RESEARCH Open Access

Hermite–Hadamard type inequalities for exponentially p-convex functions and exponentially s-convex functions in the second sense with applications

Naila Mehreen^{1*} and Matloob Anwar¹

*Correspondence: nailamehreen@gmail.com; naila.mehreen@sns.nust.edu.pk ¹School of Natural Sciences, National University of Sciences and Technology, Islamabad, Pakistan

Abstract

In this paper, we introduce the notion of exponentially *p*-convex function and exponentially *s*-convex function in the second sense. We establish several Hermite–Hadamard type inequalities for exponentially *p*-convex functions and exponentially *s*-convex functions in second sense. The present investigation is an extension of several well known results.

MSC: 26A51; 26D15

Keywords: Hermite–Hadamard inequalities; Convex functions; Exponentially convex functions; Exponentially *p*-convex functions; Exponentially *s*-convex functions in the second sense

1 Introduction

Recently, the study of convex functions has become more important due to variety of their nature. Many generalizations of this notion have been established. For more details see [1-6, 13, 16-19].

Convex functions satisfy many integral inequalities. Among these, the Hermite–Hadamard inequality is well known. The Hermite–Hadamard inequality [14, 15] for a convex function $\psi:\mathcal{K}\to\mathbb{R}$ on an interval \mathcal{K} is

$$\psi\left(\frac{u_1+u_2}{2}\right) \le \frac{1}{u_2-u_1} \int_{u_1}^{u_2} \psi(w) \, dw \le \frac{\psi(u_1)+\psi(u_2)}{2},\tag{1.1}$$

for all $u_1, u_2 \in \mathcal{K}$ with $u_1 < u_2$. Many authors have made generalizations to inequality (1.1). For more results and details, see [3, 4, 6, 7, 17–19, 22, 24–26].

Definition 1.1 ([19, 20]) Consider an interval $\mathcal{K} \subset (0, \infty) = \mathbb{R}_+$, and $p \in \mathbb{R} \setminus \{0\}$. A function $\psi : \mathcal{K} \to \mathbb{R}$ is called p-convex, if

$$\psi\left(\left[ru_1^p + (1-r)u_2^p\right]^{\frac{1}{p}}\right) \le r\psi(u_1) + (1-r)\psi(u_2),\tag{1.2}$$

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

for all $u_1, u_2 \in \mathcal{K}$ and $r \in [0, 1]$. If the inequality in (1.2) is reversed, then ψ is called p-concave.

Example 1.1 A function $\psi : (0, \infty) \to \mathbb{R}$, defined by $\psi(u) = u^p$ for $p \in \mathbb{R} \setminus \{0\}$, is p-convex as well as p-concave.

Iscan [19] gave the following results.

Theorem 1.2 ([19]) Consider an interval $\mathcal{K} \subset (0, \infty)$, and $p \in \mathbb{R} \setminus \{0\}$. Let $\psi : \mathcal{K} \to \mathbb{R}$ be p-convex and $u_1, u_2 \in \mathcal{K}$, $u_1 < u_2$. If $\psi \in L_1[u_1, u_2]$, then we have

$$\psi\left(\left[\frac{u_1^p + u_2^p}{2}\right]^{\frac{1}{p}}\right) \le \frac{p}{u_2^p - u_1^p} \int_{u_1}^{u_2} \frac{\psi(w)}{w^{1-p}} dw \le \frac{\psi(u_1) + \psi(u_2)}{2}.$$
 (1.3)

Lemma 1.1 ([19]) Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable function on \mathcal{K}° , i.e., the interior of \mathcal{K} , and $u_1, u_2 \in \mathcal{K}$, $u_1 < u_2$, and $p \in \mathbb{R} \setminus \{0\}$. If $\psi' \in L_1[u_1, u_2]$, then

$$\frac{\psi(u_1) + \psi(u_2)}{2} - \frac{p}{u_2^p - u_1^p} \int_{u_1}^{u_2} \frac{\psi(w)}{w^{1-p}} dw$$

$$= \frac{u_2^p - u_1^p}{2p} \int_0^1 \frac{1 - 2r}{[ru_1^p + (1 - r)u_2^p]^{1-\frac{1}{p}}} \psi'([ru_1^p + (1 - r)u_2^p]^{\frac{1}{p}}) dr. \tag{1.4}$$

Definition 1.2 ([16]) Let $s \in (0,1]$. A function $\psi : \mathcal{K} \subset \mathbb{R}_0 \to \mathbb{R}_0$, where $\mathbb{R}_0 = [0,\infty)$, is called *s*-convex in the second sense, if

$$\psi(ru_1 + (1-r)u_2) < r^s\psi(u_1) + (1-r)^s\psi(u_2),\tag{1.5}$$

for all $u_1, u_2 \in \mathcal{K}$ and $r \in [0, 1]$.

Example 1.3 A function $\psi:(0,\infty)\to(0,\infty)$, defined by $\psi(u)=u^s$ for $s\in(0,1)$, is *s*-convex in the second sense.

Dragomir et al. [8, 9] gave the following important results.

Theorem 1.4 ([9]) Let $s \in (0,1)$ and $\psi : \mathbb{R}_0 \to \mathbb{R}_0$ be s-convex in the second sense. Let $u_1, u_2 \in [0, \infty)$, $u_1 \leq u_2$. If $\psi \in L_1[u_1, u_2]$, then

$$2^{s-1}\psi\left(\frac{u_1+u_2}{2}\right) \le \frac{1}{u_2-u_1} \int_{u_1}^{u_2} \psi(w) \, dw \le \frac{\psi(u_1)+\psi(u_2)}{s+1}. \tag{1.6}$$

Lemma 1.2 ([8]) Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable mapping on \mathcal{K}° , the interior of \mathcal{K} , and $u_1, u_2 \in \mathcal{K}$ be two distinct points. If $\psi' \in L_1[u_1, u_2]$, then

$$\frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) dw$$

$$= \frac{u_2 - u_1}{2} \int_0^1 (1 - 2r) \psi' (ru_1 + (1 - r)u_2) dr. \tag{1.7}$$

Awan et al. [4] introduced the following new class of convex functions.

Definition 1.3 ([4]) A function $\psi : \mathcal{K} \subseteq \mathbb{R} \to \mathbb{R}$ is called exponentially convex, if

$$\psi(ru_1 + (1-r)u_2) \le r \frac{\psi(u_1)}{e^{\alpha u_1}} + (1-r) \frac{\psi(u_2)}{e^{\alpha u_2}},\tag{1.8}$$

for all $u_1, u_2 \in \mathcal{K}$, $r \in [0, 1]$ and $\alpha \in \mathbb{R}$. If the inequality in (1.8) is reversed, then ψ is called exponentially concave.

Example 1.5 A function $\psi : \mathbb{R} \to \mathbb{R}$, defined by $\psi(u) = -u^2$, is an exponentially convex for all $\alpha > 0$.

The Beta and Hypergeometric functions are defined as:

$$\beta(u_1,u_2)=\int_0^1 w^{u_1-1}(1-w)^{u_2-1}\,dw,\quad u_1,u_2>0,$$

and

$$_{2}F_{1}(u_{1},u_{2};t;z)=\frac{1}{\beta(u_{2},t-u_{2})}\int_{0}^{1}w^{u_{2}-1}(1-w)^{t-u_{2}-1}(1-zw)^{-u_{1}}dw, \quad t>u_{2}>0, |z|<1,$$

respectively, see [21].

