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1 Introduction
Recently, the study of convex functions has become more important due to variety of their
nature. Many generalizations of this notion have been established. For more details see
[1-6, 13, 16-19].

Convex functions satisfy many integral inequalities. Among these, the Hermite—
Hadamard inequality is well known. The Hermite—Hadamard inequality [14, 15] for a

convex function ¥ : K — R on an interval I is

Uy + 1 "2 Y (u1) + ¥ (u2)
w( ; )fuz_ul / yn)aw < V), 1)

for all u, uy € KC with u; < up. Many authors have made generalizations to inequality (1.1).
For more results and details, see [3, 4, 6, 7, 17-19, 22, 24—-26].

Definition 1.1 ([19, 20]) Consider an interval KC C (0, 00) = R,, and p € R\{0}. A function
¥ K — R is called p-convex, if

V([ + (L= P]?) < rran) + (1= P (), (1.2)
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for all uy,u; € K and r € [0,1]. If the inequality in (1.2) is reversed, then ¥ is called p-

concave.

Example 1.1 A function ¢ : (0,00) — R, defined by () = ? for p € R\{0}, is p-convex
as well as p-concave.

Iscan [19] gave the following results.

Theorem 1.2 ([19]) Consider an interval IC C (0,00), and p € R\{0}. Let ¥ : K — R be
p-convex and uy,uy € K, uy < uy. If W € Li[uy, uy), then we have

ul +ub | “2 w(w V(1) + Y (ua)
o[ ]) A 2 (13

Lemma 1.1 ([19]) Let ¢ : K — R be a differentiable function on K°, i.e., the interior of IC,
and uy,uy € K, uy < uy, and p € R\{0}. If ¥ € L1[u1, uy], then

V) + ()  p “2 4 (w)
2 ”12)_”111 u1 wi?

u’;—u{’/l 1-2r
2p 0

dw

rd + (1 V)Mp]l_l v'([ruf + —r)ug]‘l’)dr. (14)
1 - 2

Definition 1.2 ([16]) Let s € (0,1]. A function ¥ : K C Ry — Ry, where Ry = [0, 00), is
called s-convex in the second sense, if

Y (rur + (1= nuz) <Py (u) + (1 - 1)’y (u2), (1.5)
for all u1,u, € K and r € [0, 1].

Example 1.3 A function v : (0,00) — (0, 00), defined by v () = u’ for s € (0, 1), is s-convex
in the second sense.

Dragomir et al. [8, 9] gave the following important results.

Theorem 1.4 ([9]) Let s € (0,1) and v : Ry — Ry be s-convex in the second sense. Let
uy, uy € [0,00), uy < uy. If ¥ € L1[u1, us), then

2S1W<u1+u2> - uf v (W) 1//(u1)+1ﬁ(u2) (1.6)
2 — U1

2 s+1

Lemma 1.2 ([8]) Let ¥ : I — R be a differentiable mapping on K°, the interior of IC, and
uy, uy € IC be two distinct points. If ' € L1 [u1, uy], then

¥ (uy) + Y (uz) 1 “2
5 _Mz—m/;l v (w)dw

1
- % /0 (1= 2009 (ruy + (1 = P)uy) dbr. (1.7)
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Awan et al. [4] introduced the following new class of convex functions.

Definition 1.3 ([4]) A function ¢ : K € R — R is called exponentially convex, if

Y (u1) i r)W(Mz)

el o ’

Y(rur+ (1 =) <r (1.8)

for all uy,uy € KC, r € [0,1] and « € R. If the inequality in (1.8) is reversed, then ¥ is called
exponentially concave.

Example 1.5 A function ¥ : R — R, defined by v (&) = —u?, is an exponentially convex for
all e > 0.

The Beta and Hypergeometric functions are defined as:

1
Bluy,uy) = / w1 —w) 2 dw,  uy,uy >0,
0

and

1 1
oF1 (1, un; 4;2) = ﬁ / w2 1 -w) 2 Y 1—zw)™dw, t>uy>0,lz| <1,
U, L—uz) Jo

respectively, see [21].

2 Exponentially p-convex functions

Now we introduce exponentially p-convex functions.

