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Abstract
This paper is devoted to studying the Lyapunov-type inequality for sequential Hilfer
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1 Introduction
As is well known, Lyapunov inequality was first introduced by Lyapunov [1], who estab-
lished a necessary condition for the existence of nontrivial solution of the boundary value
problem (BVP for short):

⎧
⎨

⎩

x′′(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0,
(1.1)

as the form

∫ b

a

∣
∣q(s)

∣
∣ds >

4
(b – a)

, (1.2)

where q ∈ C([a, b],R). Since then, Lyapunov inequality and Lyapunov-type inequality have
been studied with great interest, and they have been proved to be an effective tool in
the study of differential and difference equations, such as oscillation theory, disconjugacy,
eigenvalue problems, etc. (see [2–5]).

In recent years, by the rise of theoretical research in fractional differential equations,
there has been tremendous interest in the research of Lyapunov-type inequalities for frac-
tional BVP, see [6–30] and the references cited therein.
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In [11], Ferreira discussed the Lyapunov-type inequality for the following fractional
BVP:

⎧
⎨

⎩

(Dα
a+x)(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0,
(1.3)

where Dα
a+ is the left Riemann–Liouville fractional derivative of order α, α ∈ (1, 2] and q ∈

C([a, b],R). The Lyapunov-type inequality for problem (1.3) was established as follows:

∫ b

a

∣
∣q(s)

∣
∣ds > Γ (α)

(
4

b – a

)α–1

. (1.4)

Furthermore, in 2016, Ferreira [12] considered the Lyapunov-type inequality for a se-
quential fractional BVP

⎧
⎨

⎩

(aDα
aDβx)(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0,
(1.5)

where aDγ , γ = α, β stand for the left Riemann–Liouville fractional derivative or the left
Caputo fractional derivative of order γ , γ ∈ (0, 1] and 1 < α + β ≤ 2, q ∈ C([a, b],R). Two
interesting results have been obtained as follows:

(i) Take aDγ , γ = α, β , is the left Riemann–Liouville fractional derivative, then problem
(1.5) has a nontrivial continuous solution provided that

∫ b

a

∣
∣q(s)

∣
∣ds > Γ (α + β)

(
4

b – a

)α+β–1

. (1.6)

(ii) Take aDγ , γ = α, β , is the left Caputo fractional derivative, then problem (1.5) has a
nontrivial continuous solution provided that

∫ b

a

∣
∣q(s)

∣
∣ds >

Γ (α + β)
(b – a)α+β–1

(α + 2β – 1)α+2β–1

(α + β – 1)α+β–1ββ
. (1.7)

It is worth noting that the study of the Hilfer fractional differential equations has re-
ceived a significant amount of attention in the last few years. Hilfer fractional derivative
was proposed by Hilfer in 2000, which is a generalization of both Riemann–Liouville and
Caputo fractional derivatives (see [31]). Meanwhile, the discussion of Lyapunov-type in-
equalities for fractional BVP with Hilfer fractional derivative can be found in papers [25,
29, 30].

In [25], Pathak investigated Lyapunov-type inequalities for the following Hilfer frac-
tional differential equation:

(
Dα,β

a+ x
)
(t) + q(t)x(t) = 0, t ∈ (a, b), (1.8)

with boundary conditions

x(a) = x(b) = 0, (1.9)
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or

x(a) = x′(b) = 0, (1.10)

where Dα,β
a+ is the left Hilfer fractional derivative of order α and type β , α ∈ (1, 2], β ∈ [0, 1],

q ∈ C([a, b],R). The author got two Lyapunov-type inequalities: for BVP (1.8), (1.9) as

∫ b

a

∣
∣q(s)

∣
∣ds ≥ Γ (α)[α – (2 – α)(1 – β)]α–(2–α)(1–β)

(b – a)α–1(α – 1)α–1[α – 1 + β(2 – α)]α–1+β(2–α) , (1.11)

for BVP (1.8), (1.10) as

∫ b

a
(b – s)α–2∣∣q(s)

∣
∣ds ≥ Γ (α)[α – 1 + β(2 – α)]

(b – a) max{α – 1,β(2 – α)} . (1.12)

In [30], Wang obtained Lyapunov-type inequality for the fractional multi-point BVP
involving Hilfer derivative:

⎧
⎨

⎩

(Dα,β
a+ x)(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = 0, x(b) =
∑m–2

i=1 βix(ξi),
(1.13)

where q ∈ C([a, b],R), Dα,β
a+ is the left Hilfer fractional derivative of order α and type

β with α ∈ (1, 2], β ∈ [0, 1], a < ξ1 < ξ2 < · · · < ξm–2 < b, βi ≥ 0 (i = 1, 2, . . . , m – 2),
(b – a)1–(2–α)(1–β) >

∑m–2
i=1 βi(ξi – a)1–(2–α)(1–β). The Lyapunov-type inequality for problem

(1.13) is given as follows:

∫ b

a

∣
∣q(s)

∣
∣ds ≥ Γ (α)

(b – a)α–1L
1

1 +
∑m–2

i=1 βiT(b)
,

where

L =
(α – 1)α–1(α – 1 + 2β – αβ)α–1+2β–αβ

(2α – 2 + 2β – αβ)2α–2+2β–αβ
,

T(t) =
(t – a)1–(2–α)(1–β)

(b – a)1–(2–α)(1–β) –
∑m–2

i=1 βi(ξi – a)1–(2–α)(1–β) , t ∈ [a, b].

Motivated by these results, in this paper we study Lyapunov-type inequalities for a se-
quential Hilfer fractional differential equation

(
Dα1,β1

a+ Dα2,β2
a+ x

)
(t) + q(t)x(t) = 0, t ∈ (a, b), (1.14)

with multi-point boundary conditions

x(a) = 0, x(b) =
m–2∑

i=1

σix(ξi), (1.15)
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or

x(a) = 0, x′(b) =
m–2∑

i=1

δix(ηi), (1.16)

where q ∈ C([a, b],R), Dαi ,βi
a+ , i = 1, 2, are two left Hilfer fractional derivatives of order αi

and types βi with αi ∈ (0, 1], 1 < α1 +α2 ≤ 2, βi ∈ [0, 1]. For the definition of Hilfer fractional
derivative, see Sect. 2. A remarkable characteristic of this kind of fractional derivative is
that the type βi allows Dαi ,βi

a+ to interpolate continuously from the Riemann–Liouville case
Dαi ,0

a+ ≡ Dαi
a+ to the Caputo case Dαi ,1

a+ ≡ CDαi
a+ (see [32]). To state our main results, we as-

sume that the following conditions hold:
(A1) a < ξ1 < ξ2 < · · · < ξm–2 < b,σi ≥ 0 (i = 1, 2, . . . , m – 2) and


1 := (b – a)α2–(1–α1)(1–β1) –
m–2∑

i=1

σi(ξi – a)α2–(1–α1)(1–β1) > 0.

