classical convexity but one of the most important and well known is
Hermite–Hadamard’s inequality, This double inequality is stated as follows [4]. Let g : I ⊂
R →R be a convex function on the interval I of real numbers and x, y ∈ I with x < y. Then

g
(

x + y
2

)
≤ 1

y – x

∫ y

x
g(t) dt ≤ g(x) + g(y)

2
.

Both inequalities hold in the reversed direction for g to be concave. Several improvements
and extensions of Hermite–Hadamard’s type inequality to different kinds of convexity
were established by different researchers.

First we recall some important definitions and results which we have used in this paper.

Definition 1 For g ∈ L1[a, b]. The left-sided and right-sided Riemann–Liouville fractional
integrals of order α > 0 with a ≥ 0 are defined by

Jα
a+ g(x) =

1
Γ (α)

∫ x

a
(x – t)α–1g(t) dt, a < x,
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and

Jα
b– g(x) =

1
Γ (α)

∫ b

x
(t – x)α–1g(t) dt, x < b,

respectively, where Γ (·) is Gamma function and its definition is Γ (α) =
∫ ∞

0 e–uuα–1 du. It
is to be noted that J0

a+ g(x) = J0
b– g(x) = g(x).

In the case of α = 1, the fractional integral reduces to the classical integral.
Properties relating to this operator can be found in [5] and for useful details on Hermite-

Hadamard type inequalities connected with fractional integral inequalities, we refer the
reader to [5–17] and the references therein.

In [18] Dragomir and Agarwal, obtained inequalities for differentiable convex mappings
which are connected with the right-hand side of Hermite-Hadamard’s (trapezoid) inequal-
ity and applied them to obtain some elementary inequalities for real numbers and in nu-
merical integration as follows.

Theorem 1 Let g : I ⊂ R → R be a differentiable mapping on Io where x, y ∈ I with x < y. If
|g ′|q is convex on [x, y], for some q ≥ 1 then the following inequality holds:

∣∣∣
∣
g(x) + g(y)

2
–

1
y – x

∫ y

x
f (u) du

∣∣∣
∣ ≤ y – x

8
[∣∣g ′(x)

∣∣ +
∣∣g ′(y)

∣∣]. (1)

In [2] Dragomir, obtained inequalities for a Lipschitzian mapping which are in connection
with the right-hand side of Hermite-Hadamard’s (trapezoid) inequality.

Theorem 2 Let g : I ⊂ R → R be a M-Lipschitzian mapping on I where x, y ∈ I with x < y,
then we have the following inequality:

∣
∣∣
∣
g(x) + g(y)

2
–

1
y – x

∫ y

x
f (u) du

∣
∣∣
∣ ≤ M

3
(y – x). (2)

In [3] Yang, obtained Hermite–Hadamard’s (trapezoid) inequalities for differentiable map-
ping for concave function.

Theorem 3 Let I ⊂ R be an open interval, l, m, n, P, Q ∈ I with l ≤ P ≤ n ≤ Q ≤ m (n 	=
l, m) l, m, n ∈ R and g : [x, y] → R be a differentiable function. If |g ′|q is concave on [x, y]
and 1 ≤ θ ≤ q, then

∣
∣∣
∣(P – l)g(l) + (m – Q)g(m) + (Q – P)g(n) –

∫ y

x
g(u) du

∣
∣∣
∣

≤ K(P, Q, n, θ ) · J(P, Q, n, θ ), (3)

where

K(P, Q, n, θ ) =
(

1
2
[
(P – l)2 + (n – P)2 + (Q – n)2 + (m – Q)2]

) (θ–1)
θ
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and

J(P, Q, n, θ )

=
(

1
2
[
(P – l)2 + (n – P)2]

∣∣∣
∣g

′
(

(P – l)2 + (n – P)2(2n – 3l + P)
3[(P – l)2 + (n – P)2]

+ l
)∣∣∣

∣

θ) (θ–1)
θ

+
(

1
2
[
(Q – n)2 + (m – Q)2]

∣∣∣
∣g

′
(

m –
(Q – n)2(3m – 2n – Q) + (m – Q)3

3[(Q – n)2 + (m – Q)2]

)∣∣∣
∣

θ) (θ–1)
θ

.