Definition 2.1 Consider an interval IC C (0,00) = R, and p € R\{0}. A function ¢ : £ —
R is called exponentially p-convex, if

Y (u1) (- Y (us)

e exuz ’

=

Y ([rd) + A =rub]?) <r (2.1)
for all uy,uy € K, r € [0,1] and « € R. If the inequality in (2.1) is reversed, then v is called

exponentially p-concave.

It is easy to note that, by taking « = 0, an exponentially p-convex function becomes p-

convex.

Example 2.1 Consider a function v : (v/2,00) — R, defined by v/ (1) = (In(x))? for p > 2.
Then v is exponentially p-convex for all @ < 0, and not p-convex.

Note that v satisfies inequality (2.1) for all @ < 0. But for u; =2, uy =3 and p =5, in-
equality (1.2) does not hold.

2.1 Integral inequalities
Throughout this section, we denote by K C (0,00) =R, an interval with interior K° and

p € R\{0}. We start with our results for exponentially p-convex functions.
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Theorem 2.2 Lety : K — R be an integrable exponentially p-convex function. Let uy, u; €
K with uy < uy. Then for o € R, we have

w([u’f+u§i|ﬁ)< p “2 Y (w) dW<Al(r)1”(”1)+A2(r)¢eil:22), (2.2)

2 - u]; —I/l}f " wl-peaw — U1

where

1 rdr L 1-rdr
Al(r):/ ————— and Az("):/ —
0 a(rf+(1-rub)P 0 gl +(1-ru)?

e*\ 2

Proof By using the exponential p-convexity of 1, we have

21/f<[wp +Zp]ﬁ> Y v (2.3)

2 eOtW edZ

Letting w?” = ru) + (1 - r)ub and 22 = (1 — r)u] + ruby, we get

2w([u’f+upi|;) W+ (= 9i1)  y (-l + rig)r)

T T (2.4)
2 A
ea(rull’+(1—r)ug)1’ P ((1-r) u‘17+m!27 P
Integrating with respect to r € [0, 1] and applying a change of variable, we find
)+ )] “
A e L I vw ., (2.5)
2 L |y wore

Hence the first inequality of (2.2) has been established. For the next inequality, again using

the exponential p-convexity of ¥, we have

w([ru"+(1—r>u"ﬁ) Vo) 1 (1 = p) L)

. (2.6)
a rup+ 1- r)up ea(ru‘f+(1—r)u§)1’
Integrating with respect to r € [0, 1], we get
p “2(w)
ulz’ _ u117 " wl-peaw
1 1
rdr u 1-r)dr
< 1#5211) . Iﬂiuz) (1-7) . 2.7)
e Jo e+ ()P € 2 Jo i +(1-rds) P
By combining (2.5) and (2.7), we get (2.2). O

Remark 2.1 In Theorem 2.2, by taking « = 0, we attain inequality (1.3) in Theorem 1.2.
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Theorem 2.3 Let : K — R be a differentiable function on K° and uy, uy € K withuy < u,
and ' € Li[uy, us]. If |¥'|1 is exponentially p-convex on [uy,u3) for g > 1 and o € R, then

V) + ()  p /”2 ¥ (w) dw‘
2 ”127_’4117 u1 wi?
_ 1 ) 19 H) 1974
b ﬁéﬁ&wwn+&wWﬂ}{ 28)
2p el eau
where
1/ +ub\p™"
31=Bl(u1;uz;p)=1< 1; 2)
=it -t
X|:2F1<1__,2’3,u117+u§)+21:1<1_ ,2,3,ullj+ul27 :|,
_ NN A 1 ki
Bg—Bg(ul,ug,p)—ﬂ< ) ) |:2F1<1—1—7,2,4, 1+u127)
+6 F<1—l %312 " 1) F<1—12~4-”§_”€)}
241 pyy)ull;+2+21 p”’ullg-g-ug’

Bs = Bs(uy, ug;p) = B1 — Bs.