(A2) a < η1 < η2 < · · · < ηm–2 < b, δi ≥ 0 (i = 1, 2, . . . , m – 2) and


2 :=
[
α2 – (1 – α1)(1 – β1)

]
(b – a)α2–1–(1–α1)(1–β1)

–
m–2∑

i=1

δi(ηi – a)α2–(1–α1)(1–β1) > 0.

In the present work, we are focused on establishing the Lyapunov-type inequalities for a
sequential Hilfer fractional differential equation with two types of multi-point boundary
conditions. As far as we know, the Lyapunov-type inequality for fractional BVP with Hilfer
derivative has seldom been considered up to now. The new insights of this paper can be
presented as follows. On the one hand, we provide some properties of Hilfer fractional
derivative, which are not introduced in the previous paper (see Sect. 2, Lemmas 2.6, 2.7,
and 2.8). On the other hand, we extend the previous results. Many previous results are a
special case of our work, which is embodied in Sect. 3. The main difficulties in this article
are as follows. First, we have to construct Green’s function for BVPs (1.14), (1.15) and
(1.14), (1.16). Second, it is difficult to estimate the maximum of Green’s function because
Green’s functions do not satisfy the non-negativity.

The rest of this paper is organized as follows. In Sect. 2, we recall some definitions,
lemmas of fractional calculus. In Sect. 3, by constructing Green’s functions and finding its
corresponding maximum value, we prove our main results. Finally, a conclusion is given
in Sect. 4.

2 Preliminaries
In this section, we recall some definitions and lemmas which are used throughout this
paper.

Definition 2.1 ([33–35]) Let J = [a, b] (–∞ < a < b < ∞). The left Riemann–Liouville
fractional integral of order α > 0 of a function x : (a, b) →R is defined by

(
Iα

a+x
)
(t) =

1
Γ (α)

∫ t

a
(t – s)α–1x(s) ds (t > a),

provided that the right-hand side integral is pointwise defined on [a, b].
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Definition 2.2 ([33–35]) The left-sided Riemann–Liouville fractional derivative of order
α > 0 (n – 1 < α ≤ n, n ∈N

+) of a function x : (a, b) →R is defined by

(
Dα

a+x
)
(t) =

dn

dtn

(
In–α

a+ x
)
(t) =

1
Γ (n – α)

dn

dtn

∫ t

a
(t – s)n–α–1x(s) ds (t > a),

provided the right-hand side integral is pointwise defined on [a, b].

Definition 2.3 ([33–35]) The left-sided Caputo fractional derivative of order α > 0 (n–1 <
α < n, n ∈N

+) of a function x : (a, b) →R is defined by

(CDα
a+x

)
(t) =

(
In–α

a+ x(n))(t) =
1

Γ (n – α)

∫ t

a
(t – s)n–α–1x(n)(s) ds (t > a),

provided the right-hand side integral is pointwise defined on [a, b].

Definition 2.4 ([32]) The left-sided Hilfer fractional derivative of order α > 0 (n – 1 < α ≤
n, n ∈N

+) and type 0 ≤ β ≤ 1 of a function x : (a, b) → R is defined by

(
Dα,β

a+ x
)
(t) =

(
Iβ(n–α)

a+ Dn(I(1–β)(n–α)
a+ x

))
(t) (t > a),

where Dn = dn/dtn.

Lemma 2.1 ([33–35]) Let α > 0, n = [α] + 1. If x ∈ L1(a, b), In–α
a+ x ∈ ACn[a, b], then

Iα
a+Dα

a+x(t) = x(t) –
n–1∑

k=0

(t – a)k–(n–α)

Γ (k – (n – α) + 1)
lim

t→a+

dk

dtk

(
In–α

a+ x
)
(t).

Lemma 2.2 ([33–35]) If α > 0, λ > –1, then

Iα
a+(t – a)λ =

Γ (λ + 1)
Γ (λ + 1 + α)

(t – a)α+λ, Dα
a+(t – a)λ =

Γ (λ + 1)
Γ (λ + 1 – α)

(t – a)λ–α .

Lemma 2.3 ([36]) Let α > 0, n = [α] + 1, 0 ≤ β ≤ 1. If x ∈ L1(a, b), I(n–α)(1–β)
a+ x ∈ ACn[a, b],

then

(
Iα

a+Dα,β
a+ x

)
(t) = x(t) –

n–1∑

k=0

(t – a)k–(n–α)(1–β)

Γ (k – (n – α)(1 – β) + 1)
lim

t→a+

dk

dtk

(
I(n–α)(1–β)

a+ x
)
(t).

Lemma 2.4 ([35]) Let α > 0, n ∈ N , and D = d/dx. If the fractional derivatives (Dα
a+x)(t)

and (Dα+n
a+ x)(t) exist, then

(
DnDα

a+x
)
(t) =

(
Dα+n

a+ x
)
(t).

Lemma 2.5 ([35]) Let α > 0, n ∈ N , and D = d/dx. If the fractional derivatives (Dnx)(t) and
(CDα+n

a+ x)(t) exist, then

(CDα
a+Dnx

)
(t) =

(CDα+n
a+ x

)
(t).
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Lemma 2.6 Let α > 0, n = [α] + 1, 0 ≤ β ≤ 1, m ∈N, and D = d/dx. If the fractional deriva-
tives (Dmx)(t) and (Dα+m,β

a+ x)(t) exist, then

(
Dα,β

a+ Dmx
)
(t) =

(
Dα+m,β

a+ x
)
(t),

provided that

x(j)(a) = 0, j = 0, 1, 2, . . . , m – 1.

Proof Since x(j)(a) = 0, j = 0, 1, 2, . . . , m – 1, then we get

(
Im

a+Dmx
)
(t) = x(t),

which yields the following equalities hold:

(
Dα,β

a+ Dmx
)
(t) =

(
Iβ(n–α)

a+ DnI(1–β)(n–α)
a+ Dmx

)
(t)

=
(
Iβ(n–α)

a+ Dn+mI(1–β)(n–α)
a+

(
Im

a+Dmx
))

(t)

=
(
Iβ(n–α)

a+ Dn+mI(1–β)(n–α)
a+ x

)
(t) =

(
Dα+m,β

a+ x
)
(t).