Corollary 1 Under the assumptions of Theorem 3 with P = Q = n = (l + m)/2 and θ = 1, we
get the following inequality:

∣
∣∣
∣
g(x) + g(y)

2
–

1
y – x

∫ y

x
g(u) du

∣
∣∣
∣ ≤ y – x

8

[∣
∣∣
∣g

′
(

5x + y
6

)∣
∣∣
∣ +

∣
∣∣
∣g

′
(

x + 5y
6

)∣
∣∣
∣

]
. (4)

The goal of this article is to establish Hermite–Hadamard type inequalities for the
Riemann–Liouville fractional integral using convexity as well as concavity, for functions
whose absolute values of the first derivative are convex. Here we will derive a general in-
tegral inequality for the Riemann–Liouville fractional integral.

2 Main results
Before going on our main result first we prove the following integral inequality.

Lemma 1 Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b] → R be a differ-
entiable function such that f ′ is integrable and 0 < α ≤ 1 on (a, b) with a < b. If |f ′| is convex
on [a, b], then we have the following inequality:

[(
(b – a)α – (x – a)α

(b – a)α
+

(b – x)α

(b – a)α

)
f (b)

2
+

(
(b – a)α – (b – x)α

(b – a)α
+

(x – a)α

(b – a)α

)
f (a)

2

–
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]

=
1
2

4∑

k=1

I1k

]

,

where

I11 =
(x – a)α+1

(b – a)α

∫ 1

0

(
tα – 1

)
f ′(tx + (1 – t)a

)
dt,

I12 =
(b – x)α+1

(b – a)α

∫ 1

0

(
1 – tα

)
f ′(tx + (1 – t)b

)
dt,

I13 =
(b – x)α+1

(b – a)α

∫ 1

0

[(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α]
f ′(tx + (1 – t)b

)
dt,

I14 =
(x – a)α+1

(b – a)α

∫ 1

0

[(
b – x
x – a

)α

–
(

b – a
x – a

– t
)α]

f ′(tx + (1 – t)a
)

dt.

Proof Integrating by parts

I11 =
(x – a)α+1

(b – a)α

∫ 1

0

(
tα – 1

)
f ′(tx + (1 – t)a

)
dt
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=
(x – a)α+1

(b – a)α

{
(tα – 1)f (tx + (1 – t)a)

x – a

∣
∣∣
∣

1

0

+
α

x – a

∫ 1

0

(
tα–1)f

(
tx + (1 – t)a

)
dt

}

=
(x – a)α+1

(b – a)α

{
f (a)
x – a

–
α

x – a

∫ x

a

(u – a)α–1

(x – a)α–1 · f (u) du
(x – a)

}

=
f (a)(x – a)α

(b – a)α
–

α

(b – a)α

∫ x

a
(u – a)α–1f (u) du,

I13 =
(b – x)α+1

(b – a)α

∫ 1

0

[(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α]
f ′(tx + (1 – t)b

)
dt

=
(b – x)α+1

(b – a)α
[( a–b

x–b – t)α – ( a–x
x–b )α]f (tx + (1 – t)b) dt

x – b

∣∣
∣∣

1

0

–
∫ 1

0
–α

(
a – b
x – b

– t
)α–1 f (tx + (1 – t)b) dt

x – b

=
(b – x)α+1

(b – a)α

[(
a – b
x – b

– t
)α

–
(

a – x
b – x

)α]
f (b)
b – x

+
–α

b – x

∫ x

b

(u – a)α–1

(b – x)α–1 · f (u) du
(b – x)

=
(b – x)α+1

(b – a)α

{
(b – a)α – (x – a)α

(b – x)α+1 f (b) –
α

(b – x)α+1

∫ b

x
(u – a)α–1f (u) du

}
.

Analogously

I12 =
f (b)(b – x)α

(b – a)α
–

α

(b – a)α

∫ x

b
(b – u)α–1f (u) du,

I14 =
(x – a)α+1

(b – a)α

{
–(b – x)α + (b – a)α

(x – a)α+1 f (a) –
α

(x – a)α+1

∫ x

a
(b – u)α–1f (u) du

}
.

