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Abstract
In this paper, we introduce (p,q)-gamma operators which preserve x2, we estimate
the moments of these operators, and establish direct and local approximation
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1 Introduction
With the rapid development of the approximation theory about the operators since the last
century, lots of operators, such as Bernstein operators [4], Szász–Mirakjan operators [32,
37], Baskakov operators [3], Bleimann–Butzer–Hann operators [5], and Meyer–König–
Zeller operators [31], have been proposed and constructed by several researchers due to
Weierstrass and the important convergence theorem of Korovkin [26], see also [17]. In
[23], Karsli considered gamma operators and studied the rate of convergence of these op-
erators for the functions with derivative of bounded variation

Ln(f ; x) =
(2n + 3)!xn+3

n!(n + 2)!

∫ ∞

0

tn

(x + t)2n+4 f (t) dt, x > 0. (1)

In [25], Karsli and Ozarslan established some local and global approximation results for
the operators Ln.

In recent years, with the rapid development of q-calculus [22], the study of new poly-
nomials and operators constructed with q-integer has attracted more and more attention.
Lupas first introduced q-Bernstein polynomials [27], and Phillips [36] proposed other q-
analogue of Bernstein polynomials. Later, many researchers have performed studies in this
field, and the q-analogue of classical operators and modified operators, such as q-Szász–
Mirakjan operators [28], q-Baskakov operators [13], q-Meyer–König–Zeller operators
[12], q-Bleimann–Butzer–Hann operators [11] q-Phillips operators [29], q-Baskakov–
Kantorovich operators [20], q-Baskakov–Durrmeyer operators [19], q-Szász-beta oper-
ators [18], and q-Meyer–König–Zeller–Durrmeyer operators [15], has been constructed;
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see also [2]. In [6], Cai and Zeng defined q-gamma operators

Gn,q(f ; x) =
[2n + 3]!(qn+ 3

2 x)n+3q
n(n+1)

2

[n]q![n + 2]q!

∫ ∞

0

tn

(qn+ 3
2 x + t)2n+4

q

f (t) dqt, x > 0 (2)

and gave their approximation properties.
Then many operators have been constructed with two parameters (p, q)-integer based

on post-quantum calculus ((p, q)-calculus) which has been used efficiently in many areas
of sciences such as Lie group, different equations, hypergeometric series, physical sci-
ences, and so on. Recently, approximation by sequences of linear positive operators has
been transferred to operators with (p, q)-integer. Let us review some useful notations and
definitions about (p, q)-calculus in [2, 17, 21].

Let 0 < q < p ≤ 1. For each nonnegative integer n, the (p, q)-integer [n]p,q, (p, q)-factorial
[n]p,q! are defined by

[n]p,q =
pn – qn

p – q
, n = 0, 1, 2, . . .

and

[n]p,q! =

⎧⎨
⎩

[1]p,q[2]p,q · · · [n]p,q, n ≥ 1;

1, n = 0.

Further, the (p, q)-power basis is defined by

(x ⊕ y)n
p,q = (x + y)(px + qy)

(
p2x + q2y

) · · · (pn–1x + qn–1y
)

and

(x � y)n
p,q = (x – y)(px – qy)

(
p2x – q2y

) · · · (pn–1x – qn–1y
)
.

Let n be a non-negative integer, the (p, q)-gamma function is defined as

Γp,q(n + 1) =
(p � q)n

p,q

(p – q)n = [n]p,q!, 0 < q < p ≤ 1.

Aral and Gupta [1] proposed a (p, q)-beta function of the second kind for m, n ∈ N as
follows:

Bp,q(m, n) =
∫ ∞

0

xm–1

(1 ⊕ px)m+n
p,q

dp,qx

and gave the relation of the (p, q)-analogues of beta and gamma functions:

Bp,q(m, n) =
qΓp,q(m)Γp,q(n)

(pm+1qm–1) m
2 Γp,q(m + n)

.
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As a special case, if p = q = 1, B(m, n) = Γ (m)Γ (n)
Γ (m+n) . It is obvious that order is important for

(p, q)-setting, which is the reason why a (p, q)-variant of beta function does not satisfy
commutativity property, i.e., Bp,q(m, n) �= Bp,q(n, m).

Let CB[0,∞) be the space of all real-valued continuous bounded functions f on the in-
terval [0,∞) endowed with the norm

‖f ‖ = sup
x∈[0,∞)

∣∣f (x)
∣∣.