2 Exponentially p-convex functions

Now we introduce exponentially *p*-convex functions.

Definition 2.1 Consider an interval $\mathcal{K} \subset (0, \infty) = \mathbb{R}_+$ and $p \in \mathbb{R} \setminus \{0\}$. A function $\psi : \mathcal{K} \to \mathbb{R}$ is called exponentially p-convex, if

$$\psi\left(\left[ru_1^p + (1-r)u_2^p\right]^{\frac{1}{p}}\right) \le r\frac{\psi(u_1)}{e^{\alpha u_1}} + (1-r)\frac{\psi(u_2)}{e^{\alpha u_2}},\tag{2.1}$$

for all $u_1, u_2 \in \mathcal{K}$, $r \in [0, 1]$ and $\alpha \in \mathbb{R}$. If the inequality in (2.1) is reversed, then ψ is called exponentially p-concave.

It is easy to note that, by taking $\alpha = 0$, an exponentially *p*-convex function becomes *p*-convex.

Example 2.1 Consider a function $\psi : (\sqrt{2}, \infty) \to \mathbb{R}$, defined by $\psi(u) = (\ln(u))^p$ for $p \ge 2$. Then ψ is exponentially p-convex for all $\alpha < 0$, and not p-convex.

Note that ψ satisfies inequality (2.1) for all α < 0. But for u_1 = 2, u_2 = 3 and p = 5, inequality (1.2) does not hold.

2.1 Integral inequalities

Throughout this section, we denote by $\mathcal{K} \subset (0, \infty) = \mathbb{R}_+$ an interval with interior \mathcal{K}° and $p \in \mathbb{R} \setminus \{0\}$. We start with our results for exponentially p-convex functions.

Theorem 2.2 Let $\psi : \mathcal{K} \to \mathbb{R}$ be an integrable exponentially p-convex function. Let $u_1, u_2 \in \mathcal{K}$ with $u_1 < u_2$. Then for $\alpha \in \mathbb{R}$, we have

$$\psi\left(\left[\frac{u_1^p + u_2^p}{2}\right]^{\frac{1}{p}}\right) \le \frac{p}{u_2^p - u_1^p} \int_{u_1}^{u_2} \frac{\psi(w)}{w^{1-p} e^{\alpha w}} dw \le A_1(r) \frac{\psi(u_1)}{e^{\alpha u_1}} + A_2(r) \frac{\psi(u_2)}{e^{\alpha u_2}},\tag{2.2}$$

where

$$A_1(r) = \int_0^1 \frac{rdr}{e^{\alpha(ru_1^p + (1-r)u_2^p)^{\frac{1}{p}}}} \quad and \quad A_2(r) = \int_0^1 \frac{(1-r)\,dr}{e^{\alpha(ru_1^p + (1-r)u_2^p)^{\frac{1}{p}}}}.$$

Proof By using the exponential *p*-convexity of ψ , we have

$$2\psi\left(\left[\frac{w^p+z^p}{2}\right]^{\frac{1}{p}}\right) \le \frac{\psi(w)}{e^{\alpha w}} + \frac{\psi(z)}{e^{\alpha z}}.$$
 (2.3)

Letting $w^p = ru_1^p + (1 - r)u_2^p$ and $z^p = (1 - r)u_1^p + ru_2^p$, we get

$$2\psi\left(\left[\frac{u_1^p + u_2^p}{2}\right]^{\frac{1}{p}}\right) \le \frac{\psi([ru_1^p + (1-r)u_2^p]^{\frac{1}{p}})}{e^{\alpha(ru_1^p + (1-r)u_2^p)^{\frac{1}{p}}}} + \frac{\psi([(1-r)u_1^p + ru_2^p]^{\frac{1}{p}})}{e^{\alpha((1-r)u_1^p + ru_2^p)^{\frac{1}{p}}}}.$$
 (2.4)

Integrating with respect to $r \in [0, 1]$ and applying a change of variable, we find

$$\psi\left(\left[\frac{u_1^p + u_2^p}{2}\right]^{\frac{1}{p}}\right) \le \frac{p}{u_2^p - u_1^p} \int_{u_1}^{u_2} \frac{\psi(w)}{w^{1-p}e^{\alpha w}} dw. \tag{2.5}$$

Hence the first inequality of (2.2) has been established. For the next inequality, again using the exponential p-convexity of ψ , we have

$$\frac{\psi([ru_1^p + (1-r)u_2^p]^{\frac{1}{p}})}{e^{\alpha(ru_1^p + (1-r)u_2^p)^{\frac{1}{p}}}} \le \frac{r\frac{\psi(u_1)}{e^{\alpha u_1}} + (1-r)\frac{\psi(u_2)}{e^{\alpha u_1}}}{e^{\alpha(ru_1^p + (1-r)u_2^p)^{\frac{1}{p}}}}.$$
(2.6)

Integrating with respect to $r \in [0, 1]$, we get

$$\frac{p}{u_{2}^{p} - u_{1}^{p}} \int_{u_{1}}^{u_{2}} \frac{\psi(w)}{w^{1-p} e^{\alpha w}} dw$$

$$\leq \frac{\psi(u_{1})}{e^{\alpha u_{1}}} \int_{0}^{1} \frac{r dr}{e^{\alpha (ru_{1}^{p} + (1-r)u_{2}^{p})^{\frac{1}{p}}}} + \frac{\psi(u_{2})}{e^{\alpha u_{2}}} \int_{0}^{1} \frac{(1-r) dr}{e^{\alpha (ru_{1}^{p} + (1-r)u_{2}^{p})^{\frac{1}{p}}}}.$$
(2.7)

By combining (2.5) and (2.7), we get (2.2).

Remark 2.1 In Theorem 2.2, by taking $\alpha = 0$, we attain inequality (1.3) in Theorem 1.2.

Theorem 2.3 Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable function on \mathcal{K}° and $u_1, u_2 \in \mathcal{K}$ with $u_1 < u_2$ and $\psi' \in L_1[u_1, u_2]$. If $|\psi'|^q$ is exponentially p-convex on $[u_1, u_2]$ for $q \geq 1$ and $\alpha \in \mathbb{R}$, then