Adding the above equalities, we get

I11 + I13 =
(x – a)α

(b – a)α
f (a) +

(
1 –

(x – a)α

(b – a)α

)
f (b) –

Γ (α + 1)
(b – a)α

Jα
b– f (a),

I12 + I14 =
(b – x)α

(b – a)α
f (b) +

(
1 –

(b – x)α

(b – a)α

)
f (a) –

Γ (α + 1)
(b – a)α

Jα
a+ f (b).

The proof is completed. �

Theorem 4 Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b] → R be a
differentiable function such that f ′ is integrable and 0 < α ≤ 1 on (a, b) with a < b. If |f ′|
is convex on [a, b], then the following inequality for Riemann–Liouville fractional integrals
holds:

[(
(b – a)α – (x – a)α

(b – a)α
+

(b – x)α

(b – a)α

)
f (b)

2
+

(
(b – a)α – (b – x)α

(b – a)α
+

(x – a)α

(b – a)α

)
f (a)

2

–
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]]
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≤ (x – a)α+1

(b – a)α+1

[
A

∣
∣f ′(x)

∣
∣ + B

∣
∣f ′(a)

∣
∣] +

(b – x)α+1

(b – a)α+1

[
A

∣
∣f ′(x)

∣
∣ + B

∣
∣f ′(b)

∣
∣]

+
(b – x)α+1

(b – a)α+1

[
C

∣
∣f ′(x)

∣
∣ + D

∣
∣f ′(b)

∣
∣] +

(x – a)α+1

(b – a)α+1

[
E
∣
∣f ′(x)

∣
∣ + F

∣
∣f ′(a)

∣
∣], (5)

where

A =
∫ 1

0

∣∣1 – tα
∣∣t dt =

α

2(α + 2)
,

B =
∫ 1

0

∣
∣1 – tα

∣
∣(1 – t) dt =

α

α + 1
–

α

2(α + 2)
=

α(α + 3)
2(α + 1)(α + 2)

,

C =
∫ 1

0
t
∣
∣∣
∣

(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α∣
∣∣
∣dt

= –
1

(α + 1)(α + 2)

(
a – x
x – b

)α+2

+
1
2

(
a – x
x – b

)

+
1

(α + 1)(α + 2)

(
a – b
x – b

)α+2

–
1

α + 1

(
a – x
x – b

)α+1

–
(

a – x
x – b

)α

,

D =
∫ 1

0

∣∣
∣∣

(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α∣∣
∣∣(1 – t) dt

=
1

(α + 1)

(
a – b
x – b

)α+1

+
1

(α + 1)(α + 2)

(
a – x
x – b

)α+2

–
1
2

(
a – x
x – b

)

–
1

(α + 1)(α + 2)

(
a – b
x – b

)α+2

.

Proof Here, utilizing the properties of the modulus in Lemma 1 and convexity of |f ′|, we
have

|K1| =
(x – a)α+1

(b – a)α

∫ 1

0

(
tα – 1

)
f ′(tx + (1 – t)a

)
dt,

|K1| ≤ (x – a)α+1

(b – a)α

∫ 1

0

∣
∣(1 – tα

)∣∣
∣
∣f ′(tx + (1 – t)a

)∣∣dt

≤ (x – a)α+1

(b – a)α

∫ 1

0

∣∣(1 – tα
)∣∣{t

∣∣f ′(x)
∣∣ + (1 – t)

∣∣f ′(a)
∣∣}dt,

|K1| =
(x – a)α+1

(b – a)α
{

A
∣
∣f ′(x)

∣
∣ + B

∣
∣f ′(a)

∣
∣},

and analogously

|K2| =
(b – x)α+1

(b – a)α

∫ 1

0

(
tα – 1

)
f ′(tx + (1 – t)b

)
dt,

|K2| ≤ (b – x)α+1

(b – a)α

∫ 1

0

∣∣1 – tα
∣∣∣∣f ′(tx + (1 – t)b

)∣∣dt

≤ (b – x)α+1

(b – a)α

∫ 1

0

∣
∣(1 – tα

)∣∣{t
∣
∣f ′(x)

∣
∣+(1 – t)

∣
∣f ′(b)

∣
∣}dt,

|K2| =
(b – x)α+1

(b – a)α
{

A
∣
∣f ′(x)

∣
∣ + B

∣
∣f ′(b)