Let δ > 0 and C2
B[0,∞) = {g : g ′, g ′′ ∈ CB[0,∞)}, the following K-functional is defined:

K(f ; δ) = inf
g∈C2

B[0,∞)

{‖f – g‖ + δ
∥∥g ′′∥∥}

.

Using DeVore–Lorentz theorem (see [10]), there exists a constant C > 0 such that

K(f ; δ) ≤ Cω2(f ;
√

δ), (3)

where

ω2(f ; δ) = sup
0<|t|≤δ

sup
x∈[0,∞)

∣∣f (x + 2t) – 2f (x + t) + f (x)
∣∣

is the second order modulus of smoothness of f . Also, by ω(f ; δ) we denote the usual mod-
ulus of continuity of f ∈ CB[0,∞) defined as

ω(f ; δ) = sup
0<|t|≤δ

sup
x∈[0,∞)

∣∣f (x + t) – f (x)
∣∣.

Let Bx2 [0,∞) denote the function space of all functions f such that |f (x)| ≤ Cf (1 + x2),
where Cf is a positive constant depending on f . By Cx2 [0,∞) we denote the subspace of all
continuous functions in the function space Bx2 [0,∞). By C0

x2 [0,∞) we denote the subspace
of all functions f ∈ Cx2 [0,∞) for which limx→∞ |f (x)|

1+x2 is endowed with the norm

‖f ‖x2 = sup
x∈[0,∞)

|f (x)|
1 + x2 .

For a > 0, the modulus of continuity of f on [0, a] is defined as follows:

ωa(f ; δ) = sup
|y–x|<δ

sup
0≤x,y≤a

∣∣f (y) – f (x)
∣∣.

As is known, if f is not uniformly continuous on [0,∞), we cannot get ω(f ; δ) → 0 as
δ → 0. In [38], Yuksel and Ispir defined the weighted modulus of continuity Ω(f ; δ) =
sup0<h≤δ,x≥0

|f (x+h)–f (x)|
1+(x+h)2 while f ∈ C0

x2 [0,∞) and proved the properties of monotone increas-
ing about Ω(f ; δ) as δ > 0 and the inequality Ω(f ;λδ) ≤ (1 + λ)Ω(f ; δ) while λ > 0 and
f ∈ C0

x2 [0,∞).
Let f ∈ CB[0,∞), M > 0, and γ ∈ (0, 1]. We recall that f ∈ LipM(γ ) if the following in-

equality

∣∣f (x) – f (y)
∣∣ ≤ M|x – y|γ , x, y ∈ [0,∞)
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is satisfied. Let F be a subset of the interval [0,∞), we define that f ∈ LipM(γ , F) if the
following inequality

∣∣f (x) – f (y)
∣∣ ≤ M|x – y|γ , x ∈ F and y ∈ [0,∞)

holds.
Recently, Mursaleen first applied (p, q)-calculus in approximation theory and introduced

the (p, q)-analogue of Bernstein operators [33], (p, q)-Bernstein–Stancu operators [34],
(p, q)-Bernstein–Schurer operators [35] and investigated their approximation properties.
In addition, many well-known approximation operators with (p, q)-integer, such as (p, q)-
Bernstein–Stancu–Schurer–Kantorovich operators [8], (p, q)-Szász–Baskakov operators
[16], (p, q)-Baskakov-beta operators [30] have been introduced. All this achievement mo-
tivates us to construct the (p, q)-analogue of the gamma operator (1), as we know that
many researchers have studied approximation properties of the gamma operators and
their modifications (see [7, 9, 24, 39]). The rest of the paper is organized as follows. In
Sect. 2, we define the (p, q)-gamma operators and obtain the moments and the central
moments of them. In Sect. 3, we study the properties of the (p, q)-gamma operators about
Lipschitz condition. Then some direct theorems about local approximation, rate of con-
vergence, weighted approximation, and Voronovskaja-type approximation are obtained.

2 (p, q)-gamma operators and moments
We first define the analogue of gamma operators via (p, q)-calculus as follows.