The proof is completed. �

Lemma 2.7 Let α > 0, n = [α] + 1, 0 ≤ β ≤ 1. If x ∈ C[a, b], I1–β(n–α)
a+ x ∈ AC[a, b], then

Dα,β
a+ Iα

a+x(t) = x(t). (2.1)

Proof On the one hand, if β(n – α) = 0, i.e., β = 0 or α = n, then

Dα,β
a+ Iα

a+x(t) = Dα
a+Iα

a+x(t) = x(t)

or

Dα,β
a+ Iα

a+x(t) = DnIn
a+x(t) = x(t).

On the other hand, if β(n – α) 	= 0, by Definitions 2.2, 2.4 and Lemma 2.1, we have

Dα,β
a+ Iα

a+x(t) =
(
Iβ(n–α)

a+ Dn(In–β(n–α)
a+ x

))
(t)

=
(
Iβ(n–α)

a+ Dβ(n–α)
a+ x

)
(t) = x(t) –

(t – a)β(n–α)–1

Γ (β(n – α))
lim

t→a+

(
I1–β(n–α)

a+ x
)
(t).

Since x ∈ C[a, b], one has

lim
t→a+

(
I1–β(n–α)

a+ x
)
(t) = 0.

Thus, (2.1) holds for β(n – α) 	= 0. The proof is completed. �
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Lemma 2.8 Let α > 0, n = [α] + 1, 0 ≤ β ≤ 1, λ > –1, then

Dα,β
a+ (t – a)λ+β(n–α) =

Γ (λ + 1 + β(n – α))
Γ (λ + 1 – α + β(n – α))

(t – a)β(n–α)+λ–α .

In particular,

Dα,β
a+ (t – a)α–j+β(n–α) = 0, j = 1, 2, . . . , n.

Proof For λ > –1, by Definition 2.4 and Lemma 2.2, we have

Dα,β
a+ (t – a)λ+β(n–α) = Iβ(n–α)

a+ DnI(1–β)(n–α)
a+ (t – a)λ+β(n–α)

=
Γ (λ + 1 + β(n – α))
Γ (λ + 1 + n – α)

Iβ(n–α)
a+ Dn(t – a)λ+n–α

=
Γ (λ + 1 + β(n – α))

Γ (λ – α + 1)
Iβ(n–α)

a+ (t – a)λ–α

=
Γ (λ + 1 + β(n – α))

Γ (λ – α + β(n – α) + 1)
(t – a)λ–α+β(n–α).

In particular,

Dα,β
a+ (t – α)α–j+β(n–α) =

Γ (α – j + 1 + β(n – α))
Γ (n – j + 1)

Iβ(n–α)
a+ Dn(t – α)n–j

= 0, as j = 1, 2, . . . , n.

Thus the proof of Lemma 2.8 is completed. �

3 Main result
Take the Banach space (X,‖ · ‖∞),

X = C[a, b] with the norm ‖x‖∞ = max
t∈[a,b]

∣
∣x(t)

∣
∣.

Lemma 3.1 Let 0 < α1, α2 ≤ 1, 1 < α1 + α2 ≤ 2, 0 ≤ β1, β2 ≤ 1. Assume that (A1) holds.
Then, for y ∈ X, the function x ∈ X is a solution of the following BVP:

Dα1,β1
a+ Dα2,β2

a+ x(t) + y(t) = 0, t ∈ (a, b), (3.1)

x(a) = 0, x(b) =
m–2∑

i=1

σix(ξi), (3.2)

if and only if x satisfies the integral equation

x(t) =
∫ b

a
K(t, s)y(s) ds +

(t – a)α2–(1–α1)(1–β1)


1

∫ b

a

m–2∑

i=1

σiK(ξi, s)y(s) ds, t ∈ [a, b], (3.3)

where

K(t, s) =
(b – a)(1–α1)(1–β1)–α2

Γ (α1 + α2)

⎧
⎨

⎩

k1(t, s), a ≤ s ≤ t ≤ b,

k2(t, s), a ≤ t ≤ s ≤ b,
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and

k1(t, s) = (t – a)α2–(1–α1)(1–β1)(b – s)α1+α2–1 – (b – a)α2–(1–α1)(1–β1)(t – s)α1+α2–1,

k2(t, s) = (t – a)α2–(1–α1)(1–β1)(b – s)α1+α2–1.

Proof By using Lemma 2.3 twice and combining Lemma 2.2, we get that x is a solution of
(3.1) if and only if

x(t) = –Iα1+α2
a+ y(t) + c1

(t – a)α2–(1–α1)(1–β1)

Γ (α2 + 1 – (1 – α1)(1 – β1))
+ c2

(t – a)–(1–α2)(1–β2)

Γ (1 – (1 – α2)(1 – β2))
,

where c1, c2 ∈ R. Considering the boundary conditions x(a) = 0, x(b) =
∑m–2

i=1 σix(ξi), we
get

c2 = 0, c1 =
Γ [α2 + 1 – (1 – α1)(1 – β1)]

(b – a)α2–(1–α1)(1–β1)

[

Iα1+α2
a+ y(t)|t=b +

m–2∑

i=1

σix(ξi)

]

.

Thus,

x(t) = –Iα1+α2
a+ y(t) +

(t – a)α2–(1–α1)(1–β1)[Iα1+α2
a+ y(t)|t=b]

(b – a)α2–(1–α1)(1–β1)

+
(t – a)α2–(1–α1)(1–β1)

(b – a)α2–(1–α1)(1–β1)

m–2∑

i=1

σix(ξi)

=
∫ b

a
K(t, s)y(s) ds +

(t – a)α2–(1–α1)(1–β1)

(b – a)α2–(1–α1)(1–β1)

m–2∑

i=1

σix(ξi). (3.4)

Therefore,

m–2∑

i=1

σix(ξi) =
∫ b

a

m–2∑

i=1

σiK(ξi, s)y(s) ds +
∑m–2

i=1 σi(ξi – a)α2–(1–α1)(1–β1)

(b – a)α2–(1–α1)(1–β1)

m–2∑

i=1

σix(ξi).