∣
∣},
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using the convexity on |f ′| and the fact that, for α ∈ (0, 1] and ∀t ∈ [0, 1],

|K3| ≤ (b – x)α+1

(b – a)α

∫ 1

0

∣
∣∣∣

(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α∣
∣∣∣
∣∣f ′(tx + (1 – t)b

)∣∣dt

≤ (b – x)α+1

(b – a)α

∫ 1

0

∣∣
∣∣

(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α∣∣
∣∣
{

t
∣
∣f ′(x)

∣
∣ + (1 – t)

∣
∣f ′(b)

∣
∣}dt,

|K3| =
(b – x)α+1

(b – a)α
{

C
∣
∣f ′(x)

∣
∣ + D

∣
∣f ′(b)

∣
∣},

and analogously

|K4| ≤ (x – a)α+1

(b – a)α

∫ 1

0

∣∣
∣∣

(
b – x
x – a

)α

–
(

b – a
x – a

– t
)α∣∣

∣∣
∣
∣f ′(tx + (1 – t)a

)∣∣dt

≤ (x – a)α+1

(b – a)α

∫ 1

0

∣
∣∣
∣

(
b – x
x – a

)α

–
(

b – a
x – a

– t
)α∣

∣∣
∣
{

t
∣∣f ′(x)

∣∣ + (1 – t)
∣∣f ′(a)

∣∣}dt

≤ (x – a)α+1

(b – a)α
{

E
∣∣f ′(x)

∣∣ + F
∣∣f ′(a)

∣∣}.

The proof is completed. �

Remark 1 On letting α = 1, x = a+b
2 in Theorem 4, inequality (5) reduces to inequality (1).

Theorem 5 Let I ⊂ R be an open interval, a, b ∈ I with a < b and f : [a, b] → R be a
differentiable function such that f ′ is integrable and 0 < α ≤ 1 on (a, b) with a < b. If |f ′|q is
convex on [a, b], q ≥ 1 then the following inequality holds:

[(
(b – a)α – (x – a)α

(b – a)α
+

(b – x)α

(b – a)α

)
f (b)

2
+

(
(b – a)α – (b – x)α

(b – a)α
+

(x – a)α

(b – a)α

)
f (a)

2

+ –
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]]

≤
[

(x – a)α+1

(b – a)α
(γ1)1–1/q(A

∣
∣f ′(x)

∣
∣q + B

∣
∣f ′(a)

∣
∣q)1/q

+
(b – x)α+1

(b – a)α
(γ2)1–1/q(A

∣
∣f ′(x)

∣
∣q + B

∣
∣f ′(b)

∣
∣q)1/q

+
(b – x)α+1

(b – a)α
(γ3)1–1/q(C

∣∣f ′(x)
∣∣q + D

∣∣f ′(b)
∣∣q)1/q

+
(x – a)α+1

(b – a)α
(γ4)1–1/q(E

∣∣f ′(x)
∣∣q + F

∣∣f ′(a)
∣∣q)1/q

]
, (6)

where

E =
∫ 1

0
t
∣∣
∣∣

(
b – a
x – a

– t
)α

–
(

b – x
x – a

)α∣∣
∣∣dt

=
(

b – x
2(x – a)

)
–

1
(α + 1)

(
b – x
x – a

)α+1

–
b – x

(x – a)

–
1

(α + 1)(α + 2)

(
b – x
x – a

)α+2

+
1

(α + 1)(α + 2)

(
b – a
x – a

)α+2

,
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F =
∫ 1

0

∣
∣∣
∣

(
b – a
x – a

– t
)α

–
(

b – x
x – a

)α∣
∣∣
∣(1 – t) dt

=
1

(α + 1)

(
b – a
x – a

)α+2

–
b – x

2(x – a)
+

1
(α + 1)(α + 2)

(
b – x
x – a

)α+2

– E,

γ1 =
∫ 1

0

∣∣tα – 1
∣∣dt =

α

(α + 1)
,

γ2 =
∫ 1

0

∣
∣1 – tα

∣
∣dt =

α

(α + 1)
,

γ3 =
∫ 1

0

∣
∣∣
∣

(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α∣
∣∣
∣dt

= –
1

(α + 1)

(
a – x
x – b

)α+1

–
(

a – x
x – b

)α

+
1

(α + 1)

(
a – b
x – b

)α

,

γ4 =
∫ 1

0

∣∣
∣∣

(
b – x
x – a

– t
)α

–
(

b – x
x – a

)α∣∣
∣∣dt

=
(

b – x
x – a

)α

+
1

(α + 1)

(
b – x
x – a

)α+1

–
1

(α + 1)

(
b – a
x – a

)α+1

.