Definition 2.1 For n ∈N, x ∈ (0,∞) and 0 < q < p ≤ 1, the (p, q)-gamma operators can be
defined as follows:

Gp,q
n (f ; x) =

xn+3(qn+ 3
2 )n+3pn2+ 7

2 n+ 7
2

Bp,q(n + 1, n + 3)

∫ ∞

0

tn

((pq)n+ 3
2 x ⊕ t)2n+4

p,q

f (t) dp,qt.

Operators Gp,q
n are linear and positive. For p = 1, they turn out to be the q-gamma op-

erators defined in (2). We will derive the moments Gp,q
n (tk ; x) and the central moments

Gp,q
n ((t – x)k ; x) for k = 0, 1, 2, 3, 4.

Lemma 2.1 For x ∈ (0,∞), 0 < q < p ≤ 1, and k = 0, 1, . . . , n + 2, we have

Gp,q
n

(
tk ; x

)
=

xk(pq)k– k2
2 [n + k]p,q![n – k + 2]p,q!
[n]p,q![n + 2]p,q!

. (4)

Proof Using the properties of (p, q)-beta function and (p, q)-gamma function, we have

Gp,q
n

(
tk ; x

)
=

xn+3(qn+ 3
2 )n+3pn2+ 7

2 n+ 7
2

Bp,q(n + 1, n + 3)

∫ ∞

0

tn+k

((pq)n+ 3
2 x ⊕ t)2n+4

p,q

dp,qt

=
xn+3(qn+ 3

2 )n+3pn2+ 7
2 n+ 7

2

Bp,q(n + 1, n + 3)

∫ ∞

0

1
(pq)(2n+3)(n+2)x2n+4

× tn+k

(1 ⊕ pt

xqn+ 3
2 pn+ 5

2
)2n+4
p,q

dp,qt
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=
xn+3(qn+ 3

2 )n+3pn2+ 7
2 n+ 7

2

Bp,q(n + 1, n + 3)

∫ ∞

0

(xqn+ 3
2 pn+ 5

2 )n+k+1

(pq)(2n+3)(n+2)x2n+4

×
( t

xqn+ 3
2 pn+ 5

2
)n+k

(1 ⊕ pt

xqn+ 3
2 pn+ 5

2
)2n+4
p,q

dp,q

(
t

xqn+ 3
2 pn+ 5

2

)

=
xkpkn+ 5

2 kqkn+ 3
2 kBp,q(n + k + 1, n – k + 3)

Bp,q(n + 1, n + 3)

=
xk(pq)k– k2

2 [n + k]p,q![n – k + 2]p,q!
[n]p,q![n + 2]p,q!

.

Lemma 2.1 is proved. �

Lemma 2.2 For x ∈ (0,∞), 0 < q < p ≤ 1, the following equalities hold:
1. Gp,q

n (1; x) = 1;
2. Gp,q

n (t; x) =
√

p
q (1 – pn+1

[n+2]p,q
)x;

3. Gp,q
n (t2; x) = x2;

4. Gp,q
n (t3; x) = [n+3]p,qx3

(pq)
3
2 [n]p,q

;

5. Gp,q
n (t4; x) = [n+3]p,q[n+4]p,qx4

(pq)4[n]p,q[n–1]p,q
for n > 1.

Proof The proof of this lemma is an immediate consequence of Lemma 2.1. Hence the
details are omitted. �

Lemma 2.3 Let n > 1 and x ∈ (0,∞), then for 0 < q < p ≤ 1, we have the central moments
as follows:

1. A(x) := Gp,q
n (t – x; x) = ((

√
p
q – 1) –

√
p
q

pn+1

[n+2]p,q
)x;

2. B(x) := Gp,q
n ((t – x)2; x) = –2((

√
p
q – 1) –

√
p
q

pn+1

[n+2]p,q
)x2;

3. Gp,q
n ((t – x)4; x) = ( [n+2]p,q[n+3]p,q[n+4]p,q–4(pq)

5
2 [n–1]p,q[n+2]p,q[n+3]p,q

(pq)4[n–1]p,q[n]p,q[n+2]p,q
+

–4(pq)
9
2 [n–1]p,q[n]p,q[n+1]p,q+7(pq)4[n–1]p,q[n]p,q[n+2]p,q

(pq)4[n–1]p,q[n]p,q[n+2]p,q
)x4.