Proof Applying the power mean inequality to (1.4) of Lemma 1.1, we get

‘vf(ul) fY)  p / v
2 ;

uy —
Lt
T2 o

1-2r
Su‘z’—u’{'(/l |12 ldr)1%
22 No [l + (1-r)ul)r

(il + (1 - )7

! 11— 2r| Ep [ )

X S| ([ruy + A =ruy|?) " dr ) . (2.9)
(/0 [rulf+(1—r)u§]l"ﬁ| ([ ! 2] )|

w
. )dw‘
1 W_P

ST

v/ ([r + (= r)ub]?) | dr

Since |'|7 is exponentially p-convex on [uy, u,], we have

‘I/f(ul)ﬂﬁ(uz)_ p_ (YW dw‘
2 Mlzg_ulf uy wir

Sué’—u‘f(/l 12| ldr>1—2
20 \Jo [rff + (1 -] 7

! ! l
V1= 2r||[r L8017+ (1 - )| L2 |7) \a
X 1 dr
0 [ru’l’+(1—r)ug] »

o [32 v/ ()

1
7 o } : (2.10)

! V' (u2)
+ B3’ ™
exu2
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It is easy to note that

1 1-2
/ | r| - dr:Bl(ulrMZ;p)’
0 [rf +(1-rub)' >

1 1-2r|r
f | | T dr = By(uy, uz; p),
1-1
O [rd +(1=r)ub] »

1 1-2r|(1-
/ | r|( 7') : d’,:Bl(ul,uz;p) —Bz(l/ll,u2;p)'
o [rd +(1- F)Mg]l_;’

Hence the proof is completed. O

Remark 2.2 In Theorem 2.3,
(a) by taking « = 0, we attain Theorem 7 in [19];
(b) by taking p = 1, we attain Theorem 5 in [4].

Corollary 2.4 Let v : K — R be a differentiable function on K° and uy,uy € IC, uy < u,
and ' € Li[uy, us). If Y| is exponentially p-convex on [us, u,], then

‘I/I(u1)+1ﬁ(uz)_ 0% /”2 v (w) dw‘
2 u

& —id] Sy W
§ ”127_”117[3 V(1) + By V' (u2) } (2.11)
2p evn ex

where B, and Bs are given in Theorem 2.3.

Remark 2.3 In Corollary 2.4,
(a) by taking o = 0, we attain Corollary 1 in [19];
(b) by taking p = 1, we attain Theorem 3 in [4].

Theorem 2.5 Let ¥ : K — R be a differentiable function on K°. Let uy,u; € IC, uy < u,
and ' € Li[uy, up]. If |14 is exponentially p-convex on [uy,uy], and q,1>1,1/q + 1/l =1,
and o € R, then

‘I/f(ul)H/f(uz)_ p /“2 Y (w) dw‘
2 u

”127 - ”‘119 1 wi=p
) i — il (L)l[&; ¥ (u1) q+B5 V' (u2) q}", (2.12)
2p \Il+1 ex e

where

By = By(uy, u2; p; q)
Mﬁzljl(q— }%, L31-(2)), p<O,

%%ZFI(Q— 5,2;3;1 -G, p>0,
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Bs = Bs(u1, u;p;q)

a1 2F1g = 5,231 - (YY), p <O,
s 2E1a =3 L1 (5)), p>0.

Proof Using Holder’s inequality on (1.4) of Lemma 1.1 and then applying the exponential
p-convexity of ['|7 on [u1, us], we get

ll/f(ul) + 1ﬁ(uz) /”2 2 W) ‘
2 uf’

wl-p
(/ [1-2r| dr)
2p

1 1 1
— ' ([rd + 1 =r)uy]? "d)
X (A [rufl’.*(l—r)ug]q(lil_’)‘ ([V + r ] )‘ r

<M127_u119< 1 >%</1r|%|q+(1 r)| L) d)%
< - r
2p I+1 0 [mll’+(1—r)u§]q_1%

<

1

il (1 \! () |7 ) |77 7
g L G B R LI S Ll o (2.13)
2p I+1 evtl et
where after calculations, we have
1
B4 2/ d}"
0 [rd +( —r)up]
ququl(q__lgl_(’ﬂ)) p<0,
ququl(q 1,2;3;1- (22 )), p>0,
B5 =/ d}"
—r)up]
2u;z%zlﬁ(q—11‘—5,2;3;1—(Z—f)"), p<0,
—ZMglp—q 2Filg- 1,131~ (1)), p>0. 0

Remark 2.4 In Theorem 2.5,
(a) by letting o = 0, we attain Theorem 8 in [19];
(b) by letting p = 1, we attain Theorem 4 in [4].