That is,

m–2∑

i=1

σix(ξi) =
(b – a)α2–(1–α1)(1–β1)


1

∫ b

a

m–2∑

i=1

σiK(ξi, s)y(s) ds. (3.5)

By substituting (3.5) into (3.4), we obtain

x(t) =
∫ b

a
K(t, s)y(s) ds +

(t – a)α2–(1–α1)(1–β1)


1

∫ b

a

m–2∑

i=1

σiK(ξi, s)y(s) ds.

The proof is completed. �
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Lemma 3.2 Let 0 < α1,α2 ≤ 1, 1 < α1 + α2 ≤ 2, 0 ≤ β1,β2 ≤ 1. Assume that (A2) holds.
Then, for y ∈ X, the function x ∈ X is a solution of the following BVP:

Dα1,β1
a+ Dα2,β2

a+ x(t) + y(t) = 0, t ∈ (a, b), (3.6)

x(a) = 0, x′(b) =
m–2∑

i=1

δix(ηi), (3.7)

if and only if x satisfies the integral equation

x(t) =
∫ b

a
H(t, s)y(s) ds +

(t – a)α2–(1–α1)(1–β1)


2

∫ b

a

m–2∑

i=1

δiH(ηi, s)y(s) ds, t ∈ [a, b], (3.8)

where

H(t, s) =
(b – s)α1+α2–2

Γ (α1 + α2)[α2 – (1 – α1)(1 – β1)]
H1(t, s),

and

H1(t, s) =

⎧
⎨

⎩

h1(t, s), a ≤ s ≤ t ≤ b,

h2(t, s), a ≤ t ≤ s ≤ b,

h1(t, s) = (α1 + α2 – 1)(b – a)2–(α1+α2)–β1(1–α1)(t – a)α2–(1–α1)(1–β1)

–
[
α2 – (1 – α1)(1 – β1)

] (t – s)α1+α2–1

(b – s)α1+α2–2 ,

h2(t, s) = (α1 + α2 – 1)(b – a)2–(α1+α2)–β1(1–α1)(t – a)α2–(1–α1)(1–β1).

Proof By a similar method used in Lemma 3.1, we obtain

x(t) = –Iα1+α2
a+ y(t) + c1

(t – a)α2–(1–α1)(1–β1)

Γ [α1 + α2 + β1(1 – α1)]
,

where c1 ∈R. Then, taking derivative to the both sides of the above equality, we have

x′(t) = –
α1 + α2 – 1
Γ (α1 + α2)

∫ t

a
(t – s)α1+α2–2y(s) ds

+ c1
[α2 – (1 – α1)(1 – β1)](t – a)α2–1–(1–α1)(1–β1)

Γ [α1 + α2 + β1(1 – α1)]
.

Using the boundary condition x′(b) =
∑m–2

i=1 δix(ηi), we get

c1 =
Γ [α1 + α2 + β1(1 – α1)]

[α2 – (1 – α1)(1 – β1)](b – a)α2–1–(1–α1)(1–β1)

×
[

α1 + α2 – 1
Γ (α1 + α2)

∫ b

a
(b – s)α1+α2–2y(s) ds +

m–2∑

i=1

δix(ηi)

]

.
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Hence,

x(t) = –Iα1+α2
a+ y(t) +

(t – a)α2–(1–α1)(1–β1)(α1 + α2 – 1)
∫ b

a (b – s)α1+α2–2y(s) ds
[α2 – (1 – α1)(1 – β1)](b – a)α2–1–(1–α1)(1–β1)Γ (α1 + α2)

+
(t – a)α2–(1–α1)(1–β1)

[α2 – (1 – α1)(1 – β1)](b – a)α2–1–(1–α1)(1–β1)

m–2∑

i=1

δix(ηi)

=
∫ b

a
H(t, s)y(s) ds +

(t – a)α2–(1–α1)(1–β1)

[α2 – (1 – α1)(1 – β1)](b – a)α2–1–(1–α1)(1–β1)

×
m–2∑

i=1

δix(ηi). (3.9)

Therefore,

m–2∑

i=1

δix(ηi) =
∫ b

a

m–2∑

i=1

δiH(ηi, s)y(s) ds +
∑m–2

i=1 δi(ηi – a)α2–(1–α1)(1–β1) ∑m–2
i=1 δix(ηi)

[α2 – (1 – α1)(1 – β1)](b – a)α2–1–(1–α1)(1–β1) .

It follows that

m–2∑

i=1

δix(ηi) =
α2 – (1 – α1)(1 – β1)


2(b – a)1–α2+(1–α1)(1–β1)

∫ b

a

m–2∑

i=1

δiH(ηi, s)y(s) ds. (3.10)

If we plug (3.10) back into (3.9), we obtain

x(t) =
∫ b

a
H(t, s)y(s) ds +

(t – a)α2–(1–α1)(1–β1)


2

∫ b

a

m–2∑

i=1

δiH(ηi, s)y(s) ds,

which completes the proof. �

Lemma 3.3 (See [14]) If 1 < ω < 2, then

2 – ω

(ω – 1)(ω–1)/(ω–2) ≤ (ω – 1)ω–1

ωω
.

Lemma 3.4 The functions K (t, s) and H1(t, s) defined in (3.3) and (3.8) satisfy the following
properties:

(i) K(t, s) and H1(t, s) are two continuous functions for any (t, s) ∈ [a, b] × [a, b];
(ii) |K(t, s)| ≤ [(b–a)(α1+α2–1)]α1+α2–1[α2–(1–α1)(1–β1)]α2–(1–α1)(1–β1)

Γ (α1+α2)[2α2–(1–α1)(2–β1)]2α2–(1–α1)(2–β1) for all (t, s) ∈ [a, b] × [a, b];
(iii) |H1(t, s)| ≤ (b – a) max{α1 + α2 – 1,β1(1 – α1)} for every (t, s) ∈ [a, b] × [a, b].

Proof Obviously, (i) is true. To prove (ii), for (t, s) ∈ [a, b] × [a, b], it is straightforward to
show that

0 ≤ k2(t, s) ≤ k2(s, s).
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Differentiating k1(t, s) with respect to s, we have

∂k1(t, s)
∂s

= –(α1 + α2 – 1)(t – a)α2–(1–α1)(1–β1)(b – s)α1+α2–2

+ (α1 + α2 – 1)(b – a)α2–(1–α1)(1–β1)(t – s)α1+α2–2

= (α1 + α2 – 1)(b – a)α2–(1–α1)(1–β1)(t – s)α1+α2–2

×
[

1 –
(

t – s
b – s

)2–(α1+α2)( t – a
b – a

)α2–(1–α1)(1–β1)]

≥ 0,

which shows k1(t, s) is increasing with respect to s ∈ [a, t]. Thus,

k1(t, a) ≤ k1(t, s) ≤ k1(t, t).