Proof Because Gp,q
n (t – x; x) = Gp,q

n (t; x) – x, Gp,q
n ((t – x)2; x) = Gp,q

n (t2; x) – 2xGp,q
n (t; x) + x2,

and Gp,q
n ((t – x)4; x) = Gp,q

n (t4; x) – 4xGp,q
n (t3; x) + 6x2Gp,q

n (t2; x) – 4x3Gp,q
n (t; x) + x4, and from

Lemma 2.2, we obtain Lemma 2.3 easily. �

Lemma 2.4 The sequences (pn), (qn) satisfy 0 < qn < pn ≤ 1 such that pn → 1, qn → 1 and
pn

n → α, qn
n → β , [n]pn ,qn → ∞ as n → ∞, then

lim
n→∞[n – 1]pn ,qn Gpn ,qn

n (t – x; x) = –
α + β

2
x; (5)

lim
n→∞[n – 1]pn ,qn Gpn ,qn

n
(
(t – x)2; x

)
= (α + β)x2; (6)

lim
n→∞[n – 1]pn ,qn Gpn ,qn

n
(
(t – x)4; x

)
= 0. (7)
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Proof Using

lim
n→∞[n – 1]pn ,qn

((√
pn

qn
– 1

)
–

√
pn

qn

pn+1
n

[n + 2]pn ,qn

)

= lim
n→∞[n + 2]pn ,qn

((√
pn

qn
– 1

)
–

√
pn

qn

pn+1
n

[n + 2]pn ,qn

)

= lim
n→∞

(
pn+2

n – qn+2
n

pn – qn

√pn – √qn√qn
–

√
pn

qn
pn+1

n

)

=
α – β

2
– α = –

α + β

2
,

we get (5) and (6) easily. Let k = n – 2, we have

[n + 2]pn ,qn [n + 3]pn ,qn [n + 4]pn ,qn

=
(
q3

n[k]pn ,qn + pk
n[3]pn ,qn

)(
q4

n[k]pn ,qn + pk
n[4]pn ,qn

)(
q5

n[k]pn ,qn + pk
n[5]pn ,qn

)

∼ q12
n [k]3

pn ,qn + pk
n
(
q7

n[5]pn ,qn + q8
n[4]pn ,qn + q9

n[3]pn ,qn

)
[k]2

pn ,qn .

Similarly, we can obtain

[n – 1]pn ,qn [n + 2]pn ,qn [n + 3]pn ,qn ∼ q7
n[k]3

pn ,qn + pk
n
(
q3

n[4]pn ,qn + q4
n[3]pn ,qn

)
[k]2

pn ,qn ,

[n – 1]pn ,qn [n]pn ,qn [n + 2]pn ,qn ∼ q4
n[k]3

pn ,qn + pk
n
(
q3

n + qn[3]pn ,qn

)
[k]2

pn ,qn ,

[n – 1]pn ,qn [n]pn ,qn [n + 1]pn ,qn ∼ q3
n[k]3

pn ,qn + pk
n
(
q2

n + qn[2]pn ,qn

)
[k]2

pn ,qn .

By Lemma 2.3, we can have

Gpn ,qn
n

(
(t – x)4; x

) ∼
(

An +
1

[k]pn ,qn
Bn

)
x4,

where An = q12
n – 4p

5
2
n q

19
2

n – 4p
9
2
n q

15
2

n + 7p4
nq8

n and

Bn = pk
n
(
q7

n[5]pn ,qn + q8
n[4]pn ,qn + q9

n[3]pn ,qn – 4(pnqn)
5
2
(
q3

n[4]pn ,qn + q4
n[3]pn ,qn

)

– 4(pnqn)
9
2
(
q2

n + qn[2]pn ,qn

)
+ 7(pnqn)4(q3

n + qn[3]pn ,qn

))
.

Set P = √pn, Q = √qn, by

An = P24 – 4P5Q19 – 4P9Q15 + 7P8Q16

∼ P9 – 4P5Q4 – 4P9 + 7P8Q

= 3P5(P4 – Q4) – Q4(P5 – Q5) – 7P8(P – Q)

= (P – Q)

(
3P5

3∑
i=0

PiQ3–i – Q4
4∑

i=0

PiQ4–i – 7P8

)
,
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we easily obtain

[n – 1]pn ,qn An ∼ [n]pn ,qn (P – Q)

(
3P5

3∑
i=0

PiQ3–i – Q4
4∑

i=0

PiQ4–i – 7P8

)

∼ pn
n – qn

n
pn – qn

pn – qn√pn + √qn

(
3P5

3∑
i=0

PiQ3–i – Q4
4∑

i=0

PiQ4–i – 7P8

)

∼ a – b
2

(3 × 4 – 5 – 7) = 0.