Theorem 2.6 Let y : K — R be a differentiable function on K° and uy,u; € KC, uy < uy,
and ' € Li[uy, up]. If |11 is exponentially p-convex on [uy,uy], and q,1>1,1/q+1/1 =1,
and o € R, then

wl-r

v/ (u v’
Mt ] |17+ | a2 (2.14)
= 2p 6 q+1 2 ’

Y (u1) +¢M2) uzlﬂW)
| up/ z

Page 7 of 17
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where

Bg = Bg(u1, ua; p; 1)
Mpl 12F1(l )1;2;1_(’4_2)17)1 P<0:
WZFI(Z 12 1_(_1)[1), p>0

Proof Using Holder’s inequality on (1.4) of Lemma 1.1 and then applying the exponential

p-convexity of |{'|7 on [u1, uy], we get

1/fbt1+1/fbtz) ”ZIPW)
| up/

wlP

1
Su;;ﬂ(/ l_ldr>l
P 0 [m’f+(1—r)u€] Z

1 L i
x (/ 11— 27|y ([redf + (1 - r)u';]ﬁ)|qdr)
0

_ 1 ‘/f v/ (up) q 1
P ”zl?Bé : il " (2.15)
- 2p qg+1 2
where a simple calculation implies
! 1
Be(u1,u; p;1) = / 1 dr
O [ + (1-r)dd]"?
S 2Fil= R LB (2Y), p<o, -
= 2.16
up[lZFI(l ,1;2;1_(%)19)) p>0>
and
1 1 1
/ r|1—2r|qdr:/ 1-n1-2r1dr= . (2.17)
0 0 2(g+1)
O

By substituting (2.16) and (2.17) into (2.15), we get (2.14).

Remark 2.5 In Theorem 2.6, by letting o = 0, we attain Theorem 9 in [19].

2.2 Applications
Consider some special means of two positive numbers u;, uy, u; < uy:

(1) The arithmetic mean

Ui + Uy

A ZA(MIIMZ) = D) ’

(2) The harmonic mean

2M1 Uy

H = H(uy, up) = ;
Uy + Uy
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(3) The p-logarithmic mean

+1 +1
uy —uy

(P+1)(Mz—u1)> + PERAELOL

lw :<Lp(u1;u2) = (

In the next three propositions we consider 0 < 47 < u; and g > 1.

Proposition 2.1 Let o € R and p < 1. Then we have

_ - 1/ 1 \i 1
-y < el () i
2p qg+1

where Bg is defined as in Theorem 2.6.

1 q

2 pou
uye

1
2 o
uz et

’

q -
)HLp_l,

Proof The proof ensues from Theorem 2.6, for a function ¢ : (0,00) = R, ¢(w) = % Here
note that |y/'(w)|? = |ﬁ |7 is exponentially p-convex forall p <1 and « € R. (]

Proposition 2.2 Let o <0 and p > 1. Then we have

q

) - 1)1\ 1 1
LA ) - L0 < 2 Mg i (|
P P 2 qg+1 u’l"eaul

where B is defined as in Theorem 2.6.

Proof The proof ensues from Theorem 2.6, for ¥ : (0,00) — R, ¥(w) = w”. Here note that
[ (w)|? = |pwP~1|4 is exponentially p-convex for all p > 1 and o < 0. (]

Proposition 2.3 Let o <0 and p > 1. Then we have

1
|LP*}A—LP|<—”€_”€B6% LY
L Pl= 2p qg+1

q

’

1

evl

1

e

AN
)Lpl,
where Bg is given as in Theorem 2.6.

Proof The proof ensues from Theorem 2.6, for v : (0,00) — R, ¥(w) = w. Here note that
|¥'(w)|? = 1 is exponentially p-convex for all p > 1 and « < 0. (]

3 Exponentially s-convex functions in the second sense
We first generalize Definition 1.2.

Definition 3.1 Let s € (0,1] and IC C R be an interval. A function v : K — R is called

exponentially s-convex in the second sense, if

v (u1) . (l_r)s‘/’("ﬁ), (3.1)

el e

Y (ruy+ (L-nup) <7r°

for all uy,u; € IC, r € [0,1] and & € R. If the inequality in (3.1) is reversed then  is called

exponentially s-concave.
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Observe that, by taking « = 0, an exponentially s-convex function becomes s-convex.