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{p}{u_{2}^{p} - u_{1}^{p}} \int_{u_{1}}^{u_{2}} \frac{\psi(w)}{w^{1-p}} dw \right| \\
\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} B_{1}^{1 - \frac{1}{q}} \left[B_{2} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|^{q} + B_{3} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right|^{q} \right]^{\frac{1}{q}}, \tag{2.8}$$

where

$$B_{1} = B_{1}(u_{1}, u_{2}; p) = \frac{1}{4} \left(\frac{u_{1}^{p} + u_{2}^{p}}{2} \right)^{\frac{1}{p} - 1}$$

$$\times \left[{}_{2}F_{1} \left(1 - \frac{1}{p}, 2; 3; \frac{u_{1}^{p} - u_{2}^{p}}{u_{1}^{p} + u_{2}^{p}} \right) + {}_{2}F_{1} \left(1 - \frac{1}{p}, 2; 3; \frac{u_{2}^{p} - u_{1}^{p}}{u_{1}^{p} + u_{2}^{p}} \right) \right],$$

$$B_{2} = B_{2}(u_{1}, u_{2}; p) = \frac{1}{24} \left(\frac{u_{1}^{p} + u_{2}^{p}}{2} \right)^{\frac{1}{p} - 1} \left[{}_{2}F_{1} \left(1 - \frac{1}{p}, 2; 4; \frac{u_{1}^{p} - u_{2}^{p}}{u_{1}^{p} + u_{2}^{p}} \right) + 6 {}_{2}F_{1} \left(1 - \frac{1}{p}, 2; 4; \frac{u_{2}^{p} - u_{1}^{p}}{u_{1}^{p} + u_{2}^{p}} \right) \right],$$

$$B_{3} = B_{3}(u_{1}, u_{2}; p) = B_{1} - B_{2}.$$

Proof Applying the power mean inequality to (1.4) of Lemma 1.1, we get

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{p}{u_{2}^{p} - u_{1}^{p}} \int_{u_{1}}^{u_{2}} \frac{\psi(w)}{w^{1-p}} dw \right|$$

$$\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} \int_{0}^{1} \left| \frac{1 - 2r}{[ru_{1}^{p} + (1 - r)u_{2}^{p}]^{1 - \frac{1}{p}}} \right| \left| \psi'\left(\left[ru_{1}^{p} + (1 - r)u_{2}^{p}\right]^{\frac{1}{p}}\right)\right| dr$$

$$\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} \left(\int_{0}^{1} \frac{|1 - 2r|}{[ru_{1}^{p} + (1 - r)u_{2}^{p}]^{1 - \frac{1}{p}}} dr \right)^{1 - \frac{1}{q}}$$

$$\times \left(\int_{0}^{1} \frac{|1 - 2r|}{[ru_{1}^{p} + (1 - r)u_{2}^{p}]^{1 - \frac{1}{p}}} \left| \psi'\left(\left[ru_{1}^{p} + (1 - r)u_{2}^{p}\right]^{\frac{1}{p}}\right)\right|^{q} dr \right)^{\frac{1}{q}}. \tag{2.9}$$

Since $|\psi'|^q$ is exponentially *p*-convex on $[u_1, u_2]$, we have

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{p}{u_{2}^{p} - u_{1}^{p}} \int_{u_{1}}^{u_{2}} \frac{\psi(w)}{w^{1-p}} dw \right|$$

$$\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} \left(\int_{0}^{1} \frac{|1 - 2r|}{[ru_{1}^{p} + (1 - r)u_{2}^{p}]^{1 - \frac{1}{p}}} dr \right)^{1 - \frac{1}{q}}$$

$$\times \left(\int_{0}^{1} \frac{||1 - 2r||[r|\frac{\psi'(u_{1})}{e^{\alpha u_{1}}}|^{q} + (1 - r)|\frac{\psi'(u_{2})}{e^{\alpha u_{2}}}|^{q}]}{[ru_{1}^{p} + (1 - r)u_{2}^{p}]^{1 - \frac{1}{p}}} dr \right)^{\frac{1}{q}}$$

$$\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} B_{1}^{1 - \frac{1}{q}} \left[B_{2} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|^{q} + B_{3} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right|^{q} \right]^{\frac{1}{q}}. \tag{2.10}$$

It is easy to note that

$$\int_{0}^{1} \frac{|1-2r|}{[ru_{1}^{p}+(1-r)u_{2}^{p}]^{1-\frac{1}{p}}} dr = B_{1}(u_{1}, u_{2}; p),$$

$$\int_{0}^{1} \frac{|1-2r|r}{[ru_{1}^{p}+(1-r)u_{2}^{p}]^{1-\frac{1}{p}}} dr = B_{2}(u_{1}, u_{2}; p),$$

$$\int_{0}^{1} \frac{|1-2r|(1-r)}{[ru_{1}^{p}+(1-r)u_{2}^{p}]^{1-\frac{1}{p}}} dr = B_{1}(u_{1}, u_{2}; p) - B_{2}(u_{1}, u_{2}; p).$$

Hence the proof is completed.

Remark 2.2 In Theorem 2.3,

- (a) by taking $\alpha = 0$, we attain Theorem 7 in [19];
- (b) by taking p = 1, we attain Theorem 5 in [4].

Corollary 2.4 Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable function on \mathcal{K}° and $u_1, u_2 \in \mathcal{K}$, $u_1 < u_2$, and $\psi' \in L_1[u_1, u_2]$. If $|\psi'|$ is exponentially p-convex on $[u_1, u_2]$, then

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{p}{u_{2}^{p} - u_{1}^{p}} \int_{u_{1}}^{u_{2}} \frac{\psi(w)}{w^{1-p}} dw \right| \\
\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} \left[B_{2} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right| + B_{3} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right| \right], \tag{2.11}$$

where B_2 and B_3 are given in Theorem 2.3.

Remark 2.3 In Corollary 2.4,

- (a) by taking $\alpha = 0$, we attain Corollary 1 in [19];
- (b) by taking p = 1, we attain Theorem 3 in [4].

Theorem 2.5 Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable function on \mathcal{K}° . Let $u_1, u_2 \in \mathcal{K}$, $u_1 < u_2$, and $\psi' \in L_1[u_1, u_2]$. If $|\psi'|^q$ is exponentially p-convex on $[u_1, u_2]$, and q, l > 1, 1/q + 1/l = 1, and $\alpha \in \mathbb{R}$, then

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{p}{u_{2}^{p} - u_{1}^{p}} \int_{u_{1}}^{u_{2}} \frac{\psi(w)}{w^{1-p}} dw \right| \\
\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} \left(\frac{1}{l+1} \right)^{\frac{1}{l}} \left[B_{4} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|^{q} + B_{5} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right|^{q} \right]^{\frac{1}{q}}, \tag{2.12}$$

where

$$\begin{split} B_4 &= B_4(u_1,u_2;p;q) \\ &= \begin{cases} \frac{1}{2u_1^{qp-q}} \,_2F_1(q-\frac{q}{p},1;3;1-(\frac{u_2}{u_1})^p), & p<0, \\ \frac{1}{2u_1^{qp-q}} \,_2F_1(q-\frac{q}{p},2;3;1-(\frac{u_1}{u_2})^p), & p>0, \end{cases} \end{split}$$

$$\begin{split} B_5 &= B_5(u_1,u_2;p;q) \\ &= \begin{cases} \frac{1}{2u_1^{qp-q}} \,_2F_1(q-\frac{q}{p},2;3;1-(\frac{u_2}{u_1})^p), & p < 0, \\ \frac{1}{2u_2^{qp-q}} \,_2F_1(q-\frac{q}{p},1;3;1-(\frac{u_1}{u_2})^p), & p > 0. \end{cases} \end{split}$$

Proof Using Hölder's inequality on (1.4) of Lemma 1.1 and then applying the exponential p-convexity of $|\psi'|^q$ on $[u_1, u_2]$, we get