Similarly, Bn ∼ 5 + 4 + 3 – 4 × (4 + 3) – 4 × (1 + 2) + 7 × (1 + 3) = 0, we obtain (7). �

3 Approximation properties of (p, q)-gamma operators
In this section, we research the approximation properties of (p, q)-gamma operators. The
following two theorems show approximation properties about Lipschitz functions.

Theorem 3.1 Let 0 < q < p ≤ 1 and F be any bounded subset of the interval [0,∞). If
f ∈ CB[0,∞) ∩ LipM(γ , F), then, for all x ∈ (0,∞), we have

∣∣Gp,q
n (f ; x) – f (x)

∣∣ ≤ M
((

B(x)
) γ

2 + 2dγ (x; F)
)
,

where d(x; F) is the distance between x and F defined by d(x; F) = inf{|x – y| : y ∈ F}.

Proof Let F be the closure of F in [0,∞). Using the properties of infimum, there is at least
a point y0 ∈ F such that d(x; F) = |x – y0|. By the triangle inequality, we can obtain

∣∣Gp,q
n (f ; x) – f (x)

∣∣ ≤ Gp,q
n

(∣∣f (x) – f (t)
∣∣; x

)

≤ Gp,q
n

(∣∣f (x) – f (y0)
∣∣; x

)
+ Gp,q

n
(∣∣f (t) – f (y0)

∣∣; x
)

≤ M
(
Gp,q

n
(|t – y0|γ ; x

)
+ Gp,q

n
(|x – y0|γ ; x

))

≤ M
(
Gp,q

n
(|x – t|γ ; x

)
+ 2dγ (x; F)

)
.

Choosing k1 = 2
γ

and k2 = 2
2–γ

and using the well-known Hölder inequality, we have

∣∣Gp,q
n (f ; x) – f (x)

∣∣ ≤ M
((

Gp,q
n

(|x – t|k1γ ; x
)) 1

k1
(
Gp,q

n
(
1k2 ; x

)) 1
k2 + 2dγ (x; F)

)

≤ M
(
Gp,q

n
(
(x – t)2; x

) γ
2 + 2dγ (x; F)

)

= M
((

B(x)
) γ

2 + 2dγ (x; F)
)
.

This completes the proof. �

Theorem 3.2 Let 0 < q < p ≤ 1. Then, for all f ∈ LipM(γ ), we have

∣∣Gp,q
n (f ; x) – f (x)

∣∣ ≤ MB
γ
2 (x).
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Proof Using the monotonicity of the operators Gp,q
n and the Hölder inequality, we can

obtain

∣∣Gp,q
n (f ; x) – f (x)

∣∣ ≤ Gp,q
n

(∣∣f (t) – f (x)
∣∣; x

) ≤ MGp,q
n

(|t – x|γ ; x
)

= MGp,q
n

((|t – x|2) γ
2 ; x

) ≤ M
(
Gp,q

n
(
(t – x)2; x

)) γ
2 = MB

γ
2 (x). �

The third theorem is a direct local approximation theorem for the operators Gp,q
n (f ; x).

Theorem 3.3 Let 0 < q < p ≤ 1, f ∈ CB[0,∞). Then, for every x ∈ (0,∞), there exists a
positive constant C1 such that

∣∣Gp,q
n (f ; x) – f (x)

∣∣ ≤ C1ω2
(
f ;

√
B(x) + A2(x)

)
+ ω

(
f ;

∣∣A(x)
∣∣).

Proof For x ∈ (0,∞), we consider new operators Hp,q
n (f ; x) defined by

Hp,q
n (f ; x) = Gp,q

n (f ; x) + f (x) – f
(
A(x) + x

)
.

Using the operator above and Lemma 2.3, we have

Hp,q
n (t – x; x) = Gp,q

n (t – x; x) – A(x) = 0.

Let x, t ∈ (0,∞) and g ∈ C2
B[0,∞). Using Taylor’s expansion, we can obtain

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
g ′′(u)(t – u) du.