Example 3.1 Consider a function ¢ : [0,00) — R, defined by ¥ () = In(x) for s € (0,1).
Then  is exponentially s-convex, for all @ < —1, but not s-convex in the second sense.

3.1 Integral inequalities
Throughout this section, we denote by KL C Ry an interval with nonempty interior X° and

s € (0,1]. We start our new results with the following theorem.

Theorem 3.2 Let v : K C Ry — R be an integrable exponentially s-convex function in the

second sense on KC°. Then for u1,uy € IC with uy < uy and a € R, we have

2s11/,('41 +u2) - 1 /"2 Y(w) dw < As(r )T/f(ul) e )l/f(uz)’ (3.2)

2 Uy — Uy

where

1 1 AT
)= [ ot and A= [ o
o € 0

ruy+(1-r)uy) e ru+(1-r)uz) *

Proof Applying exponential s-convexity of i, we have

2S¢(W+Z) AV A (3.3)

2 eaw eO(Z

Letting w = ruy + (1 — r)up and z = (1 — r)uy + ru,, we get

s (W tu) _ Ylrun+ (1 -ruy)  Y((A-r)u +rup)
2 w( 2 ) = e (ruy +(1-r)uz) e ((1-r)uy+ruz) : (34)
Integrating with respect to r € [0, 1] and applying a change of variable, we find
1 “2
25-1w<ul+uz) < / ¥ (w) dw. (35)
2 u—uy J, e*"

Hence the proof of the first inequality of (3.2) has been completed. For the next inequality,

again using the exponential s-convexity of i, we have

Y(ruy + (1 —1r)uy) _ r Walﬁ 1-r)y wﬁ%

e (rur+(1-r)uz) - e (rur+(1-r)u) (3.6)
Integrating with respect to r € [0, 1], we get
u 1 1 AT
1 / ¥ (w) dw < ¥ (u1) ridr ¥ (u2) (1-r)ydr ‘ (3.7)
Uy — Uy eaw eaul 0 ea(ru1+(l—r)u2) e 0 ea(ru1+(l—r)u2)
By combining (3.5) and (3.7), we get (3.2). O

Remark 3.1 In Theorem 3.2, by letting « = 0, we get inequality (1.6) in Theorem 1.4.
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Theorem 3.3 Let yr : K — R be a differentiable function on K° and uy, uy; € K withuy < u,

and ' € Li[uy,u]. If || is exponentially s-convex in the second sense on [uy, u,), then

V(u1) + ¥ (u2) 1 “2
2 - Uy — Uy / l/f(W) dW'
Uy — Y/ (u1)
=2+ 1)(s+2) [(3 )’ o

V' (1)
( +4‘)‘WH (3.8)

Proof From Lemma 1.2, we have

V(1) + Y (us) 1 2
‘ 5 - p— /1 w(w)dw'

Uy —ux

1
/ (1- 2r)1//’(ru1 +(1- r)uz) dr
0

Uz —up ! ,
< T/ |1—2r|’1p (rul +(1—r)u2)|dr. (3.9)
0

Using the exponential s-convexity of ¥', we get

Y(u1) + ¥ (us)
‘ 5 Mz—ulf w(w)dw'

< uz_ulf |1_2r|Hﬂ 41—y | L 2) ]dr
2 evl o2
<M2—M1/ (1+ 2)|: ‘1//(141) F(1—ry ‘/f’(uz)]dr
B 2 0 ex?
- ”2_“1f |:(1+2r)rg‘w/(u1) + (14201 = )| L2 w (”2) } y. (3.10)
2 0 exi1
Since
1 3s + 4
‘/0\ (1 +2r)r’gdr= m, (311)
Arn-rydre St (3.12)
/0 AT A T )5+ 2) '
by substituting equalities (3.11) and (3.12) into (3.10), we get inequality (3.8). O

Corollary 3.4 Under the assumptions of Theorem 3.3, we have the following:
(a) Ifs=1, then