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{p}{u_{2}^{p} - u_{1}^{p}} \int_{u_{1}}^{u_{2}} \frac{\psi(w)}{w^{1-p}} dw \right| \\
\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} \left(\int_{0}^{1} |1 - 2r|^{l} dr \right)^{\frac{1}{l}} \\
\times \left(\int_{0}^{1} \frac{1}{[ru_{1}^{p} + (1 - r)u_{2}^{p}]^{q(1 - \frac{1}{p})}} |\psi'([ru_{1}^{p} + (1 - r)u_{2}^{p}]^{\frac{1}{p}})|^{q} dr \right)^{\frac{1}{q}} \\
\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} \left(\frac{1}{l+1} \right)^{\frac{1}{l}} \left(\int_{0}^{1} \frac{r|\frac{\psi'(u_{1})}{e^{\alpha u_{1}}}|^{q} + (1 - r)|\frac{\psi'(u_{2})}{e^{\alpha u_{2}}}|^{q}}{[ru_{1}^{p} + (1 - r)u_{2}^{p}]^{q - \frac{q}{p}}} dr \right)^{\frac{1}{q}} \\
\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} \left(\frac{1}{l+1} \right)^{\frac{1}{l}} \left[B_{4} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|^{q} + B_{5} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right|^{q} \right]^{\frac{1}{q}}, \tag{2.13}$$

where after calculations, we have

$$\begin{split} B_4 &= \int_0^1 \frac{r}{[ru_1^p + (1-r)u_2^p]^{q-\frac{q}{p}}} \, dr \\ &= \begin{cases} \frac{1}{2u_1^{qp-q}} \, {}_2F_1(q - \frac{q}{p}, 1; 3; 1 - (\frac{u_2}{u_1})^p), & p < 0, \\ \frac{1}{2u_2^{qp-q}} \, {}_2F_1(q - \frac{q}{p}, 2; 3; 1 - (\frac{u_1}{u_2})^p), & p > 0, \end{cases} \\ B_5 &= \int_0^1 \frac{1-r}{[ru_1^p + (1-r)u_2^p]^{q-\frac{q}{p}}} \, dr \\ &= \begin{cases} \frac{1}{2u_1^{qp-q}} \, {}_2F_1(q - \frac{q}{p}, 2; 3; 1 - (\frac{u_2}{u_1})^p), & p < 0, \\ \frac{1}{2u_1^{qp-q}} \, {}_2F_1(q - \frac{q}{p}, 1; 3; 1 - (\frac{u_1}{u_2})^p), & p > 0. \end{cases} \end{split}$$

Remark 2.4 In Theorem 2.5,

- (a) by letting $\alpha = 0$, we attain Theorem 8 in [19];
- (b) by letting p = 1, we attain Theorem 4 in [4].

Theorem 2.6 Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable function on \mathcal{K}° and $u_1, u_2 \in \mathcal{K}$, $u_1 < u_2$, and $\psi' \in L_1[u_1, u_2]$. If $|\psi'|^q$ is exponentially p-convex on $[u_1, u_2]$, and q, l > 1, 1/q + 1/l = 1, and $\alpha \in \mathbb{R}$, then

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{p}{u_{2}^{p} - u_{1}^{p}} \int_{u_{1}}^{u_{2}} \frac{\psi(w)}{w^{1-p}} dw \right| \\
\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} B_{6}^{\frac{1}{q}} \left(\frac{1}{q+1} \right)^{\frac{1}{q}} \left(\frac{\left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|^{q} + \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right|^{q}}{2} \right)^{\frac{1}{q}}, \tag{2.14}$$

where

$$\begin{split} B_6 &= B_6(u_1,u_2;p;l) \\ &= \begin{cases} \frac{1}{2u_1^{pl-l}} \,_2F_1(l-\frac{l}{p},1;2;1-(\frac{u_2}{u_1})^p), & p < 0, \\ \frac{1}{2u_2^{pl-l}} \,_2F_1(l-\frac{l}{p},1;2;1-(\frac{u_1}{u_2})^p), & p > 0. \end{cases} \end{split}$$

Proof Using Hölder's inequality on (1.4) of Lemma 1.1 and then applying the exponential *p*-convexity of $|\psi'|^q$ on $[u_1, u_2]$, we get

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{p}{u_{2}^{p} - u_{1}^{p}} \int_{u_{1}}^{u_{2}} \frac{\psi(w)}{w^{1-p}} dw \right|$$

$$\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} \left(\int_{0}^{1} \frac{1}{[ru_{1}^{p} + (1-r)u_{2}^{p}]^{l-\frac{1}{p}}} dr \right)^{\frac{1}{l}}$$

$$\times \left(\int_{0}^{1} |1 - 2r|^{q} |\psi'([ru_{1}^{p} + (1-r)u_{2}^{p}]^{\frac{1}{p}})|^{q} dr \right)^{\frac{1}{q}}$$

$$\leq \frac{u_{2}^{p} - u_{1}^{p}}{2p} B_{6}^{\frac{1}{l}} \left(\frac{1}{q+1} \right)^{\frac{1}{q}} \left(\frac{|\psi'(u_{1})|^{q} + |\psi'(u_{2})|^{q}}{2} \right)^{\frac{1}{q}}, \tag{2.15}$$

where a simple calculation implies

$$B_{6}(u_{1}, u_{2}; p; l) = \int_{0}^{1} \frac{1}{[ru_{1}^{p} + (1 - r)u_{1}^{p}]^{l - \frac{l}{p}}} dr$$

$$= \begin{cases} \frac{1}{2u_{1}^{pl - l}} {}_{2}F_{1}(l - \frac{l}{p}, 1; 2; 1 - (\frac{u_{2}}{u_{1}})^{p}), & p < 0, \\ \frac{1}{2u_{2}^{pl - l}} {}_{2}F_{1}(l - \frac{l}{p}, 1; 2; 1 - (\frac{u_{1}}{u_{2}})^{p}), & p > 0, \end{cases}$$

$$(2.16)$$

and

$$\int_0^1 r|1 - 2r|^q dr = \int_0^1 (1 - r)|1 - 2r|^q dr = \frac{1}{2(q+1)}.$$
 (2.17)

By substituting (2.16) and (2.17) into (2.15), we get (2.14).

Remark 2.5 In Theorem 2.6, by letting $\alpha = 0$, we attain Theorem 9 in [19].

2.2 Applications

Consider some special means of two positive numbers u_1 , u_2 , $u_1 < u_2$:

(1) The arithmetic mean

$$A = A(u_1, u_2) = \frac{u_1 + u_2}{2};$$

(2) The harmonic mean

$$H = H(u_1, u_2) = \frac{2u_1u_2}{u_1 + u_2};$$

(3) The p-logarithmic mean

$$L_p = L_p(u_1, u_2) = \left(\frac{u_2^{p+1} - u_1^{p+1}}{(p+1)(u_2 - u_1)}\right)^{\frac{1}{p}}, \quad p \in \mathbb{R} \setminus \{-1, 0\}.$$

In the next three propositions we consider $0 < u_1 < u_2$ and q > 1.