Since

k1(t, a) = (t – a)α2–(1–α1)(1–β1)(b – a)α1+α2–1 – (b – a)α2–(1–α1)(1–β1)(t – a)α1+α2–1

= (t – a)α2–(1–α1)(1–β1)(b – a)α1+α2–1
[

1 –
(

b – a
t – a

)β1(1–α1)]

≤ 0.

Thus,

∣
∣k1(t, s)

∣
∣ ≤ max

{
max
t∈[a,b]

k1(t, t), max
t∈[a,b]

(
–k1(t, a)

)}
.

We consider the functions

f (t) = k1(t, t) = (t – a)α2–(1–α1)(1–β1)(b – t)α1+α2–1, t ∈ [a, b],

f̃ (t) = –k1(t, a)

= (b – a)α1+α2–1(t – a)α1+α2–1[(b – a)β1(1–α1) – (t – a)β1(1–α1)], t ∈ [a, b].

Differentiating f (t) on (a, b), we have

f ′(t) =
[
α2 – (1 – α1)(1 – β1)

]
(t – a)α2–1–(1–α1)(1–β1)(b – t)α1+α2–1

– (α1 + α2 – 1)(t – a)α2–(1–α1)(1–β1)(b – t)α1+α2–2

= (t – a)α2–1–(1–α1)(1–β1)(b – t)α1+α2–2

× {[
α2 – (1 – α1)(1 – β1)

]
(b – t) – (α1 + α2 – 1)(t – a)

}
,

and

f ′′(t) =
[
α2 – (1 – α1)(1 – β1)

][
α2 – 1 – (1 – α1)(1 – β1)

]

× (t – a)α2–2–(1–α1)(1–β1)(b – t)α1+α2–1

– 2(α1 + α2 – 1)
[
α2 – (1 – α1)(1 – β1)

]
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× (t – a)α2–1–(1–α1)(1–β1)(b – t)α1+α2–2

+ (α1 + α2 – 1)(α1 + α2 – 2)(t – a)α2–(1–α1)(1–β1)(b – t)α1+α2–3.

By calculating, we get f ′(t) = 0 has a unique zero in (a, b) as follows:

t = t∗ = a +
α2 – (1 – α1)(1 – β1)

2α2 – (1 – α1)(2 – β1)
(b – a)

= b –
α1 + α2 – 1

2α2 – (1 – α1)(2 – β1)
(b – a) ∈ (a, b). (3.11)

Because

α2 – (1 – α1)(1 – β1) ≥ 0, α2 – 1 – (1 – α1)(1 – β1) ≤ 0,

α1 + α2 – 1 > 0, α1 + α2 – 2 ≤ 0,

it is easy to verify that

f ′′(t∗) ≤ 0.

Hence, we obtain

max
t∈[a,b]

f (t) = f
(
t∗)

=
[

α2 – (1 – α1)(1 – β1)
2α2 – (1 – α1)(2 – β1)

(b – a)
]α2–(1–α1)(1–β1)

×
[

α1 + α2 – 1
2α2 – (1 – α1)(2 – β1)

(b – a)
]α1+α2–1

=
[
α2 – (1 – α1)(1 – β1)

]α2–(1–α1)(1–β1)(α1 + α2 – 1)α1+α2–1

×
[

b – a
2α2 – (1 – α1)(2 – β1)

]α1+2α2–1–(1–α1)(1–β1)

.

We now prove that maxt∈[a,b] f̃ (t) ≤ maxt∈[a,b] f (t). In fact, if β1(1 – α1) = 0, then f̃ (t) ≡ 0,
and the conclusion is obvious. If β1(1 – α1) 	= 0, differentiating f̃ (t) on (a, b), we have

f̃ ′(t) = (α1 + α2 – 1)(b – a)α2–(1–β1)(1–α1)(t – a)α1+α2–2

–
[
α2 – (1 – β1)(1 – α1)

]
(b – a)α1+α2–1(t – a)α2–1–(1–β1)(1–α1),

and

f̃ ′′(t) = (α1 + α2 – 1)(α1 + α2 – 2)(b – a)α2–(1–β1)(1–α1)(t – a)α1+α2–3

–
[
α2 – (1 – β1)(1 – α1)

][
α2 – 1 – (1 – β1)(1 – α1)

]

× (b – a)α1+α2–1(t – a)α2–2–(1–β1)(1–α1). (3.12)
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By calculating, we get f̃ ′(t) = 0 has a unique zero in (a, b) as follows:

t = t∗ = a +
[

α1 + α2 – 1
α2 – (1 – α1)(1 – β1)

]1/β1(1–α1)

(b – a) ∈ (a, b). (3.13)

Submitting (3.13) into (3.12), we have

f̃ ′′(t∗) = –
[
α2 – (1 – α1)(1 – β1)

]
β1(1 – α1)(b – a)–2(1–α2)–(2–β1)(1–α1)

×
[

α1 + α2 – 1
α2 – (1 – α1)(1 – β1)

][α2–2–(1–β1)(1–α1)]/β1(1–α1)

≤ 0.

Thus,

max
t∈[a,b]

f̃ (t) = max
t∈[a,b]

f̃ (t∗)

=
β1(1 – α1)(b – a)2(α1+α2–1)+β1(1–α1)

α2 – (1 – α1)(1 – β1)

×
[

α1 + α2 – 1
α2 – (1 – α1)(1 – β1)

](α1+α2–1)/β1(1–α1)

.

Take ω = 2α2–(1–α1)(2–β1)
α2–(1–α1)(1–β1) , then 1 < ω < 2. It follows from Lemma 3.3 that

max
t∈[a,b]

f̃ (t) = (b – a)2(α1+α2–1)+β1(1–α1)(2 – ω)(ω – 1)(ω–1)/(2–ω)

≤ (b – a)2(α1+α2–1)+β1(1–α1) (ω – 1)(ω–1)

ωω

=
{

(α1 + α2 – 1)(α1+α2–1)[α2 – (1 – α1)(1 – β1)]α2–(1–α1)(1–β1)

[2α2 – (1 – α1)(2 – β1)]2α2–(1–α1)(2–β1)

} 1
α2–(1–α1)(1–β1)

× (b – a)2(α1+α2–1)+β1(1–α1)

≤ (b – a)2(α1+α2–1)+β1(1–α1)(α1 + α2 – 1)(α1+α2–1)

× [α2 – (1 – α1)(1 – β1)]α2–(1–α1)(1–β1)

[2α2 – (1 – α1)(2 – β1)]2α2–(1–α1)(2–β1)

= max
t∈[a,b]

f (t).