Uy —uy

‘I/f(m)zl/f(uz) 1 /MZw(w)dw‘

5 V' (us)

U2

<M2—M1[ }I/f(ul

]. (3.13)

Page 11 of 17
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b) Ifa =0, then

Y () + ¥ (u2) 1 "
- Uy —uy / I/,(W)dW’

2
= #[(3“4”1# ()| + (s + )| ¥ (u2)|]. (3.14)

Theorem 3.5 Let y : K — R be a differentiable function on K° and u1,u; € IC, uy < uy,
and ' € Li[uy, uz). If || is exponentially s-convex in the second sense on [u1,u,], then

Y (u1) + ¥ (uz)
‘ 5 Mz—u1/ w(w)dw'

Uy — g 1 INT Y/ )| ¥ ()
) (s+1)(s+2) <S " 5) [ || :| (3.15)
Proof From Lemma 1.2, we have

ACVER A 1 "

’ 2 - -/ul w(W)dW'
1

! / (1- 2r)1ﬁ’(ru1 +(1- r)uz) dr
0
(3.16)

=

B 1
i 5 " / I1- 2r||1//(ru1 +(1 —r)u2)|dr.
0

Using the exponential s-convexity of ¥', we get

Y (uy) + ¥ (u) 1 “2
‘ 5 a— /u1 w(w)dw'

_ 1
<2 ”1/ |1—2r||:r“—1/f(u1)‘+(1
2 0 el

G

Uy —uy 1 Y1) W( 2)
S /O[H_zrw ol ey ]
- #[Cl(s) ‘/’;f:‘ll) +Gols) ‘b;fff) } (3.17)
It is easily seen that
1
=/ 1= 2r|Pdr= s + 1 , (3.18)
0 (s+1)(s+2) 25(s+1)(s+2)

Cyls) = Y12 (1= r) dr = s 1 (3.19)
28 _/o L =2r=r)dr = T P61 D612 :

Thus by substituting equalities (3.18) and (3.19) into (3.17), we achieve inequality (3.15)
d

Remark 3.2 In Theorem 3.5,
(a) by taking « = 0, we obtain Theorem 1, for g = 1, in [23];

(b) by taking s =1, we obtain Theorem 3 in [4].
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Theorem 3.6 Let : K — R be a differentiable function on K° and uy, uy; € K withuy < u,
and ' € Li[uy, us). If |Y'|? is exponentially s-convex in the second sense on [uy, u;] with
q > 1, then we have

|1/f(u1);1ﬂ(uz) 1 /ufzw(w)dw'

Uy — Uy

_tmi <1>1‘5 ( st ) [ Y)|" | ¥ ) T' 520)
2 2 (s+1)(s+2) e e
Proof From Lemma 1.2, we have
‘w(ul) +Y(w) 1 /”2 Iﬂ(w)dw'
2 Uy — Uy Ju
1
_% ; “ / (1 =2y (ruy + 1 = r)uy) dr
0
1
= uz;m/ 11— 27| |9/ (rus + (1 = Pusp) | dir. (3.21)
0

Applying the power-mean inequality, we find

_ 1
%/ 1= 20|y (raey + (1 = ) | dr
0

1

1 -1 1 q
< %(/{) |1—2r|dr) (/(; |1—2r||1p/(m1+(1—r)u2)}qdr> . (3.22)

Since |¢'|7 is exponentially s-convex, we get

1
/ 11— 2r||1/f’(ru1 +(1 —r)u2)|qdr
0

1 ’ /
5/ |1—2r||:r*g‘M q+(1—r)s M q]dr
0 exil exu
’ q / q
_ |:C1(S)‘ v;fffll) ¥ Cz(S)‘ ]//eofff) ] (3.23)
where
! 1
/ |1-2r|dr=—. (3.24)
0 2
Using (3.22)—(3.24) in (3.21), we get (3.20). a

Remark 3.3 In Theorem 3.6,
(a) by putting @ = 0, we get Theorem 1, for g > 1, in [23];
(b) by putting s = 1, we get Theorem 5 in [4].