Hence,

∣∣Hp,q
n (g; x) – g(x)

∣∣ =
∣∣∣∣g ′(x)Hp,q

n
(
(t – x); x

)
+ Hp,q

n

(∫ t

x
g ′′(u)(t – u) du; x

)∣∣∣∣

≤
∣∣∣∣Hp,q

n

(∫ t

x
g ′′(u)(t – u) du; x

)∣∣∣∣

≤
∣∣∣∣Gp,q

n

(∫ t

x
g ′′(u)(t – u) du; x

)
–

∫ A(x)+x

x
g ′′(u)

(
A(x) + x – u

)
du

∣∣∣∣

≤ Gp,q
n

(∫ t

x

∣∣g ′′(u)
∣∣(t – u) du; x

)
+

∣∣∣∣
∫ A(x)+x

x

∣∣g ′′(u)
∣∣(A(x) + x – u

)
du

∣∣∣∣
≤ (

B(x) + A2(x)
)∥∥g ′′∥∥.

Using |Gp,q
n (f ; x)| ≤ ‖f ‖, we have

∣∣Gp,q
n (f ; x) – f (x)

∣∣
=

∣∣Hp,q
n (f ; x) + f

(
A(x) + x

)
– 2f (x)

∣∣
≤ ∣∣Hp,q

n (f – g; x) – (f – g)(x)
∣∣ +

∣∣Hp,q
n (g; x) – g(x)

∣∣ +
∣∣f (A(x) + x

)
– f (x)

∣∣
≤ 4‖f – g‖ +

(
B(x) + A2(x)

)∥∥g ′′∥∥ + ω
(
f ;

∣∣A(x)
∣∣).
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Taking infimum over all g ∈ C2
B[0,∞) and using (3), we can obtain the desired asser-

tion. �

The fourth theorem is a result about the rate of convergence for the operators Gp,q
n (f ; x):

Theorem 3.4 Let f ∈ Cx2 [0,∞), 0 < q < p ≤ 1, and a > 0, we have

∥∥Gp,q
n (f ; x) – f (x)

∥∥
C(0,a] ≤ 4Cf

(
1 + a2)B(a) + 2ωa+1

(
f ;

√
B(a)

)
.

Proof For all x ∈ (0, a] and t > a + 1, we easily have (t – x)2 ≥ (t – a)2 ≥ 1, therefore,

∣∣f (t) – f (x)
∣∣ ≤ ∣∣f (t)

∣∣ +
∣∣f (x)

∣∣ ≤ Cf
(
2 + x2 + t2)

= Cf
(
2 + x2 + (x – t – x)2) ≤ Cf

(
2 + 3x2 + 2(x – t)2)

≤ Cf
(
4 + 3x2)(t – x)2 ≤ 4Cf

(
1 + a2)(t – x)2,

(8)

and for all x ∈ (0, a], t ∈ (0, a + 1], and δ > 0, we have

∣∣f (t) – f (x)
∣∣ ≤ ωa+1

(
f , |t – x|) ≤

(
1 +

|t – x|
δ

)
ωa+1(f ; δ). (9)

From (8) and (9), we get

∣∣f (t) – f (x)
∣∣ ≤ 4Cf

(
1 + a2)(t – x)2 +

(
1 +

|t – x|
δ

)
ωa+1(f ; δ).

By Schwarz’s inequality and Lemma 2.3, we have

∣∣Gp,q
n (f ; x) – f (x)

∣∣
≤ Gp,q

n
(∣∣f (t) – f (x)

∣∣; x
)

≤ 4Cf
(
1 + a2)Gp,q

n
(
(t – x)2; x

)
+ Gp,q

n

((
1 +

|t – x|
δ

)
; x

)
ωa+1(f ; δ)

≤ 4Cf
(
1 + a2)Gp,q

n
(
(t – x)2; x

)
+ ωa+1(f ; δ)

(
1 +

1
δ

√
Gp,q

n
(
(t – x)2; x

))

≤ 4Cf
(
1 + a2)B(x) + ωa+1(f ; δ)

(
1 +

1
δ

√
B(x)

)

≤ 4Cf
(
1 + a2)B(a) + ωa+1(f ; δ)

(
1 +

1
δ

√
B(a)

)
.

By taking δ =
√

B(a) and supremum over all x ∈ (0, a], we accomplish the proof of Theo-
rem 3.4. �

The following three results are theorems about weighted approximation for the opera-
tors Gp,q

n (f ; x).