Proposition 2.1 *Let* $\alpha \in \mathbb{R}$ *and* p < 1. *Then we have*

$$\left|L_{p-1}^{p-1} - HL_{p-2}^{p-2}\right| \leq \frac{u_2^p - u_1^p}{2p} B_6^{\frac{1}{q}} \left(\frac{1}{q+1}\right)^{\frac{1}{q}} A^{\frac{1}{q}} \left(\left|\frac{1}{u_1^2 e^{\alpha u_1}}\right|^q, \left|\frac{1}{u_2^2 e^{\alpha u_2}}\right|^q\right) HL_{p-1}^{p-1},$$

where B_6 is defined as in Theorem 2.6.

Proof The proof ensues from Theorem 2.6, for a function $\psi:(0,\infty)\to\mathbb{R}$, $\psi(w)=\frac{1}{w}$. Here note that $|\psi'(w)|^q=|\frac{1}{w^2}|^q$ is exponentially p-convex for all p<1 and $\alpha\in\mathbb{R}$.

Proposition 2.2 *Let* $\alpha \leq 0$ *and* p > 1. *Then we have*

$$\left|L_{p-1}^{p-1}A\left(u_{1}^{p},u_{2}^{p}\right)-L_{2p-1}^{2p-1}\right|\leq\frac{u_{2}^{p}-u_{1}^{p}}{2}B_{6}^{\frac{1}{q}}\left(\frac{1}{q+1}\right)^{\frac{1}{q}}A^{\frac{1}{q}}\left(\left|\frac{1}{u_{1}^{p-1}e^{\alpha u_{1}}}\right|^{q},\left|\frac{1}{u_{2}^{p-1}e^{\alpha u_{2}}}\right|^{q}\right)L_{p-1}^{p-1},$$

where B_6 is defined as in Theorem 2.6.

Proof The proof ensues from Theorem 2.6, for $\psi : (0, \infty) \to \mathbb{R}$, $\psi(w) = w^p$. Here note that $|\psi'(w)|^q = |pw^{p-1}|^q$ is exponentially *p*-convex for all p > 1 and $\alpha \le 0$.

Proposition 2.3 *Let* $\alpha \leq 0$ *and* p > 1. *Then we have*

$$\left| L_{p-1}^{p-1} A - L_p^p \right| \leq \frac{u_2^p - u_1^p}{2p} B_6^{\frac{1}{\ell}} \left(\frac{1}{q+1} \right)^{\frac{1}{q}} A^{\frac{1}{q}} \left(\left| \frac{1}{e^{\alpha u_1}} \right|^q, \left| \frac{1}{e^{\alpha u_2}} \right|^q \right) L_{p-1}^{p-1},$$

where B_6 is given as in Theorem 2.6.

Proof The proof ensues from Theorem 2.6, for $\psi:(0,\infty)\to\mathbb{R}$, $\psi(w)=w$. Here note that $|\psi'(w)|^q=1$ is exponentially *p*-convex for all p>1 and $\alpha\leq 0$.

3 Exponentially s-convex functions in the second sense

We first generalize Definition 1.2.

Definition 3.1 Let $s \in (0,1]$ and $\mathcal{K} \subset \mathbb{R}_0$ be an interval. A function $\psi : \mathcal{K} \to \mathbb{R}$ is called exponentially s-convex in the second sense, if

$$\psi(ru_1 + (1-r)u_2) \le r^s \frac{\psi(u_1)}{\rho^{\alpha u_1}} + (1-r)^s \frac{\psi(u_2)}{\rho^{\alpha u_2}},\tag{3.1}$$

for all $u_1, u_2 \in \mathcal{K}$, $r \in [0, 1]$ and $\alpha \in \mathbb{R}$. If the inequality in (3.1) is reversed then ψ is called exponentially *s*-concave.

Observe that, by taking $\alpha = 0$, an exponentially s-convex function becomes s-convex.

Example 3.1 Consider a function $\psi : [0, \infty) \to \mathbb{R}$, defined by $\psi(u) = \ln(u)$ for $s \in (0, 1)$. Then ψ is exponentially *s*-convex, for all $\alpha \le -1$, but not *s*-convex in the second sense.

3.1 Integral inequalities

Throughout this section, we denote by $\mathcal{K} \subset \mathbb{R}_0$ an interval with nonempty interior \mathcal{K}° and $s \in (0,1]$. We start our new results with the following theorem.

Theorem 3.2 Let $\psi : \mathcal{K} \subset \mathbb{R}_0 \to \mathbb{R}$ be an integrable exponentially s-convex function in the second sense on \mathcal{K}° . Then for $u_1, u_2 \in \mathcal{K}$ with $u_1 < u_2$ and $\alpha \in \mathbb{R}$, we have

$$2^{s-1}\psi\left(\frac{u_1+u_2}{2}\right) \le \frac{1}{u_2-u_1} \int_{u_1}^{u_2} \frac{\psi(w)}{e^{\alpha w}} dw \le A_3(r) \frac{\psi(u_1)}{e^{\alpha u_1}} + A_4(r) \frac{\psi(u_2)}{e^{\alpha u_2}},\tag{3.2}$$

where

$$A_3(r) = \int_0^1 \frac{r^s dr}{e^{\alpha(ru_1 + (1-r)u_2)}} \quad and \quad A_4(r) = \int_0^1 \frac{(1-r)^s dr}{e^{\alpha(ru_1 + (1-r)u_2)}}.$$

Proof Applying exponential s-convexity of ψ , we have

$$2^{s}\psi\left(\frac{w+z}{2}\right) \leq \frac{\psi(w)}{e^{\alpha w}} + \frac{\psi(z)}{e^{\alpha z}}.$$
(3.3)

Letting $w = ru_1 + (1 - r)u_2$ and $z = (1 - r)u_1 + ru_2$, we get

$$2^{s}\psi\left(\frac{u_{1}+u_{2}}{2}\right) \leq \frac{\psi\left(ru_{1}+(1-r)u_{2}\right)}{e^{\alpha\left(ru_{1}+(1-r)u_{2}\right)}} + \frac{\psi\left((1-r)u_{1}+ru_{2}\right)}{e^{\alpha\left((1-r)u_{1}+ru_{2}\right)}}.$$
(3.4)

Integrating with respect to $r \in [0, 1]$ and applying a change of variable, we find

$$2^{s-1}\psi\left(\frac{u_1+u_2}{2}\right) \le \frac{1}{u_2-u_1} \int_{u_1}^{u_2} \frac{\psi(w)}{e^{\alpha w}} dw. \tag{3.5}$$

Hence the proof of the first inequality of (3.2) has been completed. For the next inequality, again using the exponential *s*-convexity of ψ , we have

$$\frac{\psi(ru_1 + (1-r)u_2)}{e^{\alpha(ru_1 + (1-r)u_2)}} \le \frac{r^s \frac{\psi(u_1)}{e^{\alpha u_1}} + (1-r)^s \frac{\psi(u_2)}{e^{\alpha u_2}}}{e^{\alpha(ru_1 + (1-r)u_2)}}.$$
(3.6)

Integrating with respect to $r \in [0, 1]$, we get

$$\frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \frac{\psi(w)}{e^{\alpha w}} dw \le \frac{\psi(u_1)}{e^{\alpha u_1}} \int_0^1 \frac{r^s dr}{e^{\alpha (ru_1 + (1 - r)u_2)}} + \frac{\psi(u_2)}{e^{\alpha u_2}} \int_0^1 \frac{(1 - r)^s dr}{e^{\alpha (ru_1 + (1 - r)u_2)}}.$$
 (3.7)

By combining (3.5) and (3.7), we get (3.2).