From the above we get

∣
∣k1(t, s)

∣
∣ ≤ max

t∈[a,b]
k1(t, t) = max

s∈[a,b]
k2(s, s)

=
[
α2 – (1 – α1)(1 – β1)

]α2–(1–α1)(1–β1)(α1 + α2 – 1)α1+α2–1

×
[

b – a
2α2 – (1 – α1)(2 – β1)

]2α2–(1–α1)(2–β1)

.
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Therefore,

∣
∣K(t, s)

∣
∣ ≤ maxt∈[a,b]k1(t, t)

Γ (α1 + α2)(b – a)α2–(1–α1)(1–β1)

=
[(b – a)(α1 + α2 – 1)]α1+α2–1[α2 – (1 – α1)(1 – β1)]α2–(1–α1)(1–β1)

Γ (α1 + α2)[2α2 – (1 – α1)(2 – β1)]2α2–(1–α1)(2–β1) .

To prove (iii), for (t, s) ∈ [a, b] × [a, b], obviously, we have that the following inequalities
hold:

0 ≤ h2(t, s) ≤ h2(s, s) = h1(s, s).

Differentiating h1(t, s) with respect to t, we have

∂h1(t, s)
∂t

= (α1 + α2 – 1)
[
α2 – (1 – α1)(1 – β1)

]

× (b – a)2–(α1+α2)–β1(1–α1)(t – a)α2–1–(1–α1)(1–β1)

–
[
α2 – (1 – α1)(1 – β1)

]
(α1 + α2 – 1)

(t – s)α1+α2–2

(b – s)α1+α2–2

= (α1 + α2 – 1)
[
α2 – (1 – α1)(1 – β1)

]

×
[

–
(

b – s
t – s

)2–(α1+α2)

+
(

b – a
t – a

)1–α2+(1–β1)(1–α1)]

≤ 0.

Hence, h1(t, s) is a decreasing function of t ∈ [s, b], which implies that

h1(b, s) ≤ h1(t, s) ≤ h1(s, s) = h2(s, s),

h1(s, s) = (α1 + α2 – 1)(b – a)2–(α1+α2)–β1(1–α1)(s – a)α2–(1–α1)(1–β1)

≤ (α1 + α2 – 1)(b – a),

h1(b, s) = (α1 + α2 – 1)(b – a) –
[
α2 – (1 – α1)(1 – β1)

]
(b – s).

(3.14)

It is trivial to show that h1(t, s) is an increasing function with respect to s ∈ [a, b]. Thus,

h1(b, a) ≤ h1(b, s) ≤ h1(b, b).

Note that

h1(b, b) = (α1 + α2 – 1)(b – a) > 0,

h1(b, a) = –β1(1 – α1)(b – a) < 0.

We get

∣
∣h1(b, s)

∣
∣ ≤ (b – a) max

{
α1 + α2 – 1,β1(1 – α1)

}
. (3.15)
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Combining (3.14) and (3.15), we obtain

∣
∣h1(t, s)

∣
∣ ≤ (b – a) max

{
α1 + α2 – 1,β1(1 – α1)

}
.

Therefore,

∣
∣H1(t, s)

∣
∣ ≤ (b – a) max

{
α1 + α2 – 1,β1(1 – α1)

}
.

Then we complete the proof of Lemma 3.4. �

Remark 3.1 From the proof of Lemma 3.4, we have the following conclusions:
(i) K(t, s) has a unique maximum, given by

max
(t,s)∈[a,b]2

∣
∣K(t, s)

∣
∣

= K
(
t∗, t∗)

=
[(b – a)(α1 + α2 – 1)]α1+α2–1[α2 – (1 – α1)(1 – β1)]α2–(1–α1)(1–β1)

Γ (α1 + α2)[2α2 – (1 – α1)(2 – β1)]2α2–(1–α1)(2–β1) ,

where t∗ is defined by (3.11);
(ii) max(t,s)∈[a,b]2 |H1(t, s)| = (b – a) max{α1 + α2 – 1,β1(1 – α1)} and

∣
∣H1(t, s)

∣
∣ =

⎧
⎨

⎩

(b – a)(α1 + α2 – 1), if and only if t = s = b,

(b – a)β1(1 – α1), if and only if t = b, s = a.

Theorem 3.1 Assume that (A1) holds. If the fractional BVP (1.14), (1.15) has a nontrivial
continuous solution for a real-valued continuous function q, then

∫ b

a

∣
∣q(s)

∣
∣ds

>
Γ (α1 + α2)[2α2 – (1 – α1)(2 – β1)]2α2–(1–α1)(2–β1)
1

(b – a)α1+α2–1(α1 + α2 – 1)α1+α2–1[α2 – (1 – α1)(1 – β1)]α2–(1–α1)(1–β1)
̃1
, (3.16)

where


̃1 := 
1 +
m–2∑

i=1

σi(b – a)α2–(1–α1)(1–β1).

Proof Assume x(t) is a nontrivial solution of BVP (1.14), (1.15), then

x(t) =
∫ b

a
K(t, s)q(s)x(s) ds +

(t – a)α2–(1–α1)(1–β1)


1

∫ b

a

m–2∑

i=1

σiK(ξi, s)q(s)x(s) ds,
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and

∣
∣x(t)

∣
∣ ≤

∫ b

a

∣
∣K(t, s)

∣
∣ · ∣∣q(s)

∣
∣ · ∣∣x(s)

∣
∣ds

+
(t – a)α2–(1–α1)(1–β1)


1

∫ b

a

m–2∑

i=1

σi
∣
∣K(ξi, s)

∣
∣ · ∣∣q(s)

∣
∣ · ∣∣x(s)

∣
∣ds, t ∈ [a, b].