Proof By using the properties of the modulus in Lemma 1, we have

∣
∣∣
∣

[(
(b – a)α – (x – a)α

(b – a)α
+

(b – x)α

(b – a)α

)
f (b)

2
+

(
(b – a)α – (b – x)α

(b – a)α
+

(x – a)α

(b – a)α

)
f (a)

2

+ –
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]]

∣∣
∣∣ ≤

4∑

k=1

|Jk|

and using convexity of |f ′|, we have

|J1| ≤ (x – a)α+1

(b – a)α

∫ 1

0

(
1 – tα

)∣∣f ′(tx + (1 – t)a
)∣∣dt

≤ (x – a)α+1

(b – a)α

(∫ 1

0

(
1 – tα

)
dt

)1– 1
q
(∫ 1

0

(
1 – tα

)∣∣f ′(tx + (1 – t)a
)∣∣q dt

) 1
q

=
(x – a)α+1

(b – a)α
(γ1)1– 1

q
[
A

∣∣f ′(x)
∣∣q + B

∣∣f ′(a)
∣∣q] 1

q

and analogously

|J3| ≤ (b – x)α+1

(b – a)α

∫ 1

0

∣∣∣
∣

(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α∣∣∣
∣
∣∣f ′(tx + (1 – t)b

)∣∣dt

≤ (b – x)α+1

(b – a)α

(∫ 1

0

∣
∣∣∣

(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α∣
∣∣∣dt

)1– 1
q

×
(∫ 1

0

∣∣∣
∣

(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α∣∣∣
∣
∣∣f ′(tx + (1 – t)b

)∣∣q dt
) 1

q

=
(b – x)α+1

(b – a)α
(γ3)1– 1

q
[
C

∣
∣f ′(x)

∣
∣q + D

∣
∣f ′(b)

∣
∣q] 1

q ,
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using the convexity and the fact that, for α ∈ (0, 1] and ∀t ∈ [0, 1],

|J2| ≤ (b – x)α+1

(b – a)α
(γ2)1– 1

q
[
A

∣∣f ′(x)
∣∣q + B

∣∣f ′(b)
∣∣q] 1

q

and similarly

|J4| ≤ (b – x)α+1

(b – a)α

∫ 1

0

∣
∣∣
∣

(
b – a
x – a

– t
)α

–
(

b – x
x – a

)α∣
∣∣
∣
∣∣f ′(tx + (1 – t)a

)∣∣dt

≤ (b – x)α+1

(b – a)α

(∫ 1

0

∣∣
∣∣

(
b – a
x – a

– t
)α

–
(

b – x
x – a

)α∣∣
∣∣dt

)1– 1
q

×
(∫ 1

0

∣
∣∣
∣

(
b – a
x – a

– t
)α

–
(

b – x
x – a

)α∣
∣∣
∣
∣∣f ′(tx + (1 – t)a

)∣∣q dt
) 1

q

=
(b – x)α+1

(b – a)α
(γ4)1– 1

q
[
E
∣∣f ′(x)

∣∣q + F
∣∣f ′(a)

∣∣q] 1
q .

The proof is completed. �

Corollary 2 On letting α = 1, x = a+b
2 and |f ′(a)| = |f ′(b)| ≤ M in Theorem 5, inequality

(6) reduces to the inequality

∣
∣∣
∣
f (a) + f (b)

2
–

1
b – a

∫ b

a
f (x) dx

∣
∣∣
∣ ≤ M

4
(b – a). (7)

Remark 2 The obtained inequality (7) is an improvement of the inequality as in (2).

In the following, we obtain an estimate of the Hermite–Hadamard inequality for concave
functions.