Remark 3.1 In Theorem 3.2, by letting $\alpha = 0$, we get inequality (1.6) in Theorem 1.4.

Theorem 3.3 Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable function on \mathcal{K}° and $u_1, u_2 \in \mathcal{K}$ with $u_1 < u_2$ and $\psi' \in L_1[u_1, u_2]$. If $|\psi'|$ is exponentially s-convex in the second sense on $[u_1, u_2]$, then

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$\leq \frac{u_2 - u_1}{2(s+1)(s+2)} \left[(3s+4) \left| \frac{\psi'(u_1)}{e^{\alpha u_1}} \right| + (s+4) \left| \frac{\psi'(u_2)}{e^{\alpha u_2}} \right| \right].$$
(3.8)

Proof From Lemma 1.2, we have

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$= \frac{u_2 - u_1}{2} \left| \int_0^1 (1 - 2r) \psi' \left(ru_1 + (1 - r)u_2 \right) dr \right|$$

$$\leq \frac{u_2 - u_1}{2} \int_0^1 |1 - 2r| \left| \psi' \left(ru_1 + (1 - r)u_2 \right) \right| dr. \tag{3.9}$$

Using the exponential s-convexity of ψ' , we get

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{1}{u_{2} - u_{1}} \int_{u_{1}}^{u_{2}} \psi(w) dw \right|$$

$$\leq \frac{u_{2} - u_{1}}{2} \int_{0}^{1} |1 - 2r| \left[r^{s} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right| + (1 - r)^{s} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right| \right] dr$$

$$\leq \frac{u_{2} - u_{1}}{2} \int_{0}^{1} (1 + 2r) \left[r^{s} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right| + (1 - r)^{s} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right| \right] dr$$

$$= \frac{u_{2} - u_{1}}{2} \int_{0}^{1} \left[(1 + 2r)r^{s} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right| + (1 + 2r)(1 - r)^{s} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right| \right] dr. \tag{3.10}$$

Since

$$\int_0^1 (1+2r)r^s dr = \frac{3s+4}{(s+1)(s+2)},\tag{3.11}$$

$$\int_0^1 (1+2r)(1-r)^s dr = \frac{s+4}{(s+1)(s+2)},\tag{3.12}$$

by substituting equalities (3.11) and (3.12) into (3.10), we get inequality (3.8).

Corollary 3.4 *Under the assumptions of Theorem* 3.3, we have the following: (a) If s = 1, then

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$\leq \frac{u_2 - u_1}{12} \left\lceil 7 \left| \frac{\psi'(u_1)}{e^{\alpha u_1}} \right| + 5 \left| \frac{\psi'(u_2)}{e^{\alpha u_2}} \right| \right\rceil.$$
(3.13)

(b) If $\alpha = 0$, then

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$\leq \frac{u_2 - u_1}{2(s+1)(s+2)} \left[(3s+4) \left| \psi'(u_1) \right| + (s+4) \left| \psi'(u_2) \right| \right].$$
(3.14)

Theorem 3.5 Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable function on \mathcal{K}° and $u_1, u_2 \in \mathcal{K}$, $u_1 < u_2$, and $\psi' \in L_1[u_1, u_2]$. If $|\psi'|$ is exponentially s-convex in the second sense on $[u_1, u_2]$, then

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$\leq \frac{u_2 - u_1}{2} \frac{1}{(s+1)(s+2)} \left(s + \frac{1}{2^s} \right) \left[\left| \frac{\psi'(u_1)}{e^{\alpha u_1}} \right| + \left| \frac{\psi'(u_2)}{e^{\alpha u_2}} \right| \right].$$
(3.15)

Proof From Lemma 1.2, we have

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$= \frac{u_2 - u_1}{2} \left| \int_0^1 (1 - 2r) \psi' \left(ru_1 + (1 - r)u_2 \right) dr \right|$$

$$\leq \frac{u_2 - u_1}{2} \int_0^1 |1 - 2r| \left| \psi' \left(ru_1 + (1 - r)u_2 \right) \right| dr. \tag{3.16}$$

Using the exponential *s*-convexity of ψ' , we get

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{1}{u_{2} - u_{1}} \int_{u_{1}}^{u_{2}} \psi(w) dw \right|
\leq \frac{u_{2} - u_{1}}{2} \int_{0}^{1} |1 - 2r| \left[r^{s} \left| \frac{\psi(u_{1})}{e^{\alpha u_{1}}} \right| + (1 - r)^{s} \left| \frac{\psi(u_{2})}{e^{\alpha u_{2}}} \right| \right] dr
= \frac{u_{2} - u_{1}}{2} \int_{0}^{1} \left[|1 - 2r| r^{s} \left| \frac{\psi(u_{1})}{e^{\alpha u_{1}}} \right| + |1 + 2r| (1 - r)^{s} \left| \frac{\psi(u_{2})}{e^{\alpha u_{2}}} \right| \right] dr
= \frac{u_{2} - u_{1}}{2} \left[C_{1}(s) \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right| + C_{2}(s) \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right| \right].$$
(3.17)

It is easily seen that

$$C_1(s) = \int_0^1 |1 - 2r| r^s dr = \frac{s}{(s+1)(s+2)} + \frac{1}{2^s (s+1)(s+2)},$$
(3.18)

$$C_2(s) = \int_0^1 |1 - 2r|(1 - r)^s dr = \frac{s}{(s+1)(s+2)} + \frac{1}{2^s(s+1)(s+2)}.$$
 (3.19)

Thus by substituting equalities (3.18) and (3.19) into (3.17), we achieve inequality (3.15).

Remark 3.2 In Theorem 3.5,

- (a) by taking $\alpha = 0$, we obtain Theorem 1, for q = 1, in [23];
- (b) by taking s = 1, we obtain Theorem 3 in [4].

Theorem 3.6 Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable function on \mathcal{K}° and $u_1, u_2 \in \mathcal{K}$ with $u_1 < u_2$ and $\psi' \in L_1[u_1, u_2]$. If $|\psi'|^q$ is exponentially s-convex in the second sense on $[u_1, u_2]$ with q > 1, then we have

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$\leq \frac{u_2 - u_1}{2} \left(\frac{1}{2} \right)^{1 - \frac{1}{q}} \left(\frac{s + \frac{1}{2^s}}{(s+1)(s+2)} \right)^{\frac{1}{q}} \left[\left| \frac{\psi'(u_1)}{e^{\alpha u_1}} \right|^q + \left| \frac{\psi'(u_2)}{e^{\alpha u_2}} \right|^q \right]^{\frac{1}{q}}.$$
(3.20)

Proof From Lemma 1.2, we have

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$= \frac{u_2 - u_1}{2} \left| \int_0^1 (1 - 2r) \psi' \left(ru_1 + (1 - r)u_2 \right) dr \right|$$

$$\leq \frac{u_2 - u_1}{2} \int_0^1 |1 - 2r| \left| \psi' \left(ru_1 + (1 - r)u_2 \right) \right| dr. \tag{3.21}$$