Since x is a nontrivial solution, which will require q(s) 	≡ 0 on [a, b]. Moreover, from q(s) ∈
C[a, b], we obtain that there exists an interval [a1, b1] ⊂ [a, b] such that |q(s)| > 0 on [a1, b1].
Then, by Lemma 3.4 and Remark 3.1, we have

‖x‖∞ <
[(b – a)(α1 + α2 – 1)]α1+α2–1[α2 – (1 – α1)(1 – β1)]α2–(1–α1)(1–β1)
̃1

Γ (α1 + α2)[2α2 – (1 – α1)(2 – β1)]2α2–(1–α1)(2–β1)
1

×
∫ b

a

∣
∣q(s)

∣
∣ds‖x‖∞.

Thus, inequality (3.16) holds. This completes the proof of Theorem 3.1. �

Theorem 3.2 Assume that (A2) holds. If the fractional BVP (1.14), (1.16) has a nontrivial
continuous solution for a real-valued continuous function q, then

∫ b

a
(b – s)α1+α2–2∣∣q(s)

∣
∣ds >

Γ (α1 + α2)[α2 – (1 – α1)(1 – β1)]
2

max{α1 + α2 – 1,β1(1 – α1)}
̃2
, (3.17)

where


̃2 := 
2(b – a) +
m–2∑

i=1

δi(b – a)α1+α2+β1(1–α1).

Proof Assume that x(t) is a nontrivial solution of BVP (1.14), (1.16), then

x(t) =
∫ b

a
H(t, s)q(s)x(s) ds +

(t – a)α2–(1–α1)(1–β1)


2

∫ b

a

m–2∑

i=1

δiH(ηi, s)q(s)x(s) ds

=
∫ b

a (b – s)α1+α2–2H1(t, s)q(s)x(s) ds
Γ (α1 + α2)[α2 – (1 – α1)(1 – β1)]

+
(t – a)α2–(1–α1)(1–β1) ∫ b

a
∑m–2

i=1 δi(b – s)α1+α2–2H1(ηi, s)q(s)x(s) ds

2Γ (α1 + α2)[α2 – (1 – α1)(1 – β1)]

,

and

∣
∣x(t)

∣
∣ ≤

∫ b
a (b – s)α1+α2–2|H1(t, s)| · |q(s)| · |x(s)|ds

Γ (α1 + α2)[α2 – (1 – α1)(1 – β1)]

+
(t – a)α2–(1–α1)(1–β1) ∫ b

a
∑m–2

i=1 δi(b – s)α1+α2–2|H1(ηi, s)| · |q(s)| · |x(s)|ds

2Γ (α1 + α2)[α2 – (1 – α1)(1 – β1)]

.

An argument similar to the one used in Theorem 3.1 shows that there exists an interval
[a2, b2] ⊂ [a, b] such that |q(s)| > 0 on [a2, b2]. Now, applying Lemma 3.4 and Remark 3.1,
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we have

‖x‖∞ <
max{α1 + α2 – 1,β1(1 – α1)}
̃2

Γ (α1 + α2)[α2 – (1 – α1)(1 – β1)]
2

∫ b

a
(b – s)α1+α2–2∣∣q(s)

∣
∣ds‖x‖∞,

from which inequality in (3.17) follows. The proof is completed. �

Theorem 3.1 gives the following corollaries.

Corollary 3.1 The necessary condition for the existence of a nontrivial solution for BVP
(1.1) is

∫ b

a

∣
∣q(s)

∣
∣ds >

4
(b – a)

. (3.18)

Proof Apply Theorem 3.1 for α1 = α2 = 1, σi = 0 (i = 1, 2, . . . , m – 2), then (3.18) holds.
Obviously, (3.18) coincides with the classical Lyapunov inequality, i.e., inequality (1.2). �

Corollary 3.2 The necessary condition for the existence of a nontrivial solution for BVP
(1.5) of case (i) is

∫ b

a

∣
∣q(s)

∣
∣ds >

Γ (α + β)22(α+β–1)

(b – a)α+β–1 . (3.19)

Proof Apply Theorem 3.1 for α1 = α, α2 = β , β1 = β2 = 0, σi = 0 (i = 1, 2, . . . , m – 2), then
(3.19) holds. Obviously, (3.19) coincides with inequality (1.6). �

Corollary 3.3 The necessary condition for the existence of a nontrivial solution for BVP
(1.3) is

∫ b

a

∣
∣q(s)

∣
∣ds > Γ (α)

(
4

b – a

)α–1

. (3.20)

Proof Apply Theorem 3.1 for α1 = 1, β2 = 0, α = 1 + α2, σi = 0 (i = 1, 2, . . . , m – 2), then
(3.20) holds. Obviously, (3.20) coincides with inequality (1.4). �

Corollary 3.4 The necessary condition for the existence of a nontrivial solution for BVP
(1.5) of case (ii) is

∫ b

a

∣
∣q(s)

∣
∣ds >

Γ (α + β)(α + 2β – 1)α+2β–1

(b – a)α+β–1(α + β – 1)α+β–1ββ
. (3.21)

Proof Apply Theorem 3.1 for α1 = α,α2 = β ,β1 = β2 = 1,σi = 0 (i = 1, 2, . . . , m – 2), then
(3.21) holds, which coincides with inequality (1.7). �

Corollary 3.5 Consider the following fractional BVP:

⎧
⎨

⎩

CDα
a+x(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x(b) = 0,
(3.22)
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where q ∈ C([a, b],R), CDα
a+ is the left Caputo fractional derivative. If (3.22) has a nontrivial

continuous solution in [a, b], then

∫ b

a

∣
∣q(s)

∣
∣ds >

Γ (α)αα

[(b – a)(α – 1)]α–1 . (3.23)

Proof Apply Theorem 3.1 for α2 = 1, β1 = 1, α = α1 + 1, σi = 0 (i = 1, 2, . . . , m – 2T , then
(3.23) holds. Corollary 3.5 coincides with [14, Theorem 1]. �

Corollary 3.6 The necessary condition for the existence of a nontrivial solution for BVP
(1.8), (1.9) is

∫ b

a

∣
∣q(s)

∣
∣ds >

Γ (α)[α – (2 – α)(1 – β)]α–(2–α)(1–β)

(b – a)α–1(α – 1)α–1[α – 1 + β(2 – α)]α–1+β(2–α) . (3.24)

Proof Apply Theorem 3.1 for α2 = 1, α = α1 + 1, β = β1, σi = 0 (i = 1, 2, . . . , m – 2), then
(3.24) holds, which coincides with inequality (1.11). By Remark 3.1, we show that the non-
strict inequality (1.11) can be replaced by strict inequality (3.24). �

Corollary 3.7 Assume that the following boundary value problem

⎧
⎨

⎩

Dα,β
a+ x(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = 0, x(b) =
∑m–2

i=1 σix(ξi),

where q ∈ C([a, b],R), Dα,β
a+ is the Hilfer fractional derivative of order α and type β ∈ [0, 1],

has a nontrivial continuous solution in [a, b], then

∫ b

a

∣
∣q(s)

∣
∣ds >

Γ (α)[2 – (2 – α)(2 – β)]2–(2–α)(2–β)
11

(b – a)α–1(α – 1)α–1[1 – (2 – α)(1 – β)]1–(2–α)(1–β)
̃11
, (3.25)

where


11 := (b – a)1–(2–α)(1–β) –
m–2∑

i=1

σi(ξi – a)1–(2–α)(1–β),


̃11 := 
11 +
m–2∑

i=1

σi(b – a)1–(2–α)(1–β).