Theorem 3.5 Let f ∈ C0
x2 [0,∞) and the sequences (pn), (qn) satisfy 0 < qn < pn ≤ 1 such

that pn
n → 1, qn

n → 1, [n]pn ,qn → ∞ as n → ∞, then there exists a positive integer N ∈ N+
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such that, for all n > N and ν > 0, the inequality

sup
x∈(0,∞)

|Gpn ,qn
n (f ; x) – f (x)|

(1 + x2) 3
2 +ν

≤ 4
√

2Ω

(
f ;

1√
[n – 1]pn ,qn

)
(10)

holds.

Proof For t > 0, x ∈ (0,∞) and δ > 0, by the definition and properties of Ω(f ; δ), we get

∣∣f (t) – f (x)
∣∣ ≤ (

1 +
(
x + |x – t|))2

Ω
(
f ; |t – x|)

≤ 2
(
1 + x2)(1 + (t – x)2)(1 +

|t – x|
δ

)
Ω(f ; δ).

Using pn
n → 1, qn

n → 1, [n]pn ,qn → ∞ as n → ∞ and Lemma 2.4, there exists a positive
integer N ∈N+ such that, for all n > N ,

Gpn ,qn
n

(
(t – x)2; x

) ≤ 2(1 + x2)
[n – 1]pn ,qn

, (11)

Gpn ,qn
n

(
(t – x)4; x

) ≤ 1. (12)

Since Gpn ,qn
n is linear and positive, we have

∣∣Gpn ,qn
n (f ; x) – f (x)

∣∣ ≤ 2
(
1 + x2)Ω(f ; δ)

{
1 + Gpn ,qn

n
(
(t – x)2; x

)

+ Gpn ,qn
n

((
1 + (t – x)2) |t – x|

δ
; x

)}
. (13)

To estimate the second term of (13), applying the Cauchy–Schwarz inequality and (x +
y)2 ≤ 2(x2 + y2), we have

Gpn ,qn
n

((
1 + (t – x)2) |t – x|

δ
; x

)
≤ √

2
(
Gpn ,qn

n
(
1 + (t – x)4; x

)) 1
2

(
Gpn ,qn

n

(
(t – x)2

δ2 ; x
)) 1

2
.

By (11) and (12),

Gpn ,qn
n

((
1 + (t – x)2) |t – x|

δ
; x

)
≤ 2

√
2(1 + x2) 1

2

δ[n – 1]pn ,qn
.

Taking δ = 1√
[n–1]pn ,qn

, we can obtain

∣∣Gpn ,qn
n (f ; x) – f (x)

∣∣ ≤ 4
√

2
(
1 + x2) 3

2 Ω

(
f ;

1√
[n – 1]pn ,qn

)
.

The proof is completed. �

Theorem 3.6 Let the sequences (pn), (qn) satisfy 0 < qn < pn ≤ 1 such that pn → 1, qn → 1,
and pn

n → α, qn
n → β , [n]pn ,qn → ∞ as n → ∞. Then, for f ∈ C0

x2 [0,∞), we have

lim
n→∞

∥∥Gpn ,qn
n (f ; x) – f (x)

∥∥
x2 = 0. (14)
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Proof By the Korovkin theorem in [14], we see that it is sufficient to verify the following
three conditions:

lim
n→∞

∥∥Gpn ,qn
n

(
tk ; x

)
– xk∥∥

x2 = 0, k = 0, 1, 2. (15)

Since Gpn ,qn
n (1; x) = 1, Gpn ,qn

n (t2; x) = x2, then (15) holds true for k = 0, 2. By Lemma 2.2, we
can get

∥∥Gpn ,qn
n (t; x) – x

∥∥
x2 = sup

x∈(0,∞)

1
1 + x2

∣∣Gpn ,qn
n (t; x) – x

∣∣

= sup
x∈(0,∞)

x
1 + x2

∣∣∣∣
√pn – √qn√qn

–
√

pn

qn

pn+1
n

[n + 2]pn ,qn

∣∣∣∣

≤ sup
x∈(0,∞)

∣∣∣∣
√pn – √qn√qn

–
√

pn

qn

pn+1
n

[n + 2]pn ,qn

∣∣∣∣ → 0, n → ∞.