Applying the power-mean inequality, we find

$$\frac{u_{2} - u_{1}}{2} \int_{0}^{1} |1 - 2r| |\psi'(ru_{1} + (1 - r)u_{2})| dr$$

$$\leq \frac{u_{2} - u_{1}}{2} \left(\int_{0}^{1} |1 - 2r| dr \right)^{1 - \frac{1}{q}} \left(\int_{0}^{1} |1 - 2r| |\psi'(ru_{1} + (1 - r)u_{2})|^{q} dr \right)^{\frac{1}{q}}. \tag{3.22}$$

Since $|\psi'|^q$ is exponentially s-convex, we get

$$\int_{0}^{1} |1 - 2r| \left| \psi' \left(r u_{1} + (1 - r) u_{2} \right) \right|^{q} dr$$

$$\leq \int_{0}^{1} |1 - 2r| \left[r^{s} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|^{q} + (1 - r)^{s} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right|^{q} \right] dr$$

$$= \left[C_{1}(s) \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|^{q} + C_{2}(s) \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right|^{q} \right], \tag{3.23}$$

where

$$\int_{0}^{1} |1 - 2r| \, dr = \frac{1}{2}.\tag{3.24}$$

Using
$$(3.22)$$
– (3.24) in (3.21) , we get (3.20) .

Remark 3.3 In Theorem 3.6,

- (a) by putting $\alpha = 0$, we get Theorem 1, for q > 1, in [23];
- (b) by putting s = 1, we get Theorem 5 in [4].

Theorem 3.7 Let $\psi : \mathcal{K} \to \mathbb{R}$ be a differentiable function on \mathcal{K}° and $u_1, u_2 \in \mathcal{K}$ with $u_1 < u_2$ and $\psi' \in L_1[u_1, u_2]$. If $|\psi'|^q$ is exponentially s-convex in the second sense on $[u_1, u_2]$ and

 $q, l > 1, \frac{1}{l} + \frac{1}{q} = 1$, then we have

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) dw \right|$$

$$\leq \frac{u_2 - u_1}{2(l+1)^{\frac{1}{l}}} \left[\frac{|\frac{\psi'(u_1)}{e^{\alpha u_1}}|^q + |\frac{\psi'(u_2)}{e^{\alpha u_2}}|^q}{s+1} \right]^{\frac{1}{q}}.$$
(3.25)

Proof From Lemma 1.2 and using Hölder's inequality, we have

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$\leq \frac{u_2 - u_1}{2} \left(\int_0^1 |1 - 2r|^l \, dr \right)^{\frac{1}{l}} \left(\int_0^1 \left| \psi' \left(ru_1 + (1 - r)u_2 \right) \right|^q \, dr \right)^{\frac{1}{q}}.$$
(3.26)

Since $|\psi'|^q$ is exponentially s-convex, we get

$$\left| \frac{\psi(u_{1}) + \psi(u_{2})}{2} - \frac{1}{u_{2} - u_{1}} \int_{u_{1}}^{u_{2}} \psi(w) dw \right| \\
\leq \frac{u_{2} - u_{1}}{2} \left(\int_{0}^{1} |1 - 2r|^{l} dr \right)^{\frac{1}{l}} \left(\int_{0}^{1} \left[r^{s} \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|^{q} + (1 - r)^{s} \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right|^{q} \right] \right)^{\frac{1}{q}} \\
= \frac{u_{2} - u_{1}}{2(l+1)^{\frac{1}{l}}} \left[\frac{|\frac{\psi'(u_{1})}{e^{\alpha u_{1}}}|^{q} + |\frac{\psi'(u_{2})}{e^{\alpha u_{2}}}|^{q}}{s+1} \right]^{\frac{1}{q}}.$$
(3.27)

Hence the proof is completed.

Remark 3.4 In Theorem 3.7,

(a) by letting $\alpha = 0$, we get

$$\left| \frac{\psi(u_1) + \psi(u_2)}{2} - \frac{1}{u_2 - u_1} \int_{u_1}^{u_2} \psi(w) \, dw \right|$$

$$\leq \frac{u_2 - u_1}{2(l+1)^{\frac{1}{l}}} \left[\frac{|\psi'(u_1)|^q + |\psi'(u_2)|^q}{s+1} \right]^{\frac{1}{q}};$$
(3.28)

(b) by letting s = 1, we get Theorem 4 in [4].

3.2 Applications

Suppose d is a partition of the interval $[u_1, u_2]$, that is, $d : u_1 = w_0 < w_1 < \cdots < w_{m-1} < w_m = u_2$, then the trapezoidal formula is given as

$$T(\psi, d) = \sum_{n=0}^{m-1} \frac{\psi(w_n) + \psi(w_{n+1})}{2} (w_{n+1} - w_n).$$

We known that if $\psi: [u_1, u_2] \to \mathbb{R}$ is twice differentiable on (u_1, u_2) and $\mathcal{M} = \max_{w \in (u_1, u_2)} |\psi''(w)| < \infty$, then

$$\int_{u_1}^{u_2} \psi(w) \, dw = T(\psi, d) + R(\psi, d), \tag{3.29}$$

where the remainder term is given as

$$\left| R(\psi, d) \right| \le \frac{\mathcal{M}}{12} \sum_{n=0}^{m-1} (w_{n+1} - w_n)^3.$$
 (3.30)

It is noticed that if ψ'' does not exist or ψ'' is unbounded, then (3.29) is invalid. However, Dragomir and Wang [10–12] have shown that the term $R(\psi, d)$ can be obtained by using the first derivative only. These estimates surely have several applications. In this section, we estimate the remainder term $R(\psi, d)$ in a new sense.

Proposition 3.1 Let $\psi : \mathcal{K} \subseteq \mathbb{R}_0 \to \mathbb{R}$ be a differentiable function on \mathcal{K}° . Let $u_1, u_2 \in \mathcal{K}$, $u_1 < u_2$. If $|\psi'|$ is exponentially s-convex in the second sense on $[u_1, u_2]$ and $s \in (0, 1]$, then in (3.29), for every partition d of $[u_1, u_2]$, we have

$$\left| R(\psi, d) \right| \leq \frac{1}{2} \frac{1}{(s+1)(s+2)} \left(s + \frac{1}{2^{s}} \right) \sum_{n=0}^{m-1} (w_{n+1} - w_{n})^{2} \left[\left| \frac{\psi'(w_{n})}{e^{\alpha w_{n}}} \right| + \left| \frac{\psi'(w_{n+1})}{e^{\alpha w_{n+1}}} \right| \right] \\
\leq \max \left\{ \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|, \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right| \right\} \\
\times \frac{1}{(s+1)(s+2)} \left(s + \frac{1}{2^{s}} \right) \sum_{n=0}^{m-1} (w_{n+1} - w_{n})^{2}. \tag{3.31}$$