Theorem 6 Let f : [a, b] → R be a differentiable function on (a, b) such that f ′ ∈ L1[a, b].
If |f ′|q is concave on [a, b], for some fixed p > 1 with q = p

p–1 , the following inequality for
fractional integrals holds:

∣∣
∣∣

[(
(b – a)α – (x – a)α

(b – a)α
+

(b – x)α

(b – a)α

)
f (b)

2
+

(
(b – a)α – (b – x)α

(b – a)α
+

(x – a)α

(b – a)α

)
f (a)

2

+ –
Γ (α + 1)
2(b – a)α

[
Jα
a+ f (b) + Jα

b– f (a)
]]

∣∣
∣∣

≤
[{

γ1

∣
∣∣
∣f

′
(

(α + 1)
{

Ax + Bb
α

})∣
∣∣
∣ + γ2

∣
∣∣
∣f

′
(

(α + 1)
{

Ax + Bb
α

})∣
∣∣
∣

}

+ γ3

∣
∣∣
∣f

′
(

(α + 1)
{

Cx + Db
α

})∣
∣∣
∣ + γ3

∣
∣∣
∣f

′(α + 1)
{

Ex + Fa
α

}∣
∣∣
∣

]
. (8)

Proof Using the concavity of |f ′|q and the power-mean inequality, we obtain

∣
∣f ′(tx + (1 – t)y

)∣∣q > t
∣
∣f ′(x)

∣
∣q + (1 – t)

∣
∣f ′(y)

∣
∣q

≥ t
∣
∣f ′(x)

∣
∣q + (1 – t)

∣
∣f ′(y)

∣
∣q.
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Hence

∣
∣f ′(tx + (1 – t)y

)∣∣ ≥ t
∣
∣f ′(x)

∣
∣ + (1 – t)

∣
∣f ′(y)

∣
∣,

so |f ′| is also concave. By the Jensen integral inequality, we have

|I1| ≤ (x – a)α+1

(b – a)α+1

(∫ 1

0

∣∣1 – tα
∣∣dt

)∣
∣∣
∣f

′
(∫ 1

0 |(1 – tα)|[f ′(tx + (1 – t)a)] dt
∫ 1

0 |1 – tα|dt

)∣
∣∣
∣

=
(x – a)α+1

(b – a)α+1 (γ1)
∣
∣∣
∣f

′
(

Ax + Ba
γ1

)∣
∣∣
∣

and similarly

|I2| ≤ (b – x)α+1

(b – a)α+1 (γ2)
∣∣
∣∣f

′
(

Ax + Bb
γ2

)∣∣
∣∣,

|I3| ≤ (b – x)α+1

(b – a)α

(∫ 1

0

∣∣∣
∣

(
a – b
x – b

– t
)α

–
(

a – x
x – b

)α∣∣∣
∣

)

×
∣
∣∣
∣f

′
( (

∫ 1
0 |( a–b

x–b – t)α – ( a–ix
x–b )α|)[f ′(tx + (1 – t)b)] dt

∫ 1
0 |( a–b

x–b – t)α – ( a–x
x–b )α|dt

)∣
∣∣
∣

≤ (γ3)
∣∣
∣∣f

′
(

Cx + Db
γ3

)∣∣
∣∣,

and

|I4| ≤ (x – a)α+1

(b – a)α+1

(∫ 1

0

∣∣
∣∣

(
b – x
x – a

)α

–
(

b – a
x – a

– t
)α∣∣

∣∣

)

×
∣
∣∣
∣f

′
(∫ 1

0 |( b–x
x–a )α – ( b–a

x–a – t)α|[f ′(tx + (1 – t)a)] dt

(
∫ 1

0 |( b–x
x–a )α – ( b–a

x–a – t)α|) dt

)∣
∣∣
∣,

|I4| ≤ (γ4)
∣
∣∣∣f

′
(

Ex + Fb
γ4

)∣
∣∣∣.

The proof is completed. �

Remark 3 On letting α = 1, x = a+b
2 in Theorem 6, inequality (8) reduces to inequality (4).

3 Conclusion
In this article, based on a more general inequality, the authors have determined a few in-
equalities of Hermite–Hadamard type for functions that possess a first derivative on the
interior of an interval of real numbers, by utilizing the Hölder inequality and the assump-
tions that the mappings |(f ′)|q, q ≥ 1 are convex and concave. The outcomes exhibited
here surely give refinements of those outcomes demonstrated in [1, 2] and [3], and we can
get many intriguing results for α = 1 and x = a+b

2 .
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