Theorem 3.7 Let v : KK — R be a differentiable function on K° and uy, uy; € K with uy < uy
and ' € Ly[uy, up]. If |Y'|1 is exponentially s-convex in the second sense on [u1,u;] and
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q,1>1, % + é =1, then we have

V(u1) + ¥ (u2) 1 “2
‘ 2 - Uy — Uy / l/f(W) dW'

|‘/f u) |q+|11f Mz)lq =z
i| (3.25)

2u+nz[ s+1

Proof From Lemma 1.2 and using Holder’s inequality, we have
v ]
Uy — Uy

Uy —ux ! ! 1 ! / q i
= (/(; |1-2r| dr) (./0 |v/ (ruy + (1 = )us) | dr) . (3.26)

Since || is exponentially s-convex, we get
[ v
Uy — Uy

_ 1 s /
Su2 ad </ |1—2r|ldr> </ [r“w(ul)
2 0 exul
- [mul 19+ | L2 |’f]‘
2+ 1)1 s+1

‘l/f(ul) + Y (uz)

’W(m) A
2

q

f 1y V' (uz)

eau2

i

(3.27)

Hence the proof is completed. O

Remark 3.4 In Theorem 3.7,
(a) by letting o =0, we get

1 “2
- / v (w) dw‘
Uy — Ul Juy

o ot [P |w'<u2)|‘fr.
T 2(+ 1! s+1 '

‘Vf(ul) + U (1)
2

(3.28)

(b) by letting s = 1, we get Theorem 4 in [4].
3.2 Applications

Suppose d is a partition of the interval [u;,us], thatis, d :u; =wo<wy <+ - < W1 < W, =
Uy, then the trapezoidal formula is given as

m-1
TG, d) = Z w(w’“l —w,).
n=0

We known that if v : [u,us] — R is twice differentiable on (u1,4,) and M =

MaXye(u;uy) | (W)] < 00, then

/ P ) dw=T(w,d) + Ry, d), (3.29)
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where the remainder term is given as

m-1
R D] < 203 (b ) (330)
n=0

It is noticed that if /" does not exist or /" is unbounded, then (3.29) is invalid. However,
Dragomir and Wang [10-12] have shown that the term R(y/, d) can be obtained by using
the first derivative only. These estimates surely have several applications. In this section,

we estimate the remainder term R(v, d) in a new sense.

Proposition 3.1 Let v : £ € Ry — R be a differentiable function on K°. Let uy,u; € IC,
u < uy. If | V'] is exponentially s-convex in the second sense on [u1,u;] and s € (0, 1], then

in (3.29), for every partition d of [u1, uy], we have

1 1 1 ml 2 1ﬁ/(wn) w/(wrwl)
’R(W,d” =< Em(‘ + E) ;(Wnﬂ - W) [ pr + P ]
Smax{ V' (u1) , V' (u2) }
el e
1 1) 5 2 331
m(z—)wa) 51

Proof Applying Theorem 3.5 on the subinterval [w,, w,,1] (n=0,1,...,m — 1) of the par-

tition d, we obtain

VO V) o, ) - / W) dw‘
(Wn+1 - Wn)2 1 1 1ﬁ/(wn) 1p/(WnJrl)
= 2 (s+1)(s+2) (S " 5) [ e | | e :| (832)
Summing over # from 0 to m — 1, we get
’T(w,d) -/ w(w)dw‘
1 = 2 1 1 w/(wn) w/(wn+1)
=3 ;(wml — Wn) m(s + 5)[ | * | ]
V)| | () 1 S 2
= max{ exu1 evu2 } (s+1)(s+2) (S * 5) HX:O:(WVM — W) (3'32

Proposition 3.2 Let ¢ : K € Ry — R be a differentiable function on K° and u,,u; € K

with uy < uy. If | '] is exponentially s-convex in the second sense on [u1,u;] and s € (0,1]

Page 15 of 17
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and q,1 > 1 such that % + % =1, then in (3.29), for every partition d of [uy,us], we have

1 m-1 | w;(:llfn) |q + | ;(“:l'/mll) |q %
|R(1ﬁ,d)| =—7 Z(erl - Wn)2[ e e ]
20+ D)1 % s+l

’ !
2 Y (ug) | 2l ¥ (up) |

max Pl , S m—1
< M - } D W1 — ). (3.34)
20+ 1)t o

Proof Using Theorem 3.7 and similar arguments as in Proposition 3.1, we get the required
result. O
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