Proof Applying Theorem 3.5 on the subinterval $[w_n, w_{n+1}]$ (n = 0, 1, ..., m - 1) of the partition d, we obtain

$$\left| \frac{\psi(w_n) + \psi(w_{n+1})}{2} (w_{n+1} - w_n) - \int_{w_n}^{w_{n+1}} \psi(w) \, dw \right|$$

$$\leq \frac{(w_{n+1} - w_n)^2}{2} \frac{1}{(s+1)(s+2)} \left(s + \frac{1}{2^s} \right) \left[\left| \frac{\psi'(w_n)}{e^{\alpha w_n}} \right| + \left| \frac{\psi'(w_{n+1})}{e^{\alpha w_{n+1}}} \right| \right].$$
(3.32)

Summing over n from 0 to m - 1, we get

$$\left| T(\psi, d) - \int_{u_{1}}^{u_{2}} \psi(w) dw \right| \\
\leq \frac{1}{2} \sum_{n=0}^{m-1} (w_{n+1} - w_{n})^{2} \frac{1}{(s+1)(s+2)} \left(s + \frac{1}{2^{s}} \right) \left[\left| \frac{\psi'(w_{n})}{e^{\alpha w_{n}}} \right| + \left| \frac{\psi'(w_{n+1})}{e^{\alpha w_{n+1}}} \right| \right] \\
\leq \max \left\{ \left| \frac{\psi'(u_{1})}{e^{\alpha u_{1}}} \right|, \left| \frac{\psi'(u_{2})}{e^{\alpha u_{2}}} \right| \right\} \frac{1}{(s+1)(s+2)} \left(s + \frac{1}{2^{s}} \right) \sum_{n=0}^{m-1} (w_{n+1} - w_{n})^{2}. \tag{3.33}$$

Proposition 3.2 Let $\psi : \mathcal{K} \subseteq \mathbb{R}_0 \to \mathbb{R}$ be a differentiable function on \mathcal{K}° and $u_1, u_2 \in \mathcal{K}$ with $u_1 < u_2$. If $|\psi'|^q$ is exponentially s-convex in the second sense on $[u_1, u_2]$ and $s \in (0, 1]$

and q, l > 1 such that $\frac{1}{l} + \frac{1}{q} = 1$, then in (3.29), for every partition d of $[u_1, u_2]$, we have

$$\begin{aligned}
\left| R(\psi, d) \right| &\leq \frac{1}{2(l+1)^{\frac{1}{l}}} \sum_{n=0}^{m-1} (w_{n+1} - w_n)^2 \left[\frac{\left| \frac{\psi'(w_n)}{e^{\alpha w_n}} \right|^q + \left| \frac{\psi'(w_{n+1})}{e^{\alpha w_{n+1}}} \right|^q}{s+1} \right]^{\frac{1}{q}} \\
&\leq \frac{\max\left\{ \frac{2\left| \frac{\psi'(u_1)}{e^{\alpha u_1}} \right|}{s+1}, \frac{2\left| \frac{\psi'(u_2)}{e^{\alpha u_2}} \right|}{s+1} \right\}}{2(l+1)^{\frac{1}{l}}} \sum_{n=0}^{m-1} (w_{n+1} - w_n)^2.
\end{aligned} \tag{3.34}$$

Proof Using Theorem 3.7 and similar arguments as in Proposition 3.1, we get the required result. \Box

Funding

The present investigation is supported by National University of Science and Technology (NUST), Islamabad, Pakistan.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

Both authors contributed equally to this work. Both authors read and approved the final manuscript.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 27 September 2018 Accepted: 28 March 2019 Published online: 03 April 2019

References

- Alomari, M., Darus, M., Dragomir, S.S., Cerone, P.: Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense. Appl. Math. Lett. 23, 1071–1076 (2010)
- 2. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Generalized convexity and inequalities. J. Math. Anal. Appl. 335(2), 1294–1308 (2007)
- Avci, M., Kavurmaci, H., Ozdemir, M.E.: New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications. Appl. Math. Comput. 217, 5171–5176 (2011)
- 4. Awan, M.U., Noor, M.A., Noor, K.I.: Hermite–Hadamard inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 12(2), 405–409 (2018)
- Cerone, P., Dragomir, S.S.: Ostrowski type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstr. Math. 37(2), 299–308 (2004)
- Chen, F., Wu, S.: Integral inequalities of Hermite–Hadamard type for products of two h-convex functions. Abstr. Appl. Anal. 2014, 1–6 (2014)
- Chen, F., Wu, S.: Several complementary inequalities to inequalities of Hermite–Hadamard type for s-convex functions. J. Nonlinear Sci. Appl. 9, 705–716 (2016)
- 8. Dragomir, S.S., Agarwal, R.P.: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 11(5), 91–95 (1998)
- 9. Dragomir, S.S., Fitzpatrick, S.: The Hadamard's inequality for s-convex functions in the second sense. Demonstr. Math. 32(4), 687–696 (1999)
- 10. Dragomir, S.S., Wang, S.: An inequality of Ostrowski–Gruss type and its applications to the estimation of error bounds for some special means and for some numerical quadrature rule. Comput. Math. Appl. 33(11), 15–20 (1997)
- 11. Dragomir, S.S., Wang, S.: A new inequality of Ostrowski's type in L₁ norm and applications to some special means and to some numerical quadrature rule. Tamkang J. Math. **28**(3), 239–244 (1997)
- 12. Dragomir, S.S., Wang, S.: Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rule. Appl. Math. Lett. 11(1), 105–109 (1998)
- 13. Fang, Z.B., Shi, R.: On the (p,h)-convex function and some integral inequalities. J. Inequal. Appl. **2014**, 45 (2014)
- Hadamard, J.: Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann.
 J. Math. Pures Appl., 171–215 (1893)
- 15. Hermite, C.: Sur deux limites d'une intégrale définie. Mathesis 3, 82 (1883)
- 16. Hudzik, H., Maligranda, L.: Some remarks on s-convex functions. Aequ. Math. 48(1), 100-111 (1994)
- 17. Iscan, I.: A new generalization of some integral inequalities for (α, m) -convex functions. Math. Sci. 7(22), 1-8 (2013)
- Iscan, I.: Hermite–Hadamard type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 43(6), 935–942 (2014)
- 19. Iscan, I.: Hermite-Hadamard type inequalities for p-convex functions. Int. J. Anal. Appl. 11(2), 137–145 (2016)
- 20. Iscan, I.: Ostrowski type inequalities for p-convex functions. New Trends Math. Sci. 4(3), 140–150 (2016)
- 21. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies Series Profile, vol. 204. Elsevier, Amsterdam (2006). ISBN:0-444-51832-0
- 22. Kirmaci, U.S.: Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 147, 137–146 (2004)

- 23. Kirmaci, U.S., Bakula, M.K., Ozdemir, M.E., Pecaric, J.: Hadamard-type inequalities for s-convex functions. Appl. Math. Comput. 193, 26–35 (2007)
- 24. Niculescu, C.P., Persson, L.-E.: Convex Functions and Their Applications. A Contemporary Approach, 2nd edn. Springer, Berlin (2018)
- Niculescu, C.P., Persson, L.-E.: Old and new on the Hermite–Hadamard inequality. Real Anal. Exch. 29(2), 663–685 (2003/2004)
- 26. Zhang, K.S., Wan, J.P.: p-Convex functions and their properties. Pure Appl. Math. 23(1), 130–133 (2007)

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at ▶ springeropen.com