Thus the proof is completed. �

Theorem 3.7 Let the sequences (pn), (qn) satisfy 0 < qn < pn ≤ 1 such that pn → 1, qn → 1,
[n]pn ,qn → ∞ as n → ∞. For every f ∈ Cx2 [0,∞) and κ > 0, we have

lim
n→∞ sup

x∈(0,∞)

|Gpn ,qn
n (f ; x) – f (x)|

(1 + x2)1+κ
= 0.

Proof Let x0 ∈ (0,∞) be arbitrary but fixed. Then

sup
x∈(0,∞)

|Gpn ,qn
n (f ; x) – f (x)|

(1 + x2)1+κ
≤ sup

x∈(0,x0]

|Gpn ,qn
n (f ; x) – f (x)|

(1 + x2)1+κ

+ sup
x∈(x0,∞)

|Gpn ,qn
n (f ; x) – f (x)|

(1 + x2)1+κ

≤ ∥∥Gpn ,qn
n (f ; x) – f (x)

∥∥
C(0,x0]

+ Cf sup
x∈(x0,∞)

|Gpn ,qn
n ((1 + t2); x)|

(1 + x2)1+κ

+ sup
x∈(x0,∞)

|f (x)|
(1 + x2)1+κ

. (16)

Since |f (x)| ≤ Cf (1 + x2), we have supx∈(x0,∞)
|f (x)|

(1+x2)1+κ ≤ Cf
(1+x2

0)κ . Let ε > 0 be arbitrary. We
can choose x0 to be so large that

Cf

(1 + x2
0)κ

< ε. (17)

In view of Lemma 2.2, while x ∈ (x0,∞), we obtain

Cf lim
n→∞

|Gpn ,qn
n ((1 + t2); x)|

(1 + x2)1+κ
= Cf

(1 + x2)
(1 + x2)1+κ

=
Cf

(1 + x2)κ
≤ Cf

(1 + x2
0)κ

< ε.
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Using Theorem 3.4, we can see that the first term of inequality (16) implies that

∥∥Gpn ,qn
n (f ; x) – f (x)

∥∥
C(0,x0] < ε, as n → ∞. (18)

Combining (16)–(18), we get the desired result. �

The last result is a Voronovskaja-type asymptotic formula for the operators Gp,q
n (f ; x).

Theorem 3.8 Let f ∈ C2
B[0,∞) and the sequences (pn), (qn) satisfy 0 < qn < pn ≤ 1 such

that pn → 1, qn → 1 and pn
n → α, qn

n → β , [n]pn ,qn → ∞ as n → ∞, where 0 ≤ α,β < 1.
Then, for all x ∈ (0,∞),

lim
n→∞[n – 1]pn ,qn

(
Gpn ,qn

n (f ; x) – f (x)
)

=
α + β

2
(
–xf ′(x) + x2f ′′(x)

)
. (19)

Proof Let x ∈ (0,∞) be fixed. By Taylor’s expansion formula, we obtain

f (t) = f (x) + f ′(x)(t – x) +
(

1
2

f ′′(x) + Θpn ,qn (t, x)
)

(t – x)2,

where Θpn ,qn (x, t) is bounded and limt→x Θpn ,qn (t, x) = 0. By applying the operator
Gpn ,qn

n (f ; x) to the relation above, we obtain

Gpn ,qn
n (f ; x) – f (x) = f ′(x)Gpn ,qn

n
(
(t – x); x

)
+

1
2

f ′′(x)Gpn ,qn
n

(
(t – x)2; x

)

+ Gpn ,qn
n

(
Θpn ,qn (t, x)(t – x)2; x

)
.

Since limt→x Θpn ,qn (t, x) = 0, then for all ε > 0, there exists a positive constant δ > 0 which
implies |Θpn ,qn (t, x)| < ε for all fixed x ∈ (0,∞), where n is large enough, while |t – x| ≤ δ,
then |Θpn ,qn (t, x)| < C2

δ2 (t – x)2, where C2 is a positive constant. Using Lemma 2.4, we obtain

[n – 1]pn ,qn

∣∣Gpn ,qn
n

(
Θ(t, x)(t – x)2; x

)∣∣
≤ ε[n – 1]pn ,qn Gpn ,qn

n
(
(t – x)2; x

)

+
C2

δ2 [n – 1]pn ,qn Gpn ,qn
n

(
(t – x)4; x

) → 0 (n → ∞).

The proof is completed. �
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