Proof Apply Theorem 3.1 for α2 = 1, α = α1 + 1, β = β1, then (3.25) holds, which coincides
with [30, Theorem 3.1]. �

Theorem 3.2 gives the following corollaries.

Corollary 3.8 If a nontrivial continuous solution of the following boundary value problem

⎧
⎨

⎩

x′′(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x′(b) = 0,
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exists, where q ∈ C([a, b],R), then

∫ b

a

∣
∣q(s)

∣
∣ds >

1
b – a

. (3.26)

Proof Apply Theorem 3.2 for α1 = α2 = 1, δi = 0 (i = 1, 2, . . . , m – 2), then (3.26) holds,
which coincides with [16, Corollary 5]. �

Corollary 3.9 Suppose that the following boundary value problem

⎧
⎨

⎩

Dα1
a+Dα2

a+x(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x′(b) = 0,

where q ∈ C([a, b],R), D(·)
a+ is the left Riemann–Liouville fractional derivative, has a non-

trivial continuous solution in [a, b], then

∫ b

a
(b – s)α1+α2–2∣∣q(s)

∣
∣ds >

Γ (α1 + α2)
b – a

. (3.27)

Proof Apply Theorem 3.2 for β1 = β2 = 0, δi = 0 (i = 1, 2, . . . , m – 2), then (3.27) holds. �

Corollary 3.10 Consider the following fractional BVP:

⎧
⎨

⎩

Dα
a+x(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x′(b) = 0,
(3.28)

where q ∈ C([a, b],R), Dα
a+ is the Riemann–Liouville fractional derivative of fractional or-

der α. If (3.28) has a nontrivial continuous solution in [a, b], then

∫ b

a
(b – s)α–2∣∣q(s)

∣
∣ds >

Γ (α)
b – a

. (3.29)

Proof Apply Theorem 3.2 for α1 = 1, β2 = 0, α = 1 + α2, δi = 0 (i = 1, 2, . . . , m – 2), then
(3.29) holds. �

Corollary 3.11 Consider the following fractional BVP:

⎧
⎨

⎩

CDα1
a+

CDα2
a+x(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x′(b) = 0,
(3.30)

where q ∈ C([a, b],R), CD(·)
a+ is the left Caputo fractional derivative. If (3.30) has a nontrivial

continuous solution in [a, b], then

∫ b

a
(b – s)α1+α2–2∣∣q(s)

∣
∣ds >

Γ (α1 + α2)α2

(b – a) max{α1 + α2 – 1, 1 – α1} . (3.31)

Proof Apply Theorem 3.2 for β1 = β2 = 1, δi = 0 (i = 1, 2, . . . , m – 2), then (3.31) holds. �
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Corollary 3.12 Consider the following fractional BVP:

⎧
⎨

⎩

CDα
a+x(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = x′(b) = 0,
(3.32)

where q ∈ C([a, b],R), CDα
a+ is the left Caputo fractional derivative of order α. If (3.32) has

a nontrivial continuous solution in [a, b], then

∫ b

a
(b – s)α–2∣∣q(s)

∣
∣ds >

Γ (α)
(b – a) max{α – 1, 2 – α} . (3.33)

Proof Apply Theorem 3.2 for α2 = 1,β1 = 1,α = α1 + 1, δi = 0 (i = 1, 2, . . . , m – 2), then (3.33)
holds, which coincides with [17] and [23, Theorem 3]. �

Corollary 3.13 The necessary condition for the existence of a nontrivial solution for BVP
(1.8), (1.10) is

∫ b

a
(b – s)α–2∣∣q(s)

∣
∣ds >

Γ (α)[α – 1 + β(2 – α)]
(b – a) max{α – 1,β(2 – α)} , (3.34)

Proof Apply Theorem 3.2 for α2 = 1, α = α1 +1, β = β1, δi = 0 (i = 1, 2, . . . , m–2), then (3.34)
holds, which coincides with inequality (1.12). By Remark 3.1, we show that the non-strict
inequality (1.12) can be replaced by strict inequality (3.34). �

Corollary 3.14 If a nontrivial continuous solution of the following fractional boundary
value problem

⎧
⎨

⎩

Dα,β
a+ x(t) + q(t)x(t) = 0, t ∈ (a, b),

x(a) = 0, x′(b) =
∑m–2

i=1 δix(ηi),

exists, q ∈ C([a, b],R), Dα,β
a+ is the Hilfer fractional derivative of order α and type β ∈ [0, 1],

then

∫ b

a
(b – s)α–2∣∣q(s)

∣
∣ds >

Γ (α)[α – 1 + β(2 – α)]
22

max{α – 1,β(2 – α)}
̃22
, (3.35)

where


22 :=
[
α – 1 + β(2 – α)

]
(b – a)–(2–α)(1–β) –

m–2∑

i=1

δi(ηi – a)α–1+β(2–α),


̃22 := 
2(b – a) +
m–2∑

i=1

δi(b – a)α+β(2–α).

Proof Apply Theorem 3.2 for α2 = 1, α = α1 + 1, β = β1, then (3.35) holds. �
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4 Conclusion
In this paper, the Lyapunov-type inequalities of sequential Hilfer fractional BVPs were
investigated for the first time. Since the Hilfer fractional derivative is a generalization of
both Riemann–Liouville and Caputo types fractional derivatives, this requires that our
results can be reduced to the corresponding classical results, and we do it. So our work is
meaningful and the results we obtained are more general. There is some work to be done
in the future such as: finding Lyapunov-type inequalities for higher order Hilfer fractional
BVPs; studying Lyapunov-type inequalities for Hilfer fractional p-Laplacian equation, and
so on.
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